Neurocomputing 73 (2010) 1438-1450

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

A multi-objective memetic and hybrid methodology for optimizing the
parameters and performance of artificial neural networks

Leandro M. Almeida *, Teresa B. Ludermir

Centre of Informatics, Federal University of Pernambuco, Av. Luiz Freire s/n, Cidade Universitdria, 50732-970 Recife-PE, Brazil

ARTICLE INFO ABSTRACT

Article history:

Received 19 March 2009

Received in revised form

1 October 2009

Accepted 25 November 2009
Communicated by A. Abraham
Available online 16 December 2009

The use of artificial neural networks implies considerable time spent choosing a set of parameters that
contribute toward improving the final performance. Initial weights, the amount of hidden nodes and
layers, training algorithm rates and transfer functions are normally selected through a manual process
of trial-and-error that often fails to find the best possible set of neural network parameters for a specific
problem. This paper proposes an automatic search methodology for the optimization of the parameters
and performance of neural networks relying on use of Evolution Strategies, Particle Swarm
Optimization and concepts from Genetic Algorithms corresponding to the hybrid and global search
module. There is also a module that refers to local searches, including the well-known Multilayer
Perceptrons, Back-propagation and the Levenberg-Marquardt training algorithms. The methodology
proposed here performs the search using the aforementioned parameters in an attempt to optimize the
networks and performance. Experiments were performed and the results proved the proposed method

Keywords:

Artificial neural networks

Particle swarm optimization

Evolutionary algorithms

Memetic algorithms and hybrid intelligent

systems

to be better than trial-and-error and other methods found in the literature.

Crown Copyright © 2009 Published by Elsevier B.V. All rights reserved.

1. Introduction

The power of Artificial Neural Networks (ANNs) has been
demonstrated over the years by their successful use in many
types of problems with different degrees of complexity and in
different fields of application [16,8,41,17,7]. However, the use of
an ANN implies another problem beyond that in which the neural
network will be employed. This secondary problem regards the
choice of model and appropriate set of parameters that, together,
can effectively and efficiently solve the main problem. The choice
of ANN model is easier than choosing its parameters, as the
conception a ANN models is linked to a specific type of problem,
whereas the parameters are variant continuous values within the
work context of the problem [29,7,32]. The choice of the set
of parameters involves difficulties such as the exponential
number of parameters that need to be adjusted; the need for a
priori knowledge on the problem domain and ANN functioning in
order to define these parameters; and the presence of an expert
when such knowledge is lacking [2,4,3].

In most cases, the choice of parameters is manually performed
through of a trial-and-error method, which is a tedious, less
productive and error-prone task. Furthermore, when the com-
plexity of the problem domain increases and near-optimal

* Corresponding author.
E-mail addresses: Ima3@cin.ufpe.br, leandrolma@gmail.com (L.M. Almeida),
tbl@cin.ufpe.br (T.B. Ludermir).

networks are desired, manual searching becomes more difficult
and unmanageable [2,4,3]. An optimal neural network is an ANN
tailored to a specific problem, thereby having a smaller archi-
tecture, with faster convergence and a better generalization
performance [4]. A near-optimal ANN is a neural network with
specific, appropriate parameters chosen for a particular problem,
with a better structure and final performance than an ANN found
through trial-and-error [1,4].

Thus, the automatic searching for or fine tuning of ANN
parameters has become the subject of many papers found in the
literature. Methods devoted to automatically searching/tuning/
optimizing ANN structures and parameters can be classified into
those that use some kind of Evolutionary Algorithm (EA) and
those that use a non-evolutionary or numeric approach, focused
mainly on the manipulation of ANN architectures and weights
[21]. However, transfer functions, training algorithms and the
rates of these algorithms also exercise an influence over the final
performance of the neural network [4,3]. An evolutionary search
can involve the search for either some or all ANN parameters,
provided that such information is correctly specified for the
adopted search methodology [19,15].

Recently, there has been a perceptible increase in the use of
EAs for the optimization of problem solving, including the
automated design of ANNs. EAs are heuristic, stochastic methods
based on populations made up of individuals with specific
behavior similar to biological phenomena; they are robust and
efficient at exploring an entire solution space of optimization
problems [50,19,15]. Genetic Algorithms (GA) [26] are the main

0925-2312/$ - see front matter Crown Copyright © 2009 Published by Elsevier B.V. All rights reserved.

doi:10.1016/j.neucom.2009.11.007

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2009.11.007
mailto:lma3@cin.ufpe.br
mailto:leandrolma@gmail.com
mailto:tbl@cin.ufpe.br

L.M. Almeida, T.B. Ludermir / Neurocomputing 73 (2010) 1438-1450 1439

kind of EA used to search for ANN parameters, but other methods,
such as Evolution Strategies (ES) [6,19], Particle Swarm Optimiza-
tion (PSO) [33], and Ant Colony Optimization (ACO) [18], have
also been employed in this difficult task [31,39,38,24,51,50,4,23].

This paper presents a method for optimizing the parameters
and performance of ANNs through a search for weights,
architectures (nodes and layers), transfer functions and training
algorithm rates. The proposed method is based on fully connected
supervised Multi-layer Perceptrons composed of a combination of
ES, PSO and GA as well as the Back-propagation (BP) [47,46] and
Levenberg-Marquardt (LM) [36,40] training algorithms [29]. The
main difference between the method proposed and others found
in the literature is the combination of strong points from different
methods, which are normally used separately in the same task.
The result is a hybrid system [27,42] with memetic [45], multi-
objective [28,15] behavior employed to optimize ANNSs.

More specifically, the simplest mutation and self-adaptation
mechanisms are taken from ES, to which PSO is incorporated, with
its ability to explore a small portion of the entire search space and
refine the solutions found by the ES. The solutions are submitted
to a training phase in which the algorithms (BP and/or LM) are
employed to execute a more refined/precise local search than that
executed by PSO. The solutions are then submitted to a selection
survival process (existing in GA). Thus, solutions are generated
randomly to form the offspring and the process is repeated.
Further details are described in the Section 4. The proposed
method is a hybrid intelligent system, combining the strong
points of the different techniques in order to overcome the
limitations of each technique used alone [27,42]. This method has
a stage in which the global search is performed using ES and PSO,
followed by a stage in which the local search is performed using
the ANN training algorithms and PSO throughout the execution,
thereby characterizing memetic behavior [45,19]. Finally, the
method performs the search for ANN performance and para-
meters simultaneously, thereby constituting a multi-objective
search methodology [15,19]. This paper is organized as follows:
Section 2 presents some related works; Section 3 presents the bio-
inspired methods/algorithms used in the current work; Section 4
describes the proposed method; Section 5 presents the experi-
mental results; and Section 6 summarizes our conclusions and
presents future works.

2. Related works

A large number of papers are found in the literature dedicated
to designing ANNs automatically through the use of EAs. Cai et al.
[9] recently proposed a method that uses a combination of PSO
and ES to train Recurrent Neural Networks (RNN) [29] for dealing
with times series predictions. With this method, ES performs
the global search and PSO performs the local search, refining
the solutions. Through an elitism survival selection, half of the
existing solutions are then discarded (the losers) and the
remaining half (the winners) are used to randomly produce novel
solutions. The main problem with this method is that the RNN is
trained with a fixed architecture that may not be appropriate for
the problem. Moreover, PSO belongs to the EA family, which
characteristically performs both global and local searches, but PSO
is not built for the local search alone. Therefore, PSO will have a
worse performance in most cases than a numerical method built
exclusively for such a task [19].

Yu et al. [50] recently proposed a method employing PSO and
ES to design ANNs. This method performs the search for the
structure (layers, nodes and connections) and parameters
(weights and bias). In this case, the PSO performs the global
search and the ES performs the local search or fine-tuning of

solutions. This method has been experimented with only two
problems, demonstrating a satisfactory improvement over the
methods used individually with regard to the structure, but not
the performance error. In both papers, an EA performs the task
normally designed for a numerical method, but, unfortunately,
the EA cannot contribute toward finding a better solution than
when using a numeral method due to its global exploration aspect
applied to the place where a local search mechanism is expected.

Liu et al. [37] propose a memetic algorithm for designing ANNs
using a combination of PSO and classic training algorithms, such
as the Scaled Conjugated Gradient (SCG) [44]. This method
performs the global search using PSO. The training algorithms
are then used to fine-tune the weights. In this case, the ANN
architecture is fixed and the method searches for the best set of
weights and bias that contribute toward a better performance.
The method presents satisfactory results, but has been experi-
mented on only three problems instances.

Yao [49] proposes another method employing GAs for
optimizing ANNs, in which Evolutionary ANNs (EANNs) are
defined as a framework that enables the search for all ANN
components needed for its functioning. However, EANNs include
a sequential layer search process, in which each layer has specific
ANN information to be found by a specific GA, which requires a
high computational cost and processing time [4]. Other methods
using GAs to optimize a neural network structure are presented in
[25,24]. Methods that perform searches including more informa-
tion, such as transfer functions, initial weights and learning rules
(or learning algorithms) are presented in [1,21]. There are also
methods that employ non-evolutionary techniques, which prune
connections considered less significant [38,31] or freeze weights
when the same inputs are submitted to the network [31].

