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Abstract

This paper introduces an approach called Clustering and Co-evolution to Construct Neural Network Ensembles (CONE). This approach creates
neural network ensembles in an innovative way, by explicitly partitioning the input space through a clustering method. The clustering method
allows a reduction in the number of nodes of the neural networks that compose the ensemble, thus reducing the execution time of the learning
process. This is an important characteristic especially when evolutionary algorithms are used. The clustering method also ensures that different
neural networks specialize in different regions of the input space, working in a divide-and-conquer way, to maintain and improve the accuracy.
Besides, the clustering method facilitates the understanding of the system and makes a straightforward distributed implementation possible. The
experiments performed with seven classification databases and three different co-evolutionary algorithms show that CONE considerably reduces
the execution time without prejudicing (and even improving) the accuracy, even when a distributed implementation is not used.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Many learning problems have large amounts of data
available for the learning process, such as genome and
microarray analysis, geographic information analysis, intrusion
detection, process control and text categorization. Ideally, it is
desirable to consider all training instances simultaneously, to
get the best possible estimation of class distribution. However,
often it is not possible to load the whole training set into
memory in one go (Inoue & Narihisa, 2005). Furthermore, the
execution time of learning algorithms becomes very high when
a great amount of data is used during the learning process. This
problem is even aggravated when evolutionary algorithms are
used.

This paper introduces an approach called Clustering and Co-
evolution to Construct Neural Network Ensembles (CONE).
This approach creates neural network ensembles in an
innovative way, by explicitly partitioning the input space
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through a clustering method. The clustering method allows
a reduction in the number of nodes of the neural networks
that compose the ensemble, thus reducing the execution time
of the learning process. Besides, it allows a straightforward
distributed implementation, which makes it possible to divide
the memory requirements among different machines and to
further reduce the execution time. The clustering method also
ensures that the neural networks that compose the ensemble
specialize in different parts of the problem space and work in
a divide-and-conquer manner, preserving and even improving
accuracy.

CONE was used to construct Evolving Fuzzy Neural
Network (EFuNN) (Kasabov, 2001b) ensembles.1 EFuNNs are
a class of Evolving Connectionist Systems (ECoSs) (Kasabov,
2003, 2007) which join the neural networks functional
characteristics to the expressive power of fuzzy logic. They
possess the following characteristics (Kasabov, Song, &
Nishikawa, 2003):

1 It is important to observe that, although CONE was developed mainly to
construct EFuNN ensembles, it can also be used to develop ensembles of other
kinds of predictors.
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– They facilitate evolving processes modeling task.
– They facilitate knowledge representation and extraction.
– Their learning is:
• Lifelong: they learn from continuously incoming data in a

changing environment during their entire existence.
• On-line: they learn each example separately while the

system operates. Usually, a system which operates in an
on-line mode is also a systems which operates in a lifelong
mode, and vice-versa.
• Incremental: they learn new data without totally destroy-

ing the patterns learned before and without the need to
make a new training on old and new data together.
• Fast, possibly through just one pass of data propagation.
• Local: they locally partition the problem space, allowing

fast adaptation and tracing evolving processes over time.
– They can learn both as individual systems and as part of an

evolutionary population of such systems.
– They have evolving structures and use constructive learning.
– They evolve in an open space, not necessarily of fixed

dimensions.

Although EFuNNs and other ECoSs have some parameters
that are tuned during learning, they also have parameters that
do not change during the learning, but define it. The parameters
that do not change during the learning can be called learning
parameters. Through the use of different learning parameters,
EFuNNs attain different performances and different weights are
learned. The optimal learning parameter set usually depends
on the incoming data and is difficult to chose manually,
particularly when large databases or evolving processes are
being modelled. So, approaches to automatically tune the
learning parameters are important to get good results when
using EFuNNs.

Several methods have been developed to optimize the
learning parameters of ECoSs. Among them, Chan and
Kasabov (2004), Kasabov et al. (2003), Minku and Ludermir
(2005), Watts and Kasabov (2001) and Watts and Kasabov
(2002) can be cited. All these methods use evolutionary
algorithms, showing the importance of evolutionary algorithms
when using EFuNNs. Besides using a clustering method,
CONE uses a co-evolutionary algorithm that allows the
optimization of the architecture of the members of the ensemble
(in the case of EFuNNs, their learning parameters) at the same
time as they learn their respective regions of the input space.
This is very important, for different regions of the input space
may require different topologies.

One of the important characteristics of ECoSs is that they
facilitate knowledge extraction. So, it is important that an
ensemble of ECoSs is able to preserve this feature. Clustering
the problem space makes the system clearly understandable,
instead of being a black box. In this way, when used to
create ensembles of neural networks that already have clear
rule extraction methods, it is easier to create rules to explain
the system’s behavior. Examples of how to extract rules from
EFuNNs are presented in Kasabov (2001b). The study of rules
extraction from ensembles created by CONE is proposed as a
future work.
This paper presents experiments which show that CONE
considerably reduces the execution time of the learning process
even when CONE is not used in a distributed way. By using
CONE in a distributed way, it would be possible to reduce even
more the execution time. The experiments also show that the
accuracy of the ensembles generated by CONE is similar or
higher than the accuracy of a single EFuNN created using an
evolutionary algorithm, i.e., the techniques used to reduce the
execution time do not prejudice the accuracy of the system.

The objective of this paper is to introduce CONE and show
that it reduces considerably the execution time to create neural
networks when evolutionary algorithms are used, without
prejudicing (and even being able to improve) the accuracy.
In order to do that, CONE’s behaviour is analysed in off-line
mode, although CONE can also be applied to on-line learning
if an on-line co-evolutionary algorithm is adopted. It is beyond
the scope of this paper to show whether EFuNNs ensembles
are better than other types of ensembles. The paper also does
not intend to determine the best evolutionary algorithm to be
used with CONE. Instead, it presents 3 different evolutionary
algorithms to evaluate CONE’s performance with different
algorithms. It can be seen that CONE’s reduction in execution
time without prejudicing the accuracy occurs with all the co-
evolutionary algorithms used in the experiments.

The paper is organized as follows: Section 2 explains some
works related to the automatic ensemble construction. Section 3
presents CONE. Section 4 explains a particular type of EFuNN
ensemble. Section 5 presents three different co-evolutionary
algorithms which can be used with CONE. Section 6 explains
the experiments which have been made on seven benchmark
databases and their results. Section 7 presents the conclusions
and future works. The clustering method used with CONE
and the EFuNN learning algorithm are presented in the
appendix.

2. Related works

The task to construct ensembles of neural networks
commonly includes some manual design, such as design of
individual neural networks and/or division of training data.
When there are experienced human experts with sufficient
knowledge of the problem to be solved, manual design and a
fixed ensemble may be appropriate. An example of an ensemble
of neural networks manually designed is shown in Ranawana
and Palade (2005). This paper proposes a multi-classifier
system based on neural networks, called MultiNNProm. The
system is used to identify promoters on Escherichia coli
bacterium’s Deoxyribonucleic Acid (DNA) sequences. It is
constituted by four neural networks which receive the same
DNA sequence as input. Each neural network codifies the DNA
sequence in a different manner. The neural network outputs
are passed onto a probability builder function that assigns
probabilities as to whether the presented sequence is an E.
coli promoter or not. A result combiner is used to combine
the generated probabilities to produce the final result, which
indicates whether the sequence is an E. coli promoter or not.
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In Kasabov (2001a), a multi-classifier architecture called
multiEFuNN, based on Evolving Fuzzy Neural Networks
(EFuNNs), is presented. MultiEFuNN is partially manually
designed. The number of clusters inside the multi-modular
classifier is determined by the Evolving Clustering Method
(ECM) (Song & Kasabov, 2002) and is used to seed each
EFuNN with the rules derived using this method. The EFuNN
learning parameters are pre-determined by the user and the
output is by majority vote.

Nevertheless, when there is little prior knowledge about
the problem to be solved, tedious trial-and-error processes are
often involved in designing ensembles of neural networks.
One way to avoid such processes is to adopt nature inspired
learning such as evolutionary learning. An example of the use
of evolutionary learning to create ensembles of neural networks
is given in Yao and Liu (1998). The authors emphasize the
difference between a learning system and an optimization one.
The learning system is hoped to have the best generalization,
which is different from minimizing an error function. Thus, the
practice of selecting the best individual of the last generation
as the learned system is not the best choice. As a population
contains more information than the best individual, it could be
used as the final learned system, i.e., it could be used as an
ensemble. This idea inspired various subsequent works, which
use the whole final population (Chen & Yao, 2007; Duell,
Fermin, & Yao, 2006; Liu & Yao, 1998; Liu, Yao, & Higuchi,
2000) or part of the final population (Chandra & Yao, 2006;
Chen & Yao, 2006; Duell et al., 2006; Liu & Yao, 1998; Liu
et al., 2000) as the ensemble.