Chen et al. [14] presented a new kind of ANN representation
based on trees arrangement which become possible their
structural evolution by means of Genetic Programming (GP) and
probabilistic incremental program evolution algorithm (PIPE).
This framework allows input attributes selection, over-layer
connections and different activation functions for different nodes.
In some versions the framework proposed by Chen et al. was used
mainly to deal with times series predictions [14,13,11], but
recently a version to classification problems was shown [12]. In
both versions such framework uses EA to train and optimize the
ANN structure and performances, but there is no interaction with
the traditional numeric learning algorithms. Moreover, the
experiments with classification problems need to be extended
to include more problems from traditional benchmarks in order to
make possible the comparison of the framework against other
methods from literature.

In most methods that use GAs to design ANNs, there is no
combination with numerical methods for training neural net-
works. Such a combination may be useful, as the task of
optimizing ANNs in order to obtained near-optimal or optimal
solutions is very difficult, depending on the problem chosen for
the neural network solve [49,1,4]. In other words, the employ-
ment of methods specifically built to perform searches consider-
ing the entire search space (e.g. global search using GA, ES, PSO,
etc), followed by methods for performing the search in a small
portion of the search space or fine tuning the solutions (e.g. local
search using BP, LM, SCG, etc.) may produce solutions closer to
optimality than the use of such methods individually [19,15].

3. Bio-inspired optimization methods

Nature is made up of an immense amount of complex
organisms that perform a large number of tasks in order to
survive, reproduce and protect their communities. Biology

1440 L.M. Almeida, T.B. Ludermir / Neurocomputing 73 (2010) 1438-1450

produces complex and self-adaptable organisms that have a vast
amount of less reliable components, but possess abilities such as
self-assessment, self-repair, self-configuration, levels of redun-
dancy and protection, etc. Examples of such organisms are ants,
birds and bees, which individually are fragile, but, together, can be
very strong and exhibit intelligence in solving daily problems of
survival. As many organisms exhibit very effective functioning,
their methodologies and approaches have been extended to
solving optimization problems using bio-inspired techniques
such as EA and PSO.

GA is one of most popular EAs and is largely applied in
optimization problems [19]. The main characteristic of a GA is the
presence of mechanisms for selecting and recombining indivi-
duals, thereby enabling genetic inheritance from the parents
throughout the search execution [19]. Unfortunately, in some
problems, such inheritance may not be appropriate or beneficial
due to a very complex search space, leading to a more biased
exploration/navigation trapped in local maxima/minima [15].
Generating individuals with less inheritance from their parents is
a way of preventing the problem of local minima in minimization
problems. Moreover, the specification of many parameters is
necessary for GA use, such the recombination rate, mutation rate,
pressure rate, etc. Due to self-adaptation and having fewer
components, ES emerges as a suitable option for use in place of
a GA.

Self-adaptation means that some EA parameters are varied
during a run in a specific manner: the parameters are included in
the individual encoding and co-evolve with the solutions [19].
In contrast to GA, ES only has the mutation, evaluation and
initialization mechanisms included in its process, which basically
starts with a set of individuals, with the problem information and
parameters of the ES encoded together and composing an
individual. The population is evaluated. Some individuals are
randomly chosen and submitted to the mutation process, in
which new individuals are created. If such individuals prove
better than their parents, they then replace the parents. Other-
wise, new individuals are randomly chosen and the process
repeats until reaching a stopping criterion [19]. Thus, there is no
survivor selection or recombination of individuals in ES, making
the selection less dependent on the parents, which are used to
generate new individuals though the mutation process.

An ES is typically used for continuous parameter optimization,
with a strong emphasis on mutation for creating offspring and
with the mutation parameters changed during a run of the
algorithm [19]. The self-adaptation of the ES can be very useful, as
the set of parameters required by an optimization method to
solve a problem may be unknown or dynamic over time. Thus, GA
is not effective for some kinds of problems due to its pre-defined,
fixed parameter values [19,15]. On the other hand, the absence of
a sophisticated parent selection mechanism makes the search less
dependent on the past and more random, which may contribute
toward an increase in the time required to find an optimal or
near-optimal solution.

PSO is another bio-inspired optimization method. This method
was proposed by Kennedy and Eberhart [33] and inspired by the
choreography of a flock of birds. The idea of this approach is to
simulate the movements of a group (or population) of birds
searching for food. The approach can be seen as a distributed
behavioral algorithm that performs (in its more general version) a
multidimensional search [33,15]. The behavior of each individual
(or particle) is affected by either the best local individual (i.e.,
within a certain neighborhood) or the best global individual. PSO
then uses the population concept and a performance measure
similar to the fitness value used in EA. Moreover, the adjustments
of individuals are analogous to the use of a recombination
operator. This approach also introduces the use of flying potential

solutions through hyperspace (used to accelerate convergence)
[33,15].

PSO allows individuals to benefit from their past experiences,
whereas, in an evolutionary algorithm, the current population is
normally the only “memory” used by the individuals (e.g. in ES).
The advantages of PSO are its simplicity, ease of use and high
convergence rate. The disadvantages are mainly related to the
apparent difficulties in controlling diversity when used for multi-
objective optimization [28,15].

All the optimization methods described above offer both
advantages and disadvantages. However, these methods can be
combined, employing their individual advantages in order to
build a hybrid system that can outperform each individual
method. This hybrid system will be applied to a multi-objective
optimization problem related to ANNs. Along with the optimiza-
tion methods described, training algorithms for ANNs are joined
to the system, thereby imbuing it with memetic behavior, using
optimization methods to perform global searches and numerical
methods to perform local searches in the former. Further details
on this method are given in the Section 4.

4. The proposed method

The combination of ES, GA, PSO and ANN was performed in
order to build a hybrid method capable of seeking near-optimal or
even optimal neural networks for a given problem, thereby
avoiding the considerable human effort and problems stemming
from a manual trial-and-error search. With the use of EAs, an
encoding schema and fitness function were defined. The following
subsections present these components, the functioning of the EAs
and their combination with numerical methods.

4.1. Encoding schema

The proposed method is denominated EAPSONN and has a
special encoding schema of solutions that comprises all ANN
parameters needed for its functioning. In this encoding schema
(Fig. 1), an individual-a representation of a problem solution-
contains the ANN information organized in five parts. In the first
part, there is information on the learning algorithm type. Such
information is stored using the continuous values in which the
most representative value indicates what learning algorithm will
be used to train the neural network, such as BP, SCG, LM or the
quasi-Newton Algorithm (QNA) [22,29]. The use of BP is indicated
when the highest values are in the first component of Part 1; SCG
is used when the highest values are in the second component and
so on. The first part of the structure corresponds to the type of
training algorithm used and its size is determined by the number
a of algorithms included in the search process.

The second part of the data structure involves the parameter
values from the learning algorithm specified in the first part.
These parameter values are continuous and the length of this part
is defined based on the type of learning algorithm. The third part
contains information on the hidden layers of the neural network.
The length of the third part is fixed. It has four components, the
first of which specifies the amount of hidden layers and the others
describe the number of hidden nodes per layer. Generally ANN
may have up to two hidden layers according recommendations of
some authors [7], but networks found by EAPSONN may have up
to three hidden layers in order to reduce the number of hidden
nodes per layer and investigate the power of an additional layer
[4,3]. The fourth part contains information that specifies the type
of transfer functions used by each hidden layer, following the
same principle as that of the first part. When three types of
transfer functions are used in the search process, the fourth part

L.M. Almeida, T.B. Ludermir / Neurocomputing 73 (2010) 1438-1450 1441
Learning Learn. alg. Layer Transf. Weights Table 1
algorithm parameters 1 description functions and bias List of parameters used by EAPSONN.
81584 81-8&p 81584 818 818w Parameters for Values
Part #1 Part #2 Part #3 Part #4 Part #5 EA Encoding Direct, using continuous values
Population size 30
Elitism 10%
Fig. 1. Encoding schema comprising five parts. Pressure of selection 40%
Mutation Using (3) and (4)
. Selection criteria Random tournament with elitism
of the data structure is divided into three subparts, each with Stopping criteria Max of generations
three components. Each subpart refers to a hidden layer and the Number of generations to ES 50
highest value within it specifies the type of tra.nsfer functl.on pf PSO Velocity update rule Using (5)
the. layer. The fifth part correspgnds to the Yvelghts and bias in Position update rule Using (6)
which an array format representing the matrices is stored. Inertia weight Uniformly decreasing
Put simply, an individual can be seen as an array with over time [0.4, 0.9)
continuous values representing ANN parameters. This representa- Vimax o [-05,0.5)
. Number of iterations 10
tion makes its manipulation easier with respect to mathematical
operations and programming. ANN Type Fully connected MLP

4.2. Fitness function

For individuals, fitness I is composed of five pieces of
information: I,qig—validation error; Iyq,—training error;
Iniy—number of hidden layers; I,,,—number of hidden nodes;
and Iy,,c—weight of transfer functions used.