An approach called Evolutionary Ensemble with Negative
Correlation Learning (EENCL) is proposed by Liu and Yao
(1998) and Liu et al. (2000). The learning occurs in two
levels: local learning of individual neural networks based
on negative correlation learning and evolutionary learning
based on Evolutionary Programming (Eiben & Smith, 2003).
Negative correlation learning introduces a penalty term into the
error function of individual neural networks, so that they can
be trained cooperatively. Using the penalty term, the error of an
individual neural network is negatively correlated to the errors
of the other neural networks of the ensemble. The ensemble
can be constituted by either all the individual neural networks
in the last generation or selecting one representative from each
species in the last generation. Differently from CONE, the
species are determined by clustering the individuals of the
last generation by using the k-means algorithm (MacQueen,
1967) after the evolutionary process is finished. CONE uses a
clustering algorithm to divide the input space of the problem
to form species before the evolutionary process starts, reducing
the execution time of the learning process and directly ensuring
that each species will specialize in different regions of the input
space.

Another approach based on clustering is Li, Huang, Ye, and
Cui (2004). Similarly to Liu and Yao (1998) and Liu et al.
(2000), this approach also clusters the neural networks only
after the training is done, instead of clustering the input space
of the problem.
A constructive algorithm for training cooperative neural
network ensembles (CNNEs) is presented in Islam, Yao, and
Murase (2003). It emphasizes the accuracy and diversity among
individual neural networks in an ensemble by using negative
correlation learning and allowing different neural networks to
be trained using different numbers of epochs. The number of
hidden nodes in individual neural networks and the number of
neural networks in the ensemble is determined in a constructive
way. Thus, the approach is able to automatically determine the
number of nodes in the individual neural networks and the size
of the ensemble. This approach does not ensure that different
neural networks will specialize in different regions of the input
space, as does CONE.

A multi-objective evolutionary algorithm to construct
ensembles of neural networks, called Diverse and Accurate
Ensemble Learning Algorithm (DIVACE), is described
in Chandra and Yao (2006). This method aims to find an
optimal trade-off between diversity and accuracy by using these
objectives explicitly as multi-evolutionary pressures. A multi-
objective evolutionary approach yields to a set of near optimal
solutions instead of just a single solution. Thus, these near
optimal solutions (Pareto set) can be used as members of the
ensemble. In the same way as in Islam et al. (2003), this
approach does not ensure that different neural networks will
specialize in different regions of the input space. Besides, the
execution time of the evolutionary algorithm is not reduced, as
in CONE.

An important framework based on cooperative co-
evolution to evolve neural network ensembles is described
in Garcia-Pedrajas, Hervas-Martinez, and Ortiz-Boyer (2005).
It maintains two populations: population of networks and
population of ensembles. The population of networks
consists of a fixed pre-determined number of independent
subpopulations of networks that are evolved using evolutionary
programming. Each member of the population of ensembles is
formed by a network from every network subpopulation. One
of the problems of this approach is the use of a pre-determined
ensemble size, instead of automatically determining the best
number of ensembles to the problem.

Interesting parallels can be traced between Mixture-of-
Experts (Jacobs & Jordan, 1991; Jordan & Jacobs, 1992, 1994)
and CONE. Mixture-of-expert models also are composed by
modules that are experts in different regions of the problem
space. However, the architecture of each module is not evolved,
the number of ensemble members is pre-determined and the
division of the problem space is not so direct and intuitive as
in CONE. An example of recent work derived from mixture-
of-experts is the work done by Liao, Li, and Carin (2007),
which presents a statistical learning model formulated to handle
incomplete data.

CONE determines the number of neural networks which
compose the ensemble by clustering the input space of the
problem, similarly to Kasabov (2001a). However, CONE uses
co-evolutionary learning, allowing the optimization of the
parameters of the individual neural networks. In this way,
an automatic design of the ensemble of neural network is
performed. Section 3 presents CONE.
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Fig. 1. Clustering.

3. CONE

This section presents CONE. The main idea of CONE
is to construct ensembles of neural networks by using a
clustering method to partition the input space in clusters. The
clusters are used to separate the training and test patterns
into various subsets of training and test patterns with empty
intersection. Each subset is used to train/test a different species
of individuals. The species are composed by neural networks
and are evolved through a co-evolutionary algorithm. As in
nature, species are genetically isolated, i.e., the individuals can
only match with other individuals of the same species. Thus,
each cluster is associated to a training subset, a test subset
and a species of neural networks. The purpose of training
the individuals of each species using a different subset of the
training patterns is to specialize different species in different
regions of the problem space and create diversity. Besides, as
the neural networks of each species learn a reduced training
set, they can be smaller than a single neural network used to
learn the whole training set. In this way, each training example
is presented to a relatively small neural network, reducing the
training time.

Fig. 1 illustrates the creation of clusters of the input space
using the training and test patterns set. It is important to notice
that, although the clusters of the input space are used to create
training and test subsets with empty intersection, the clusters
of the input space themselves do not need to have empty
intersection. Thus, a pattern could belong to more than one
cluster of the input space, but it could not belong to more than
one training or testing subsets.

The patterns used by the approach are divided in 3 types:

– Training patterns: used to create clusters and to train the
neural networks;

– Test patterns: used to create clusters and to test the neural
networks during the evolutionary process;

– Final test patterns: used to test the ensemble of neural
networks generated at the end of the evolutionary process.

The training + test data set is subdivided into subsets
according to the clusters of the input space, as Fig. 2 shows.
In this way, if there are N clusters, there will be N subsets
of training patterns with empty intersection and N subsets of
test patterns with empty intersection. If there are not enough
patterns to compose a test subset corresponding to a specific
cluster of the input space, the same subset used to train the
neural networks of the corresponding species can be used to
test them during the evolutionary process.
If there are N clusters, there will be also N species to be
evolved through a co-evolutionary algorithm. The individuals
of the species are neural networks and the co-evolutionary
algorithm can be used to optimize their parameters. These
parameters can be both the architecture of the neural networks
and, for example, the weights of the connections. Thus, it is
possible to use the co-evolutionary algorithm both to train and
to optimize the architecture of the neural networks. However,
it is also possible to use the specific learning algorithm of the
neural networks to train them and the co-evolutionary algorithm
just to optimize their architectures, as it is done to create
EFuNN ensembles (Section 4). It is important to emphasize that
each training/test subset is used to train/test the individuals of a
specific species.

The evolutionary process is cooperative because the fitness
of an individual of a species population is calculated using
a representative individual of each one of the other species
populations to constitute an ensemble of neural networks.
The representative of a population could be, for example, its
best individual. There is no matching between individuals of
different species. The interaction among individuals of different
species only occurs in the calculation of the fitness value.

At the end of the evolutionary process, the representatives
of each species population of the last generation are used
to constitute the ensemble, as shown by Fig. 2. Fig. 3
illustrates an ensemble of neural networks created after the
evolutionary process and the way it is used/tested. In order
to use/test the ensemble, the clusters to which the input test
pattern belongs are determined. After that, the outputs of
the EFuNNs corresponding to these clusters are calculated
and combined using a pre-determined combining method.
Examples of combining methods can be found in Dietterich
(1998).

When an on-line clustering method and an on-line co-
evolutionary algorithm are used, it is possible to apply CONE
to perform on-line learning. On-line co-evolutionary algorithms
can be created based on algorithms such as those proposed
by Chan and Kasabov (2004) and Minku and Ludermir (2005).
In on-line learning mode, the system learns data which arrive
in batches and the species are created when new clusters are
generated. After the learning of each new batch of data, the
representatives of each population are used to compose the
ensemble. When a new batch of data is received, the neural
networks that compose the existent species can be initialized
with the weights learnt by the representatives generated through
the previous batch of data.

3.1. A distributed implementation

CONE allows a straightforward distributed implementation.
In this way, the memory requirements can be divided among
different machines and the execution time can be reduced
even more than when CONE is not executed in a distributed
way. After the clustering of the training + test patterns set
is made, each subset of patterns can be sent to a different
machine, which evolves a different species. Communication
among the machines is necessary only to calculate the fitness
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Fig. 2. CONE.
of the individuals. Besides, only values corresponding to the
representative of the last generation which finished being
executed have to be sent from one species to the others
(e.g., error and size of the representative), not overloading the
network traffic. Each machine starts executing a new generation
only after it received the representatives’ information of all the
other species. In this way, it is ensured that it is possible to
calculate the fitness values when a new generation starts. The
execution time is lower bounded by the sum of the highest
execution time of each generation and the communication time.
The execution of CONE in a distributed way is proposed as a
future work.