Iie = ot Lygtig + B * lrain +7 * Inia + 6 * Inog +€ * Iync (M
100 &)
Inmse = b *,; 2_(d-o @)

In Eq. (1), I,qig and Ig, are the validating and training
Normalized Mean Squared Error (NMSE) generated by the
network, respectively; Iy is number of hidden layers (up to 3);
Inoq represents the total number of hidden nodes; and Ippc
computes the weight of the transfer functions used. For such,
each transfer function has an empirically determined associated
weight (Table 1): P with 0.2, T with 0.3 and L with 0.5, prioritizing
simple transfer functions, as the aim of the EAPSONN is to find
simple networks with high performance; N and P are the total
number of outputs and number of training patterns, respectively;
d and o are the desired output (target) and the network output
(obtained), respectively. In this paper, the winner-takes-all
classification criterion was adopted, in which the output node
with the highest value determines the class pattern. Thus, the
number of nodes in the output layer of the neural network is
equal to the number of classes of the problem.

Constants o, 3,7, 0 and ¢ have values between [0, 1] and control
the influence of the respective factors upon the overall fitness
calculation process. For example, to favor classification accuracy
regarding validating and training, the constants are defined as
follows: o0=0.8,=0.145,7 =0.03,5 =0.005 and ¢ =0.02. These
definitions imply that, when apparently similar individuals are
found, those that have the least training error, structural complex-
ity and transfer function complexity will prevail. These values
were found empirically and used in the EAPSONN experiments.

4.3. Evolution strategies

The generation of an initial population is needed in order to begin
the functioning of an ES algorithm. In the present paper, a population
of n neural networks is created through the random generation of
individuals according the schema displayed in Fig. 1. Each individual
(a neural network configuration) has an associated self-adaptive
parameter vector v;,i=1,...,n, in which each component serves to
control the step size of the search for new mutated parameters of the

Transfer functions

Hidden layers

Hidden nodes

Training epochs

Range of initial weights
Initialization method

Output neuron

Learning and momentum rate
Stopping condition

Pruning and Weight decay
Sampling method

Pure-linear (P), Tang-sigmoid (T)
and Log-Sigmoid (L)
Upto3

Up to 6 per layer
Upto5

[-0.5, 0.5)

Random

Linear

[0.05, 0.25)

GL2

Not used

According to [10]

network. To be consistent with the initialization range, the self-
adaptive parameters are initially set to a uniform distribution.

Each parent generates offspring by varying all the associated
information on the neural networks. More specifically, for each
parent P;,i=1,...,n, an offspring P}, is created by

Vi(i) = vi(j).e? NODFENOD i1

Pi(j) =Pi() +vi().N(O, 1),

. Nw

j=l,---,Nw

©)
@

in which 7'oc1/v/2n, toc1/4/2y/n, and N(0,1) are random

variables obtained from a Normal Distribution,

resampled

for every j component [19]. The pseudo code of the ES is in
Algorithm 1.

Algorithm 1. Pseudo code of Evolution Strategies

1

Generate an initial population of individuals with
random values for ANNs and self-adaptive

parameters;
begin

end

while a sufficiently good fitness
or iteration is not reached do
Evaluate the fitness according the
given fitness function;
Compare the fitness values to find
the winners through elitism;
Keep the winners and produce
offspring to replace losers
for the next generation;
for each offspring do
Calculate the self — adaptive
parameters according to (3);
Calculate the position according to (4);

1442 L.M. Almeida, T.B. Ludermir / Neurocomputing 73 (2010) 1438-1450

As can be seen, the canonical version of the ES algorithm has a
simple survivor selection mechanism and the use of this
mechanism is not found in some applications. The use of an
elitist operator to select survivors and parents for generating
offspring may trap the more susceptible individuals in a local
minima, which will then be unable to leave such a place in the
search space. Due to the fact that this is an important mechanism
for the evolutionary search process, a novel selection operator is
proposed, with improvements regarding the simplified version of
the canonical ES.

In the new selection operator, n individuals are selected using
the tournament strategy, with a random pressure rate of
Pyrs=50% and an elitism rate of P;=10% applied to a
population of size w. The tournament strategy [43] was used to
create the mating pool and consequently provide the survivors for
the next generation. The pseudo code is presented in Algorithm 2.
With this algorithm, the maintenance of diversity is ensured due
to its random and elitist behavior, selecting both good and not-so-
good individuals.

Algorithm 2. Pseudo code of the genetic selection operator

1 Create a ranking of individuals considering the fitness;

2 Select the best (@ x Pgj;) individuals and place them in the
matingpool,;

3 Update w with the number of remaining individuals;

4 Set currentmember =1;

5 Dbegin

6 |while currentmember < ®w do

7 Pick k individuals randomly, with replacement;

8 Pick a random value r uniformly from [0, 1];

9 if r < Pprs then

10 | Select the worst of these k comparing their fitness;

11 else

12 {Select the best of these k comparing their fitness;

13 Denote the selected individual as i;
14 Set mating_pool[current_member] = i;
15 Set current_member = current_member+1;

16 end

Along with the use of the proposed selection operator, a
modification of Eqs. (3) and (4) has been performed, more
specifically N(0,1) to [-1,1). The purpose of this modification is
to ensure a greater variability in the values that make up an
individual and thereby contribute toward greater diversity within
a population, together with the proposed selection genetic
operator.

4.4. Particle swarm optimization

As mentioned in Section 1, PSO is a kind of bio-inspired
optimization and population-based method as well as an ES. Thus,
PSO is initialized with a population of random solutions and the
search seeks an optimal solution based on a given performance
function over iterations/generations. Along with the self-adaptive
parameter vector from ES, a randomized velocity vector from PSO
is incorporated to the individual data structure shown in Fig. 1.
This is due to the fact that each potential solution (particle) makes
a “flight” through the n-dimensional problem space and, conse-
quently, the particles are assigned a velocity vector, which
controls the “flight velocity”.

Therefore, each particle i has a position represented by a
position vector X; (using the encoding schema displayed in Fig. 1).

A particle swarm moves through an n-dimensional problem
space, with the velocity of each particle represented by a vector V;
(random uniform values from [0, 1]). At each iteration, a quality
measure is calculated using a function f;. In the present paper, the
fitness function previously described in (1) was used. Moreover,
each particle keeps track of its own best position, which is
associated with the best fitness it has achieved so far in a vector S;,
and the best position among all the particles obtained so far in the
population is Sg.

For each iteration in time t, using the individual or local
best position S,(t) and global best position Sg(f), a new
velocity vector for particle i is calculated using (5), in which ¢;
and ¢, are positive acceleration constants; ¢; and ¢, are
uniformly distributed random numbers in the range [0,1]; and
w is the inertia weight, starting with 0.9 and decreasing uniformly
to 0.4.

Vi(t+1) = w x Vi(t) + €191 (Sp(£)-Xi(1)) + €192 (Sg(t)—Xi(t)) (5)

The term V; is limited to the range + V.. Changing the
velocity in this way enables particle i to search for its individual
best position S, and the global best position Sg. Based on the
updated velocities, each particle changes its position according
to (6).

Xi(t+1)=X;(t)+ Vi(t+1) 6)

Using (5) and (6), the population of particles tends to cluster
together, moving in a random direction until a stopping criterion
is reached. The generic pseudo code of the PSO is given in
Algorithm 3.

Algorithm 3. Pseudo code of Particle Swarm Optimization

1 Initialize a population of particles
with random position and velocities in the
n-dimensional problem space;

2 begin
3 while a sufficiently good fitness or a
maximum number of iterations is not reached do
4 Evaluate the fitness according to
some fitness function;
5 Update the S, if fitness value of the current
particle is better than Sy(t-1);
6 Determine S,(t), choose the particle with
the best fitness values;
7 for each particle do
8 Calculate the new velocity of the particle
according to (5);
Calculate new position of the
particle according to (6);

9 end

In EAPSONN, an implementation of PSO was used that relies on
the usage of the fitness function described in (1), which is
calculated with the same individual representation displayed in
Fig. 1 (also used by the ES algorithm). The V;,,4, value starts with
0.9 and is uniformly decreased down to 0.4. As seen from its
pseudo code, there is no selection operator for parents and
survivors in PSO. Due to the absence of a mechanism for the
replacement of bad particles/individuals (e.g. particles that do not
contribute toward finding optimal solutions and trap the algo-
rithm in a local minima), the PSO algorithm suffers with a loss of
diversity and can consequently be trapped in a local minima. To

L.M. Almeida, T.B. Ludermir / Neurocomputing 73 (2010) 1438-1450 1443

avoid these problems, a combination of ES, GA and PSO is
proposed in the next subsection.