4. An example of EFuNN ensemble

This section presents an example of EFuNN ensemble
which can be created by CONE. As it was explained in
Section 1, EFuNNs have parameters which are adjusted during
the learning and learning parameters. In order to create EFuNN
ensembles using CONE, the co-evolutionary algorithm can
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Fig. 3. Neural network ensemble utilization.

be used to optimise the learning parameters and the EFuNN
learning algorithm itself can be used to train the EFuNNs.

According to CONE, the representatives of the last
population of each species are used to construct the EFuNN
ensemble after the evolutionary process. The best fit individual
of a population can be considered the representative of this
population. Examples of combining methods which can be used
to combine the outputs of the EFuNNs which compose the
ensemble are:

– Arithmetic average of the outputs of the EFuNNs
corresponding to the cluster to which the presented pattern
belongs.

– Weighted average of the outputs of the EFuNNs correspond-
ing to the cluster to which the presented pattern belongs.
The value to be used as the weight of the cluster C j , j =
0, 1, . . . , N is 1/‖xi − Cc j‖, where xi is the presented pat-
tern and Cc j is the cluster center.

If a pattern does not belong to any cluster, the output of
the ensemble is the output of the EFuNN corresponding to the
cluster whose center is the nearest center to the pattern.

5. Co-evolutionary algorithms

This section presents 3 different co-evolutionary algorithms
that can be used with CONE: a co-evolutionary genetic
algorithm, a multi-objective co-evolutionary genetic algorithm
and a multi-objective co-evolutionary strategy.

5.1. Co-evolutionary Genetic Algorithm

This section presents a co-evolutionary genetic algorithm
(co-evolutionary GA) inspired on Potter and DeJong (2000)
to be used with CONE. The co-evolutionary GA has
a binary representation of the EFuNN parameters to be
optimized, bitwise bit-flipping mutation, one-point crossover,
and generational survivor selection. The parents selection is
proportional to the value determined by be following equation:

Probi,p,g =
max fitnessp,g − fitnessi,p,g

pop sizep−1∑
j=0

fitness j,p,g

, (1)
where max fitnessp,g is the greatest fitness of the population p
of the generation g, fitnessi,p,g is the fitness of the individual i
of the population p of the generation g, and pop sizep is the
size of the population p.

The parent selection uses the roulette wheel method and,
according to Eq. (1), the fitness value is minimized. Eiben and
Smith (2003), a recent book about evolutionary algorithms,
gives examples of applications of GAs in which the fitness
function is directly minimized, instead of changing it into a
function that has to be maximized.

Each initial population is composed by individuals created
randomly choosing values for each of the EFuNN parameters
to be optimized. A population is created for each cluster of the
input space, i.e., for each species, according to CONE.

In the initial population, the fitness of the individuals is
calculated in an isolated manner, i.e., to determine the fitness
of an individual, the individuals of the other species are not
considered. The function used to calculate the fitness in this
generation is:

fitnessi = Wrmse RMSEi +Wsize sizei , (2)

where Wrmse and Wsize are pre-defined weights, RMSEi is
the Root Mean Squared Error (RMSE) obtained testing the
EFuNN corresponding to the individual i with the test subset
corresponding to its species, and sizei is the size of this EFuNN.

The size component of the fitness function is used to
penalize the size of the EFuNNs generated, as suggested
by Minku and Ludermir (2005). In this way, the execution time
of the evolutionary algorithm is not so high.

In all generations after the initial one, the fitness of an
individual i is calculated in an innovative way. Instead of
playing the individual against the individuals of the other
species to form an ensemble and using the individual’s
contribution to the ensemble as a fitness measure (as it is
usually done in the literature), the fitness of an individual is the
combination of the output error and the size of this individual
with the output error and size of the representatives of the other
species’ populations of the previous generation, saving time
during the fitness calculation. The functions used to calculate
the fitness in all generations except the initial generation are:

RMSE =

√
SSEi + repr sse

total test patterns number
(3)

size = sizei + repr size (4)

fitnessi = Wrmse RMSE +Wsize size, (5)

where Wrmse and Wsize are pre-defined weights, SSEi is the
Sum of Squared Error (SSE) obtained testing the EFuNN
corresponding to the individual i with the test subset
corresponding to its species, sizei is the size of this EFuNN,
repr sse is the sum of the SSEs and repr size is the sum of
the sizes of the representatives of all other species’ populations
in the previous generation, and total test patterns number
is the total number of test patterns, including the patterns
corresponding to all species.

Each species is evolved in a separate manner and there is
interaction among the species only to calculate the fitness value,
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Fig. 4. Fitness calculation of an individual of the population of the species K, in a co-evolutionary GA with N species.
according to CONE. The fitness value of an individual of a
species’ population depends on the representative individuals
of the other species’ populations. Fig. 4 shows the calculation
of the fitness of an individual of the population of species K of
generation G, in a co-evolutionary GA with N species.

The Algorithm 5.1 is the algorithm used to evolve a specific
species. The stop criterion used for the evolutionary process is
the number of generations.

Algorithm 5.1 (Evolutionary process of a species).

(i) Create the initial population.
(ii) Repeat until a maximum number of generations is

attained:
(a) If the EFuNNs corresponding to the individuals of the

population have any rule nodes, delete them.
(b) Apply the EFuNN learning algorithm to each EFuNN

of the population using the training subset correspond-
ing to the species and the parameters codified by the
genotype of the individual.

(c) Test the EFuNNs corresponding to all individuals of the
population using the test subset.

(d) Determine the fitness value of each individual of the
population.

(e) Make parent selection using a roulette wheel method
and probabilities determined through the Eq. (1).

(f) Apply crossover and mutation with probabilities Pc and
Pm, respectively, to generate new individuals.

(g) Apply generational survivor selection.

5.2. Multi-objective co-evolutionary Genetic Algorithm

The algorithm described in the Section 5.1 needs the pre-
definition of the fitness parameters Wrmse and Wsize. The
choice of the best parameters to be used is difficult and
influences the ensemble of neural networks generated after the
evolutionary process. So, this section presents a multi-objective
co-evolutionary GA to be used with CONE. The difference
between this algorithm and the one described in Section 5.1 is
that the parent selection is based on the rank of the individual
in its population, instead of being based on the fitness value.

The rank of each individual is based on the objective
functions, which are similar to the components of the fitness
functions described in Section 5.1. The objectives vector of an
individual i of the initial population is:

[RMSE Obji = RMSEi , SIZE Obji = sizei ]. (6)

The objectives vector of an individual i in all other
generations is [RMSE Obji , SIZE Obji ], where:

RMSE Obji =

√
SSEi + repr sse

total test patterns number
and (7)

SIZE Obji = sizei + repr size. (8)

The rank of an individual i of the population p in the
generation g is the number of individuals j 6= i, j ∈ p which
dominate the individual i in the generation g, as it is done
in Fonseca and Fleming (1998). An individual i dominates an
individual j if (RMSEi ≤ RMSE j ) and (SIZEi ≤ SIZE j ) and
(RMSEi < RMSE j or SIZEi < SIZE j ). In this way, a Pareto
optimal individual (an individual which is not dominated by
any other individual of the population) has always rank equal
to 0.

The best individual of a population is the individual with the
lowest rank. When more than one individual has the same rank,
the best between them is the one which has the lowest SSE,
obtained testing the EFuNN corresponding to it with the test
subset corresponding to its species.
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5.3. Multi-objective co-evolutionary strategy

This section explains a multi-objective co-evolutionary
strategy to be used with CONE.

Besides the features of a co-evolutionary algorithm to be
used with CONE, the multi-objective co-evolutionary strategy
has the following features:

– Representation by real values, with two genes for each
EFuNN parameter to be optimized. The first of these genes
represents the parameter itself and the second represents the
corresponding self-adapting standard deviation.

– Gaussian perturbation mutation with self-adaptation of the
standard deviations and one standard deviation for each
variable representing an EFuNN parameter to be optimized.
This kind of mutation is adequate for ordinal numeric
parameters optimization.

– Local discrete crossover for the variables representing the
parameters to be adjusted and local intermediary crossover
for the variables representing the self-adapting standard
deviations, as suggested in Eiben and Smith (2003).

– Random parent selection with equal probabilities for all
population members.