4.5. Hybridization of ES, GA, PSO and ANN—EAPSONN

ES usage in optimization problems is motivated mainly by the
presence of parameters that are self-adaptive over time based on
the surface of the search space; are easy to implement; and have a
history of success in continuous problem optimization. However,
there is no selection of parents and survivors through a
sophisticated genetic selection operator. GA provides a large
range of genetic operators for the recombination, mutation and

Algorithm 4. Pseudo code of the EAPSONN

To perform the exploitation task with more effectiveness, BP
and LM, which are well-known training algorithms for neural
networks, were combined. Thus, the hybridization of ES and GA
has the advantage of combining the power of self-adaptation with
genetic operators for selection of parents and survivors; after that,
the addition of PSO brings the capability to perform local searches
and its execution speed. Finally, the integration of numerical
methods was performed to improve the quality of local searches.
In this way the combination of ES, GA and PSO is responsible for
executing the exploration of the search space and starting the
exploitation task with PSO. This task is then completed with the
use of BP or/and LM training algorithms. The EAPSONN pseudo
code is summarized in Algorithm 4.

1 Initialize a population of individuals with random
values using the data structure given in Fig. 1, random
velocities and self-adaptive parameters in an

n-dimensional problem space;

2 Apply learning algorithms BP/LM and evaluate the
fitness according to (1);
3 begin
4 while the max number of iterations is not reached do
5 Use 0.33emAlgorithm 2 to select parents/survivors (winners);
6 Mutate winners to produce children using (3) with N(-1, 1);
7 Update self — adaptive parameter vector using (4) for each child;
8 Enhance the children with PSO up to some number of iterations;
9 for each child/particle do
10 Update S, if the current fitness value of the particle is better than Sp;
11 Determine S, choose the particle with the best fitness values of all;
12 Calculate the new velocity of the particle according to (5);
13 Calculate new position of the particle according to (6);
14 Apply learning algorithms BP/LM to the enhanced children and complete the enhancement phase;
15 Evaluate the fitness of the children according to (1);
16 | Merge children and winners to form the offspring;
17 end

selection of individuals, but its parameters are normally fixed at
the start of the search process and do not change over time as in
ES. However, a combination of ES and GA can be performed to
circumvent the absence of the selection operator in the former
and absence of the self-adaptive parameters in the latter. With
such a combination, the global search aspect is maintained, but a
local search for fine tuning the solutions/individuals may be
needed to find near-optimal or even optimal solutions.

PSO is a frequently used bio-inspired optimization methods for
performing local searches due to the social and cognitive
adaptation among the particles, focusing more on cooperation.
PSO normally has a better performance than ES and GA when
applied to perform local searches in a portion of an entire search
space. Unfortunately, PSO has drawbacks, such as the loss of
diversity, no selection operation and, in some cases, it is
inefficient at performing a satisfactory local search that returns
near-optimal solutions. Some of the problems found in bio-
inspired optimization methods can be solved by combining
methods, as they have complementary characteristics. However,
these methods are not useful or the exploitation task (local
search) due to the fact that they are directed toward the
exploration task, e.g. a global search that considers the entire
search space.

Table 1 summarizes all parameters/information related to the
EAPSONN method. This information refers to the ranges and rates
used to optimize the parameters and performance of neural
networks.

The ANN information displayed in Table 1 refers to the
possible values that neural networks found by EAPSONN can
take. Parameter values for EA and PSO were found empirically
through many runs of EAPSONN and produce the best results. The
next section presents the experiments, results and discussion on
the proposed method.

5. Experiments

Classification problems from different domains were used in
experiments comparing the performance of the EAPSONN to other
methods found in the literature. Statistical tests and an improved
strategy were used in the experiments in order to make the
results more reliable. The experiments were performed with eight
well-known classification problems found in the UCI repository
[5] and listed in Table 2, presenting the number of attributes (AT),
classes (CL), training examples (TR), validation examples (VA) and
test examples (TE).

1444 L.M. Almeida, T.B. Ludermir / Neurocomputing 73 (2010) 1438-1450

Table 2
Summary of data sets used in the experiments.

Name Composition

TR VA TE AT CA
Cancer 228 122 349 9 2
Glass 72 37 105 9 6
Heart-Cleveland 98 54 151 35 2
Heart 300 161 459 35 2
Horse 119 63 182 58 3
Pima-Diabetes 249 135 384 8 2
Card 225 121 344 51 2
Soybean 219 124 340 82 19

There exists a large kind of strategies for design experimenta-
tions of ANNs as those presented by [30,34]. Specifically to
current work was used the strategy studied in recent work of
Cant-Paz and Kamath [10] which is devoted to comparisons
of combinations of EA and ANN for classification problems. The
strategy of Cant-Paz and Kamath [10] was preferred due to it
simplicity, largely used and consequently make easier repeat the
experiments that will be reported in this section. In this way, was
used 30 two-fold iterations. At each iteration, data were randomly
divided into halves. One half was the input for the algorithm (65%
for training and 35% for the validation set) and the other half was
used to test the final solution (test set). The execution of one
iteration corresponds to the creation of an initial population and
execution of an evolutionary search over 50 generations; in each
generation, PSO is executed 10 times and the weights of the
children are updated every 5 epochs, using the BP/LM learning
algorithms. After 30 iterations with different data divisions and
initial populations, the best 30 ANN parameters are chosen based
on the fitness function (1). The results reported are the mean
value from the 30 ANN parameters found for each classification
problem.

A search for ANNs through trial-and-error was performed
following the previously described methodology, using the same
database split schema and ANN information displayed in Table 1.
We performed 30 runs in each fold for the networks created
randomly with the information described in Table 1 and selected
using the proposed genetic operator for the selection of survivors.
In this simulation, the randomly generated neural networks are
evaluated according to the fitness function (1) using BP and a
combination of BP-LM. The winners persist to the next iteration
and a new set of neural networks is generated and evaluated
again until the maximal number of iterations.

ES and PSO were also applied separately in the optimization of
ANNSs to the previously generated data folds. Both methods were
applied using the proposed genetic operator for the selection and
fitness function (1). However, differently of the trial-and-error
method, the learning algorithm was not used for updating the
weights in the execution of ES and PSO. To determine whether the
differences among the methods were statistically significant, we
used the T-test hypothesis test with significance level 5%.

The data sets sampling is replicated for each version of the
methods considered in experiments and for each method their
populations are randomized for each data fold. Tables 3-6 display
the results obtained from the trial-and-error simulation (TAE)
using BP and LM algorithms and EAPSONN using BP (EN-BP) and
using BP and LM together (EN-BPLM), as well as results using ES
and PSO separately. For each method (M) the results are shown
the average, standard deviation, maximum and minimum values.
The boldface and emphasized values meaning that they are better
than all or better than trial-and-error, PSO and ES according to the
statistic T-test, respectively.

Information related to composition/structure of ANNs are
listed according to the average number of hidden layers (HL) and
the correspondent average number of hidden nodes (HN),
learning rate parameters and errors. EAPSONN outperformed ES,
PSO and the trial-and-error method regarding to the mean error
performance of the ANNs found using BP for the Cancer problem
(Table 3). With the use of the LM algorithm, the proposed method
was able to obtain the best results only in the learning and
validation phases, whereas its performance in the test and
classification phases was not statistically different from the
simulation with the trial-and-error method. For the Glass
problem, the ANNs found with EAPSONN (using BP and/or LM)
were the best with regard to learning, validation and classification
errors, but required a greater number of nodes than the other
methods.

Table 4 displays the results of the Heart-Cleveland and Heart
problems. For the first problem, the ANNs found with EAPSONN
using the BP algorithm were better than those found by the other
search methods using the same learning algorithm. For the Heart-
Cleveland problem, the results found with the trial-and-error
method using the LM algorithm were the best in terms of test and
classification errors. The EAPSONN method using both the BP and
LM algorithms achieved the best performance in terms of learning
and validation errors, but this did not lead to an improvement
regarding to the test and classification errors. An analysis of the
results of the Heart problem reveals that the performances of the
search methods were similar to those for the Heart-Cleveland
problem. For both problems, EAPSONN found ANNs with an
average number of nodes similar to the results using the other
search methods.

Table 5 displays the ANNs found for the Pima-Diabetes
problem. Considering the search methods without the use of the
LM algorithm, EAPSONN obtained the best results in terms of
errors. Using the LM algorithm, the proposed method achieved
the best results regarding to the learning and validation data,
whereas the simulation of the trial-and-error method achieved
the best results regarding to the test and classification data. For
the Horse problem, the best ANNs in terms of errors were found
with the simulation of the trial-and-error method using the LM
algorithm. However, when using the BP algorithm, EAPSONN
achieved better results than the ES, PSO and trial-and-error
method using this same learning algorithm.

The values displayed in Table 6 reveal that the proposed
method using the BP algorithm achieved the best results among
the search methods that did not employ the LM algorithm. An
analysis of the versions that employed the LM algorithm reveals
that EAPSONN achieved the best performance in the learning and
validation sets, whereas the trial-and-error methods achieved the
best performance regarding the test set and classification. For
the Soybean problem, EAPSONN achieved the best results using
the BP algorithm as well as using a combination of the BP and LM
algorithms.

In an overall analysis, the EAPSONN method—which is a
combination of evolutionary search methods together with
numerical methods—proved to be very efficient in finding near-
optimal ANNs. The version of the proposed method that employs
the BP algorithm achieved better results for all the problems in
comparison to the other search methods used separately (trial-
and-error, ES and PSO). In some cases, EAPSONN failed to
outperform the trial-and-error method using LM. This occurred
because LM is a second-order algorithm that converges faster
than first-order methods and does not experience as much
interference from the variation in the number of hidden layers
and neurons, type of transfer function or initialization weights as
first-order algorithms do [35,20,48,4]. As EAPSONN works with
the variations in parameters in order to achieve better results

L.M. Almeida, T.B. Ludermir / Neurocomputing 73 (2010) 1438-1450

Table 3
Results for Cancer and Glass problems.

1445

M Learn. rate HL HN Train. error Valid. error Test error Classif. error
Cancer
TAE-BP 0.1523 1.3 5.6 0.1185 0.1185 0.1197 0.0861
0.4566 0.5 2.6 0.0285 0.0264 0.0304 0.0459
0.2432 2 11 0.1651 0.1587 0.1700 0.2034
0.0544 1 1 0.0532 0.0571 0.0572 0.0287
TAE-LM 0.0947 3 5.9 0.0211 0.0263 0.0282 0.0346
0.0744 0 1.6 0.0064 0.0093 0.0045 0.0074
0.25 3 8 0.0359 0.0460 0.0371 0.0458
0.05 3 3 0.0085 0.0042 0.0191 0.0143
ES 0.1822 14 5.8 0.1013 0.1007 0.1014 0.0587
0.0565 0.6 24 0.0294 0.0284 0.0290 0.0305
0.25 3 13 0.1508 0.1438 0.1501 0.1691
0.0775 1 2 0.0326 0.0380 0.0386 0.0258
PSO 0.2041 1.9 6.9 0.0673 0.0620 0.0638 0.0542
0.0749 0.6 2.6 0.0194 0.0168 0.0156 0.0190
0.5015 3 13 0.0954 0.0912 0.0941 0.0917
0.0773 1 1 0.0277 0.0277 0.0341 0.0229
EN-BP 0.1817 2.8 8.9 0.0334 0.0274 0.0344 0.0387
0.0602 0.4 2.2 0.0110 0.0107 0.0085 0.0110
0.2471 3 13 0.0611 0.0521 0.0531 0.0630
0.0515 2 5 0.0172 0.0073 0.0213 0.0143
EN-BPLM 0.1690 3 6.6 0.0133 0.0163 0.0396 0.0449
0.0525 0 1.5 0.0090 0.0100 0.0122 0.0138
0.2490 3 10 0.0331 0.0378 0.0720 0.0860
0.0576 3 4 0 0 0.0184 0.0229
Glass
TAE-BP 0.0860 2.8 6.6 0.1248 0.1241 0.1221 0.6406
0.0486 0.5 24 0.0030 0.0034 0.0022 0.0170
0.2500 3 11 0.1312 0.1304 0.1264 0.6667
0.0500 1 2 0.1132 0.1095 0.1120 0.5714
TAE-LM 0.0560 29 8.1 0.0897 0.0944 0.0995 0.4381
0.0275 0.2 2.8 0.0070 0.0053 0.0041 0.0533
0.2004 3 15 0.1029 0.1046 0.1110 0.5810
0.0500 2 3 0.0760 0.0813 0.0944 0.3810
ES 0.2067 3 9.8 0.1253 0.1247 0.1228 0.6425
0.0527 0 2.2 0.0014 0.0013 0.0013 0.0119
0.2500 3 14 0.1294 0.1287 0.1272 0.6857
0.0569 3 5 0.1241 0.1235 0.1217 0.6381
PSO 0.0876 2.7 7.9 0.1246 0.1235 0.1223 0.6429
0.0492 0.5 2.6 0.0031 0.0028 0.0028 0.0310
0.2500 3 14 0.1305 0.1272 0.1265 0.7429
0.0500 1 1 0.1154 0.1162 0.1154 0.5619
EN-BP 0.1920 29 7.6 0.1192 0.1171 0.1192 0.6210
0.0459 0.2 2.1 0.0052 0.0049 0.0048 0.0510
0.2495 3 11 0.1257 0.1241 0.1352 0.7524
0.0938 2 3 0.1057 0.1075 0.1102 0.5333
EN-BPLM 0.1668 29 10.6 0.0514 0.0734 0.1070 0.4184
0.0558 0.3 24 0.0188 0.0095 0.0096 0.0421
0.2435 3 15 0.0809 0.0914 0.1279 0.4952
0.0631 2 5 0.0125 0.0568 0.0871 0.3429

(networks), good results are not always achieved when using a
combination of second-order and first-order algorithms.

The simulation of the trial-and-error method using the LM
algorithm, managed to obtain the best performance in terms of
test error and classification for most problems used in experi-
ments. However, the use of the LM algorithm in training RNAs
offers some disadvantages, such as: the need for a large memory
for matrix operations in each iteration and the computational
complexity increases with the number of weights in a quadratic
manner. One consequence of these disadvantages is that the
search methods which use the algorithm LM are slower, due to
the need to execute more complex calculations and also to
allocate and misallocate a larger part of memory than methods
which use algorithms of first order training, like the BP algorithm.
In this way, even with errors not considerably better than the
methods that use LM, the EAPSONN using the BP algorithm, is a
good intermediate option as it brings together positive features

such as: less search time compared with the LM algorithm
version; for most problems it can find networks with a lower
average number of hidden layers and nodes; is superior to
other methods which use the BP algorithm, getting close to
methods which use the LM algorithm, considering the size of the
errors.

It is important to mention that the good performance of the
trial-and-error simulation, using BP and LM algorithms is also due
to the use of the genetic selection operator proposed in this work.
Normally in the work of manual search for neural networks
configurations does not observe the use of advanced mechanisms
of selection of survivors for the next iterations, as happens in this
work. In this way, the simulation of trail and error is a method of
automatic search, although simplified and which does not
faithfully reflect the manual search process. Thus, the manual
search process tends to be slower, more tiring and perhaps less
productive.

1446 L.M. Almeida, T.B. Ludermir / Neurocomputing 73 (2010) 1438-1450

Table 4
Results for Heart-Cleveland and Heart problems.

M Learn. rate HL HN Train. error Valid. error Test error Classif. error
Heart-Cleveland
TAE-BP 0.2156 1.27 5.6 0.1813 0.1726 0.1856 0.2404
0.0300 0.45 2.51 0.0185 0.0190 0.0197 0.0377
0.2500 2 11 0.2218 0.2128 0.2185 0.3113
0.1211 1 2 0.1356 0.1361 0.1417 0.1722
TAE-LM 0.0826 2.77 8.83 0.0731 0.0996 0.1441 0.1852
0.0726 0.43 3.05 0.0234 0.0264 0.0210 0.0250
0.2500 3 16 0.1230 0.1506 0.1910 0.2450
0.0500 2 3 0.0320 0.0503 0.1021 0.1457
ES 0.1810 1.8 6.47 0.2121 0.2115 0.2138 0.3071
0.0494 0.66 2.83 0.0254 0.0239 0.0246 0.0921
0.2470 3 14 0.2497 0.2490 0.2484 0.4570
0.0549 1 2 0.1600 0.1609 0.1547 0.1523
PSO 0.1910 2.03 7.7 0.1758 0.1563 0.1784 0.2298
0.0564 0.77 4.16 0.0228 0.0260 0.0214 0.0394
0.2500 3 15 0.2179 0.2007 0.2198 0.3046
0.0500 1 1 0.1353 0.0890 0.1396 0.1258
EN-BP 0.1855 2.17 7.6 0.1402 0.1212 0.1597 0.2188
0.0585 0.79 3.05 0.0178 0.0232 0.0225 0.0365
0.2484 3 13 0.1771 0.1705 0.2090 0.3046
0.0631 1 3 0.0956 0.0726 0.1277 0.1589
EN-BPLM 0.1429 2.73 7.9 0.0447 0.0687 0.1862 0.2064
0.0522 0.45 225 0.0293 0.0262 0.0387 0.0288
0.2380 3 13 0.1095 0.1205 0.3051 0.2715
0.0550 2 4 0 0.0193 0.1339 0.1589
Heart
TAE-BP 0.1867 1.57 6.5 0.1026 0.1423 0.1476 0.2033
0.0507 0.5 2.57 0.0169 0.0203 0.0155 0.0281
0.2500 2 10 0.1504 0.1803 0.1970 0.2963
0.0500 1 2 0.0697 0.1032 0.1269 0.1590
TAE-LM 0.1299 2.97 7.2 0.0943 0.1237 0.1411 0.1946
0.0936 0.18 2.02 0.0126 0.0162 0.0075 0.0154
0.2500 3 11 0.1283 0.1603 0.1567 0.2288
0.0500 2 3 0.0594 0.0758 0.1277 0.1634
ES 0.2419 2.37 5.57 0.2305 0.2303 0.2311 0.3733
0.3333 0.81 2.28 0.0196 0.0204 0.0192 0.0840
1.9882 3 12 0.2495 0.2495 0.2495 0.4466
0.0559 1 1 0.1858 0.1865 0.1848 0.2222
PSO 0.2101 1.97 7.5 0.1832 0.1845 0.1944 0.2649
0.0427 0.62 2.7 0.0158 0.0157 0.0149 0.0322
0.2500 3 12 0.2164 0.2172 0.2320 0.3290
0.0934 1 2 0.1526 0.1559 0.1677 0.2157
EN-BP 0.1808 2.13 6.97 0.0905 0.1322 0.1465 0.2005
0.0554 0.82 3.02 0.0172 0.0151 0.0117 0.0165
0.2496 3 14 0.1295 0.1807 0.1660 0.2331
0.0534 1 1 0.0637 0.1021 0.1244 0.1656
EN-BPLM 0.1738 2.87 7.63 0.0716 0.1155 0.1597 0.2065
0.0472 0.35 2.55 0.0226 0.0184 0.0159 0.0195
0.2456 3 13 0.1141 0.1481 0.1837 0.2484
0.0738 2 3 0.0272 0.0572 0.1333 0.1678