The algorithm works in a similar way to the algorithm
presented in Section 5.2, but in a evolutionary strategy way.
So, the initial population of each species is composed by
individuals created randomly choosing values for each of the
EFuNN parameters to be optimized. N parents are randomly
chosen to generate the individuals of the next population. N
must be chosen in such a way that the number of children
individuals is greater than the population size. After parent
selection, the crossover operator is applied with probability
Pc to each pair of parents. The result of the application of
the crossover operation to a pair of parents is only one child
individual. After crossover, Gaussian perturbation mutation is
applied to the resultant individual, using the standard deviation
corresponding to each EFuNN parameter. If the crossover
operator was not applied to a pair of parents, mutation is applied
to the first of the parents, resulting in a child individual.

The survival selection is similar to (µ, λ)-survival selection.
The µ best rank individuals are selected among the λ children.
µ is also the size of the population. The number of children is
λ = N/2 and λ > µ. This kind of survival selection was chosen
because it is better than (µ + λ) in following moving optimal
points on the search space, to escape from local optima and to
be used with self-adaptation of the mutation parameters (Eiben
& Smith, 2003).

The rank of an individual is determined in a very similar
way to Section 5.2. However, it is calculated using the children
individuals, before the survival selection. Thus, the rank of a
child i is the number of children j 6= i which dominate i. In
this way, a Pareto-optimal individual (an individual that is not
dominated by any other individual) is also always rank 0.

6. Experiments

This section presents the experiments and analyses made
with CONE to create EFuNN ensembles (Section 4) using
the algorithms presented in Section 5 and Appendix A.
Seven different classification databases from UCI Machine
Learning Repository (Newman, Hettich, Blake, & Merz, 1998)
and Proben1 (Prechelt, 1994) were used: Cancer, Glass,
Iris, Wine, Heart, Pima and Vehicle. Heart is considered a
difficult database, for it has many missing values. Pima and
Vehicle are considered some of the most difficult databases
of the repository. Some preliminary experiments were made
with Iris, Wine, Glass, Cancer (Minku & Ludermir, 2006a,
2006b). The preliminary experiments used a reduced number
of executions and only co-evolutionary GA and multi-objective
co-evolutionary GA.

As the co-evolutionary GA has the problem of being too
much influenced by the tuning of the fitness function, this paper
presents experiments only with Iris, Wine, Glass and Cancer
using this co-evolutionary algorithm.

The results obtained with CONE were compared with
evolutionary algorithms to generate and optimize EFuNNs.
Evolutionary algorithms are techniques suggested by Kasabov
(2003) to optimize EFuNNs parameters and since then they
have inspired the work done by Chan and Kasabov (2004),
Kasabov et al. (2003) and Minku and Ludermir (2005).

The rest of this section is organized as follows: Section 6.1
presents the objectives of the experiments, Section 6.2 shows
the experimental setup, Section 6.3 presents an analysis of the
execution time and the relation between the nodes number
and the execution time, Section 6.4 presents an analysis of
the accuracy and Section 6.5 presents a comparison between
the use of multi-objective co-evolutionary GA and the multi-
objective co-evolutionary strategy with CONE. The analyses
show that it is possible to use CONE to reduce considerably
the execution time without prejudicing (and even improving)
the accuracy. This behaviour occurs even when different co-
evolutionary algorithms are used. However, it is important to
notice that different co-evolutionary algorithms should be used
to different purposes, as it is shown in Section 6.5.

6.1. Objectives

The main objective of the experiments is to show that CONE
reduces considerably the execution time of the learning process
even when it is not used in a distributed way, for the clustering
method makes the ensemble members have a reduced number
of nodes. The execution time reduction is attained without
prejudicing the accuracy and even improving it in comparison
to single EFuNNs generated using evolutionary algorithms
corresponding to the co-evolutionary algorithm used by CONE.
It is important to notice that the single EFuNNs are strong
classifiers with optimized learning parameters.

The experiments also aim at determining which combination
method (weighted or arithmetic) is better to be used by an
ensemble generated by CONE and at analysing the influence
of the choice of the co-evolutionary algorithm.