An analysis of the number of hidden nodes reveals that the
ANNs found with the EAPSONN method had a greater number of
nodes than the ANNs found with the other search methods.
However, the results of the EAPSONN method using the BP
algorithm were the best for all problems when comparing the
other methods separately using this algorithm in the search for
near-optimal ANNs. Furthermore, for the Glass and Soybean
problems, the best results were achieved with the proposed
method employing both the BP and LM algorithms. This
demonstrates the efficiency of combining different optimization
methods responsible for maintaining populations of individuals

with considerable diversity, thereby allowing different points of
the search space to be explored and contributing toward a better
overall performance than methods that do not employ this
combination. The capability of the proposed method in finding
high-performance ANNs and an acceptable number of hidden
layers and nodes is evident. In the special case of using the BP
algorithm, EAPSONN achieved much better results in terms of
errors when compared to the trial-and-error, ES and PSO methods
used separately.

Table 7 compares the results obtained with EAPSONN and
other methods found in the literature. Comparisons between

L.M. Almeida, T.B. Ludermir / Neurocomputing 73 (2010) 1438-1450

Table 5
Results for Pima and Horse problems.

1447

M Learn. rate HL HN Train. error Valid. error Test error Classif. error
Pima-Diabetes
TAE-BP 0.2476 2.8 6.73 0.2263 0.2257 0.2264 0.3468
0.2008 0.61 1.87 0.0064 0.0069 0.0055 0.0078
1.2660 3 10 0.2329 0.2326 0.2328 0.3490
0.0500 1 3 0.2038 0.2010 0.2040 0.3099
TAE-LM 0.0905 2.93 7.23 0.1438 0.1529 0.1639 0.2375
0.0626 0.25 1.83 0.0100 0.0163 0.0087 0.0174
0.2192 3 11 0.1609 0.1926 0.1870 0.2943
0.0500 2 3 0.1259 0.1129 0.1511 0.2135
ES 0.1901 2.73 5.27 0.2219 0.2213 0.2228 0.3425
0.0524 0.64 1.55 0.0121 0.0128 0.0108 0.0200
0.2489 3 11 0.2285 0.2281 0.2284 0.3490
0.0533 1 3 0.1837 0.1838 0.1868 0.2526
PSO 0.1568 2.23 7.83 0.2039 0.1981 0.2039 0.3066
0.0611 0.73 3.31 0.0134 0.0127 0.0135 0.0281
0.2471 3 15 0.2443 0.2214 0.2332 0.3490
0.0180 1 2 0.1808 0.1717 0.1788 0.2500
EN-BP 0.1632 2.97 8 0.1277 0.1454 0.1836 0.2533
0.0492 0.18 1.91 0.0186 0.0219 0.0156 0.0189
0.2473 3 12 0.1898 0.2264 0.2230 0.2943
0.0729 2 3 0.1003 0.1065 0.1639 0.2135
EN-BPLM 0.1445 2.97 7.97 0.1185 0.1413 0.1832 0.2561
0.0576 0.18 2.08 0.0191 0.0151 0.0180 0.0202
0.2494 3 11 0.1496 0.1777 0.2351 0.2969
0.0506 2 4 0.0756 0.1053 0.1571 0.2083
Horse
TAE-BP 0.0991 2.93 8 0.1814 0.1800 0.1815 0.3863
0.0643 0.25 1.74 0.0057 0.0045 0.0036 0.0081
0.2500 3 11 0.1874 0.1857 0.1865 0.4286
0.0500 2 4 0.1569 0.1642 0.1663 0.3846
TAE-LM 0.1355 2.83 9.3 0.0752 0.1411 0.1669 0.3663
0.0856 0.38 2.2 0.0287 0.0125 0.0124 0.0368
0.2500 3 14 0.1280 0.1586 0.2013 0.4451
0.0500 2 5 0.0261 0.1055 0.1490 0.2967
ES 0.2174 3 6.3 0.1816 0.1802 0.1811 0.3846
0.0320 0 1.12 0.0004 0.0004 0.0004 0
0.2500 3 8 0.1832 0.1817 0.1825 0.3846
0.1036 3 4 0.1812 0.1797 0.1802 0.3846
PSO 0.5248 2.83 8.23 0.1816 0.1771 0.1814 0.3866
0.7547 0.46 2.86 0.0048 0.0068 0.0045 0.0053
2.8960 3 15 0.1880 0.1845 0.1906 0.4066
0 1 2 0.1662 0.1552 0.1689 0.3846
EN-BP 0.1921 2.87 5.57 0.1440 0.1668 0.1790 0.3844
0.0555 0.43 2.25 0.0409 0.0145 0.0091 0.0220
0.2459 3 10 0.1813 0.1800 0.2013 0.4725
0.0645 1 3 0.0726 0.1341 0.1584 0.3407
EN-BPLM 0.1545 2.97 7.93 0.0869 0.1257 0.2728 0.3938
0.0573 0.18 2.08 0.0328 0.0161 0.4491 0.0332
0.2323 3 13 0.1354 0.1546 2.6483 0.4560
0.0642 2 4 0.0055 0.0926 0.1565 0.3187

these methods must be made with caution, as the results are
obtained with different experimental model setups, but errors are
estimated with the same method. Nonetheless, EAPSONN proved
to be better at finding ANNs with few hidden nodes and is
situated among the methods that find neural networks with the
lowest mean error.

Most methods found in the literature related to ANN
optimization fail to describe time consumption. Comparisons of
this variable are often difficult due to the use of different
computer configurations, operational systems, etc. Table 8
displays information on the time EAPSONN required to find

ANNs for each problem using all leaning algorithms. Time is
related to the search performed in one fold of the each problem,
measured in minutes of processing on a computer with Microsoft
Windows operational system, 3.5 GB of RAM and a processor Intel
Pentium of 3 GHz, using the Matlab tool.

From the figures in Table 8, the EAPSONN method required
more time to optimize neural networks for problems with a high
number of attributes (input values). Using the LM and BP
algorithms together, EAPSONN required more time than when
using just the BP algorithm. In the special case of Soybean
problem, the proposed method required a huge amount of time to

1448 L.M. Almeida, T.B. Ludermir / Neurocomputing 73 (2010) 1438-1450

Table 6
Results for Card and Soybean problems.

M Learn. rate HL HN Train. error Valid. error Test error Classif. error
Card
TAE-BP 0.2208 1.37 5.43 0.1999 0.1984 0.2024 0.2712
0.0278 0.49 2.43 0.0214 0.0185 0.0206 0.0690
0.2500 2 11 0.2369 0.2306 0.2420 0.4390
0.1427 1 2 0.1612 0.1616 0.1661 0.1773
TAE-LM 0.1226 2.83 7.13 0.0717 0.0991 0.1132 0.1481
0.0867 0.38 2.22 0.0140 0.0166 0.0124 0.0157
0.2500 3 11 0.0967 0.1394 0.1481 0.1831
0.0500 2 3 0.0398 0.0682 0.0919 0.1076
ES 0.1880 2.57 6.07 0.2336 0.2348 0.2349 0.3981
0.0482 0.68 2.79 0.0194 0.0166 0.0159 0.0774
0.2466 3 14 0.2479 0.2481 0.2479 0.4448
0.0607 1 1 0.1775 0.1842 0.1877 0.1773
PSO 0.3126 2.13 8.07 0.1968 0.1950 0.1995 0.2652
0.4005 0.63 3.35 0.0203 0.0204 0.0231 0.0691
2.1057 3 16 0.2346 0.2226 0.2410 0.3924
0.0148 1 2 0.1535 0.1429 0.1518 0.1686
EN-BP 0.1695 227 7.13 0.1462 0.1423 0.1582 0.2085
0.0567 0.74 2.78 0.0237 0.0266 0.0405 0.0456
0.2458 3 12 0.1980 0.2158 0.3368 0.3634
0.0682 1 2 0.0880 0.0880 0.1225 0.1453
EN-BPLM 0.1624 2.97 7.73 0.0554 0.0834 0.1417 0.1624
0.0446 0.18 1.82 0.0223 0.0175 0.0296 0.0186
0.2407 3 11 0.1053 0.1147 0.2795 0.2006
0.0630 2 4 0.0123 0.0449 0.1153 0.1308
Soybean
TAE-BP 0.1118 3 6.77 0.0486 0.0490 0.0486 0.8550
0.0715 0 1.77 0.0009 0.0009 0.0008 0.0350
0.2500 3 11 0.0513 0.0517 0.0515 0.9088
0.0500 3 4 0.0477 0.0481 0.0476 0.7471
TAE-LM 0.0670 3 8.07 0.0361 0.0379 0.0372 0.6017
0.0530 0 2.72 0.0038 0.0033 0.0033 0.0916
0.2500 3 15 0.0422 0.0430 0.0425 0.7471
0.0500 3 4 0.0267 0.0303 0.0294 0.4000
ES 0.1545 2.77 8.93 0.0516 0.0520 0.0518 0.8703
0.0687 0.43 2.58 0.0041 0.0041 0.0040 0.0127
0.2500 3 13 0.0639 0.0642 0.0640 0.9353
0.0594 2 4 0.0479 0.0483 0.0481 0.8647
PSO 0.0822 2.9 7.13 0.0493 0.0496 0.0493 0.8638
0.0546 0.31 2.11 0.0018 0.0016 0.0015 0.0506
0.2500 3 11 0.0542 0.0540 0.0542 1
0.0500 2 3 0.0474 0.0477 0.0476 0.7176
EN-BP 0.1733 2.97 7.13 0.0472 0.0477 0.0475 0.8446
0.0621 0.18 2.03 0.0014 0.0012 0.0012 0.0463
0.2500 3 12 0.0479 0.0483 0.0480 0.8676
0.0599 2 3 0.0427 0.0435 0.0432 0.7059
EN-BPLM 0.0788 2.77 9.6 0.0287 0.0330 0.0338 0.5274
0.0607 0.5 1.9 0.0107 0.0086 0.0085 0.1593
0.2500 3 12 0.0479 0.0483 0.0508 0.8647
0.0500 1 5 0.0175 0.0226 0.0228 0.3618

optimize ANNs. This behavior may be due to the high number of
attributes and classes in the Soybean problem and the fact that
second-order algorithms require complex calculus to adjust the
weights and, consequently, require more memory and processing
time.

The variations of the trial-and-error method, such as the ES
method, require a much lower search time compared to other
methods. This is due to the fact that such methods execute few
calculus numbers to find near-optimal networks, mainly based on
randomly adding the search process without worrying excessively
about the strategy adopted for this addition.

6. Conclusions and future works

This paper proposed a novel method for optimizing the
parameters and performance of ANNs applied to standard
supervised classifications problems. The method, denominated
EAPSONN, is made up of a combination of ES, GA, PSO and
learning algorithms that are widely used in studies involving
ANNs. Due to its particular combination of these methods,
EAPSONN is an original, unique method that aggregates the
characteristics of memetic, hybrid and multi-objective search
methods designed to search for MLP ANNSs. In order to assess the

L.M. Almeida, T.B. Ludermir / Neurocomputing 73 (2010) 1438-1450 1449

Table 7
Comparison with other methods in the literature.

Information Problem Methods

EAPSONN GANNTune [3] NNGA-DCOD [4] GEPNET [25] COVNET [25] MOBNET [25] COOPNN [24] ESPNet [50] Immune

ensembles [23]

Test Error Cancer 3.44 3.63 6.22 - - - 1.38 - 30.14
Glass 11.92 10.27 12.75 35.16 - 35.16 22.89 - 25.66
Heart-C 15.97 14.93 14.26 13.63 14.26 13.63 11.96 — 11.84
Heart 14.65 - - - - - - - 13.82
Horse 18.32 17.79 17.52 - - - 26.74 - 28.24
Pima 17.9 16.99 21.15 19.27 19.90 19.84 19.69 23.81 23.75
Card 14.17 12.35 - - - - 12.17 13.48 12.44
Soybean 3.38 4.79 - - - - 7.61 - 9.88

Nodes Cancer 8.9 254 12.8 - - - 5.89 - 11
Glass 7.6 27.3 5.6 6.33 - 14.87 6.73 - 14
Heart-C 7.6 20.5 121 6.37 4.77 114 7.28 - 16
Heart 7.5 - - - - - - - 12.2
Horse 8 245 7.2 - - - 20.3 - 18.2
Pima 5.6 26.6 6.1 4.57 6.17 79 7.9 33 6.4
Card 7.7 18.6 - - - - 6.89 32 10
Soybean 9.6 38.9 - - - - 19.42 - 13.6

Table 8

Mean time in minutes of processing to searching near-optimal ANNs with
following methods: trial-and-error (TAE) using BP and LM algorithms, ES, PSO and
EPSONN using BP and a combination of BP and LM algorithms.

Problem TAE TAE ES PSO EAPSONN
BP LM BP BP and LM

Cancer 3.42 4.02 3.48 37.46 35.92 40.35
Glass 3.38 4.11 3.62 36.68 35.67 42.31
Heart-C 3.39 4.73 3.69 36.10 34.67 45.21
Heart 3.48 6.17 3.91 38.50 38.24 55.71
Horse 3.46 7.86 3.86 36.61 37.62 66.98
Pima 3.45 4.01 3.83 37.21 40.88 40.93
Card 3.47 7.42 3.98 38.06 36.59 63.53

Soybean 3.58 86.28 4.03 38.30 38.41 466.16

performance of the proposed method, experiments were carried
out with different database types and dimensions and compar-
isons were made with other methods found in the literature
designed for the optimization of ANNs. An analysis of the time
EAPSONN required to find solutions was also carried out.

Based on the results of the experiments, EAPSONN using the BP
algorithm is capable of finding ANNs with better parameters and
performance than the ES, PSO and a simulation of the manual
trial-and-error method for all problems. Using a combination of
the BP and LM algorithms, the proposed method achieved a better
performance in only two problems when compared to the trial-
and-error method using the LM algorithm. This may be explained
by the fact that purely second-order search methods achieve a
better performance than a combination of first-order and second-
order methods. When compared to other methods in the
literature, EAPSONN is situated among those that have the best
performance for all these problems, obtaining ANNs with a lower
number of nodes. Such aspects discussed and due to be a novel
option to automatic design of ANNs comprising the advantages of
EAPSONN. On the other hand, one disadvantage of the proposed
method is the considerable time required for the execution of the
search. This may be explained by the different combined search
methods, which explore the search space in different ways and
therefore require more time.

Thus, EAPSONN has the capacity to optimize nearly all ANN
parameters needed for its functioning. Unfortunately, there are

disadvantages such as the time required to execute the search and
the fact that the combination of the BP and LM algorithms did not
achieve the expected results. However, with the execution of
further studies, considerable improvements in the method are
expected, such as the following: a reduction in execution time
through a revision of the strategies adopted in each search
method; tests with other forms of combinations; the use of other
learning algorithms; and the use of other evolutionary search
methods.

Acknowledgments

The authors would like to thank CNPq, CAPES and FACEPE
(Brazilian Research Agencies) for their financial support.

References

[1] A. Abraham, Meta learning evolutionary artificial neural networks, Neuro-
computing 56 (2004) 1-38.

[2] L.M. Almeida, T.B. Ludermir, Automatically searching near-optimal artificial

neural networks, in: Proceedings of the European Symposium on Artificial

Neural Networks (ESANN’07), 2007, pp. 549-554.

L.M. Almeida, T.B. Ludermir, An evolutionary approach for tuning artificial

neural network parameters, in: Proceedings of the Third International

Workshop on Hybrid Artificial Intelligence Systems (HAIS'08), 2008,

pp. 156-163.

L.M. Almeida, T.B. Ludermir, An improved method for automatically searching

near-optimal artificial neural networks, in: IEEE International Joint Confer-

ence on Neural Networks (IJCNN'08) (IEEE World Congress on Computational

Intelligence), 2008, pp. 2235-2242.

A. Asuncion, D. Newman, UCI machine learning repository (2007). URL:

(http://www.ics.uci.edu/ ~ mlearn/MLRepository.html).

T. Back, H. Hoffmeister, H. Schwefel, A survey of evolution strategies, in:

Proceedings of the Fourth International Conference on Genetic Algorithms,

1991, pp. 2-9.

[7] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University
Press, Oxford, 1995.

[8] H.A. Bourlard, N. Morgan, Connectionist Speech Recognition: A Hybrid
Approach, Kluwer Academic Publishers, Dordrecht, 1993.

[9] X. Cai, N. Zhang, G.k. Venayagamoorthy, D.C. Wunschll, Time series prediction
with recurrent neural networks trained by a hybrid pso-ea algorithm,
Neurocomputing 70 (13-15) (2007) 2342-2353.

[10] E. Cantd-Paz, C. Kamath, An empirical comparison of combinations of
evolutionary algorithms and neural networks for classification problems,
IEEE Transactions on Systems, Man, and Cybernetics, Part B 35 (5) (2005)
915-927.

[11] Y. Chen, A. Abraham, B. Yang, Hybrid flexible neural tree based intrusion
detection systems, International Journal of Intelligent Systems 22 (2007)
1-16.

(3

[4

(5

(6

http://www.ics.uci.edu/<mml:math altimg=
http://www.ics.uci.edu/<mml:math altimg=

1450 L.M. Almeida, T.B. Ludermir / Neurocomputing 73 (2010) 1438-1450

[12] Y. Chen, A. Abraham, B. Yang, Feature selection and classification using
flexible neural tree, Neurocomputing 70 (1-3) (2006) 305-313.

[13] Y. Chen, B. Yang, A. Abraham, Flexible neural trees ensemble for stock index
modeling, Neurocomputing 70 (4-6) (2007) 697-703.

[14] Y. Chen, B. Yang,]. Dong, A. Abraham, Time series forecasting using flexible
neural tree model, Information Sciences 174 (3-4) (2005) 219-235.

[15] C.A.C. Coelho, G.B.L. Lamont, D.A.V. Veldhuizen, Evolutionary Algorithms for
Solving Multi-objective Problems (Genetic and Evolutionary Computation),
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[16] P. Cortez, M. Rocha, J. Neves, Evolving time series forecasting arma models,
Journal of Heuristics 10 (4) (2004) 415-429.

[17] M. Dirst, A.S. Weigend, Time Series Prediction: Forecasting the Future and
Understanding the Past, Addison-Wesley, Reading, MA, 1994.

[18] M. Dorigo, G.D. Caro, Ant colony optimization: a new meta-
heuristic, Proceedings of the Congress on Evolutionary Computation (1999)
1470-1477.

[19] AE. Eiben, J.E. Smith, Introduction to Evolutionary Computing, Springer,
Berlin, 2003.

[20] F. Emmert-Streib, Influence of the neural network topology on the learning
dynamics, Neurocomputing 69 (10-12) (2006) 1179-1182.

[21] K.P. Ferentinos, Biological engineering applications of feedforward neural
networks designed and parameterized by genetic algorithms, Neural Net-
works 18 (7) (2005) 934-950.

[22] R. Fletcher, Practical Methods of Optimization, second ed., Wiley-Inter-
science, New York, NY, USA, 1987.

[23] N. Garcia-Pedrajas, C. Fyfe, Construction of classifier ensembles by means of
artificial immune systems, Journal of Heuristics 14 (3) (2008) 285-310.

[24] N. Garcia-Pedrajas, C. Hervas-Martinez, D. Ortiz-Boyer, Cooperative coevolu-
tion of artificial neural network ensembles for pattern classification, IEEE
Transactions on Evolutionary Computation 9 (3) (2005) 271-302.

[25] N. Garcia-Pedrajas, D. Ortiz-Boyer, C. Hervas-Martinez, Cooperative coevolution
of generalized multi-layer perceptrons, Neurocomputing 56 (2004) 257-283.

[26] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley, Longman Publishing Co., Reading, MA, New York, 1989.

[27] S. Goonatilake, S. Khebbal (Eds.), Intelligent Hybrid Systems, Wiley, New
York, NY, USA, 1994.

[28] T. Hanne, Global multiobjective optimization using evolutionary algorithms,
Journal of Heuristics 6 (3) (2000) 347-360.

[29] S. Haykin, Neural Networks: A Comprehensive Foundation, second ed.,
Prentice-Hall, Englewood Cliffs, NJ, 1999.

[30] H.B. Hwarng, H.T. Ang, A simple neural network for ARMA(p,q) time series,
Omega 29 (4) (2001) 319-333.

[31] M.M. Islam, K. Murase, A new algorithm to design compact two-hidden-layer
artificial neural networks, Neural Networks 14 (9) (2001) 1265-1278.

[32] N.K. Kasabov, Foundations of Neural Networks, Fuzzy Systems, and Knowl-
edge Engineering, MIT Press, Cambridge, MA, USA, 1996.

[33] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings
of the International Joint Conference on Neural Networks, vol. 4, 1995,
pp. 1942-1948.

[34]]J.P.C. Kleijnen, S.M. Sanchez, T.W. Lucas, T.M. Cioppa, State-of-the-art review:
a user’s guide to the brave new world of designing simulation experiments,
INFORMS Journal on Computing 17 (3) (2005) 263-289.

[35] M. Kordos, W. Duch, A survey of factors influencing mlp error surface, Control
and Cybernetics 33 (2004) 611-631.

[36] K. Levenberg, A method for the solution of certain non-linear problems in
least squares, Quarterly Applied Mathematics 2 (1944) 164-168.

[37] LB. Liu, Y.J. Wang, D. Huang, Designing neural networks using pso-based
memetic algorithm, in: Proceedings of the Fourth International Symposium
on Neural Networks (ISNN’07), 2007, pp. 219-224.

[38] L. Ma, K. Khorasani, New training strategies for constructive neural networks with
application to regression problems, Neural Networks 17 (4) (2004) 589-6009.

[39] M. Mandischer, A comparison of evolution strategies and back-propagation
for neural network training, Neurocomputing 42 (1) (2002) 87-117.

[40] D.W. Marquardt, An algorithm for least-squares estimation of nonlinear
parameters, SIAM Journal on Applied Mathematics 11 (2) (1963) 431-441.

[41] T. Masters, Signal and Image Processing with Neural Networks: a C+ +
Sourcebook, Wiley, New York, 1994.

[42] LR. Medsker, Hybrid Intelligent Systems, Kluwer Academic Publishers,
Norwell, MA, USA, 1995.

[43] B.L. Miller, D.E. Goldberg, Genetic algorithms, tournament selection, and the
effects of noise, Complex Systems 9 (1995) 193-212.

[44] M.F. Mgller, A scaled conjugate gradient algorithm for fast supervised
learning, Neural Networks 6 (4) (1993) 525-533.

[45] P. Moscato, On evolution search, optimization, genetic algorithms and martial
arts: towards memetic algorithms, Technical Report C3P 826, California
Institute of Technology, Pasadena, CA, 1989.

[46] D.E. Rumelhart,]J.L. McClelland, Explorations in the microstructure of
cognition, in: Parallel Distributed Processing: Foundations, vol. 1, MIT Press,
Cambridge, MA, USA, 1986.

[47] D.E. Rumelhart, P. Smolensky, J.L. McClelland, G.E. Hinton, Schemata and
sequential thought processes in pdp models, in: Parallel Distributed
Processing: Psychological and Biological Models, vol. 2, MIT Press, Cambridge,
MA, 1986, pp. 7-57.

[48]]J. Torres, M.A. Mu noz, J. Marro, P.L. Garrido, Influence of topology on the
performance of a neural network, Neurocomputing 58-60 (2004) 229-234.

[49] X. Yao, Evolving artificial neural networks, Proceedings of the IEEE 87 (9)
(1999) 1423-1447.

[50] J. Yu, S. Wang, L. Xi, Letters: evolving artificial neural networks using an
improved pso and dpso, Neurocomputing 71 (4-6) (2008) 1054-1060.

[51] J.P.T. Yusiong, P.C. Naval]Jr., Training neural networks using multiobjective
particle swarm optimization, Lecture Notes in Computer Science—Advances
in Natural Computation vol. 4221 (2006) 879-888.

Leandro Maciel Almeida received the B.S. degree in
Information Systems in 2004 from Lutheran University
of Brazil/University Lutheran Centre of Palmas, Palmas,
Tocantins, Brazil. He received the M.S. degree in
Computer Science in 2007 from Federal University of
Pernambuco, Brazil. Currently, he is a Ph.D. student
of the Centre of Informatics at Federal University of
Pernambuco. His research interests include artificial
neural networks, pattern recognition, hybrid intelli-
gent systems and evolutionary computation.

Teresa Bernarda Ludermir received the Ph.D. degree
in Artificial Neural Networks in 1990 from Imperial
College, University of London, UK. From 1991 to 1992,
she was a Lecturer at Kings College London. She joined
the Center of Informatics at Federal University of
Pernambuco, Brazil, in September 1992, where she is
currently a Professor and the Head of the Computa-
tional Intelligence Group. She has published over a 150
articles in scientific journals and conferences, three
books in NN and organized two of the Brazilian
Symposium on Neural Networks. She is one
of the editors-in-Chief of the International Journal of
Computation Intelligence and Applications. Her re-
search interests include weightless NN, hybrid neural systems and applications of
NNs.

	A multi-objective memetic and hybrid methodology for optimizing the parameters and performance of artificial neural networks
	Introduction
	Related works
	Bio-inspired optimization methods
	The proposed method
	Encoding schema
	Fitness function
	Evolution strategies
	Particle swarm optimization
	Hybridization of ES, GA, PSO and ANN--EAPSONN

	Experiments
	Conclusions and future works
	Acknowledgments
	References