With these objectives in mind, EFuNN ensembles generated
using CONE with each of the presented co-evolutionary
methods were compared with single EFuNNs generated using
corresponding evolutionary algorithms. The characteristics
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compared were the execution times and the classification
errors. The classification errors were those obtained using the
final test patterns set to test the single EFuNNs and the EFuNN
ensembles generated after the evolutionary processes. CONE
using multi-objective co-evolutionary GA was compared
with CONE using multi-objective co-evolutionary strategy to
analyse the influence of the co-evolutionary algorithm in the
learning process.

6.2. Experimental setup

The training, test and final test data sets utilized by the
experiments were created as follows:

(i) Two data sets (training + test data set and final test data
set) were created:
– Proben1 databases (Glass and Cancer) are already

separated in training (50% of the patterns), validation
(25% of the patterns) and test data sets (25% of the
patterns). There are also 3 different partitions of the
patterns which compose each of these sets. For each
partition, the supplied training and validation sets were
used to compose CONE’s training+ test data sets and the
supplied test set was used to compose CONE’s final test
data set.

– The other databases were obtained directly from the UCI
Machine Learning Repository. These databases were
processed in order to create 3 different partitions of
training + test and final test data sets. Each training +
test data set contains 75% of the patterns of each class
and each final test data set contains 25% of the patterns
of each class.

(ii) The 3 partitions of the training+ test and final test data sets
were used in different executions. For each execution:
(a) The training + test patterns set was used to create the

clusters of the input space.
(b) After that, the training+ test patterns set was separated

according to the clusters into subsets of training
+ test patterns. Each pattern belongs to the subset
corresponding to the cluster which has the nearest
center to this pattern.

(c) Each training + test subset was then divided into 2
subsets. One of them is a training subset, with 66% of
its patterns, and the other one is a test subset, with 34%
of its patterns. In this way, the total number of training
patterns is always 50%, the total number of test patterns
is 25% and the total number of final test patterns is 25%
of the patterns of the database.

The EFuNN parameters which were optimized during the
co-evolutionary process and their intervals of allowed values
are: m-of-n ([1, 15] ∈ Z ), error threshold ([0.01, 0.6] ∈ R),
maximum radius ([0.01, 0.8] ∈ R), initial sensitivity threshold
([0.4, 0.99] ∈ R) and membership functions number ([2, 8] ∈
Z ).

The Dthrs parameter of the clustering method was
empirically determined and it is 0.37 for Cancer, 0.20 for Glass,
0.40 for Iris, 50 for Wine, 45 for Heart, 0.26 for Vehicle and 50
Table 1
Number of clusters

Cancer Glass Iris Wine Heart Vehicle Pima

Partition 1 7 13 13 7 6 4 4
Partition 2 7 17 15 6 5 4 5
Partition 3 6 15 13 7 5 4 5
Average 6.6667 15 13.6667 6.6667 5.3333 4 4.6667

for Pima. Table 1 shows the number of clusters created using
the clustering method presented in Appendix A, for each of the
partitions.

The parameters of the co-evolutionary GA are: population
size = 12, Pm = 2%,Pc = 70%, Wrmse = 0.1, and stop
criterion = 50 generations. Four different values for Wsize were
used: 0.005, 0.0005, 0.00005 and 0.000005.

The parameters of the multi-objective co-evolutionary GA
are: population size = 12, Pm = 2%,Pc = 70%, and stop
criterion = 50 generations.

The parameters of the multi-objective co-evolutionary
strategy are: population size = 12, Pc = 70%, number of
children = 48, and stop criterion = 50 generations.

The genotypes of the co-evolutionary GA and of the multi-
objective co-evolutionary GA were composed by 4 bits for
m-of-n, 9 for error threshold, 10 for maximum radius, 6 for
initial sensitivity threshold and 3 for the membership functions
number of each input/output attribute.

The genotypes of the multi-objective co-evolutionary
strategy were composed by 8 real type variables to represent
m-of-n, E, Mrad and S and their corresponding self-adapting
standard deviations, plus 2 real type variables to represent each
of the number of membership functions and their corresponding
self-adapting parameters.

Hence, for the co-evolutionary GA, CONE was executed
with 4 different combinations of evolutionary parameters for
each database. For the multi-objective algorithms, CONE
was executed with 1 combination of evolutionary parameters.
Three different partitions of the training + test and final test
data sets were also used, thus totaling 12 combinations of
configurations for the co-evolutionary GA, and 3 combinations
of configurations for each of the multi-objective algorithms.
Thirty executions with different random seeds were performed
for each combination, totaling 360 executions per database for
the co-evolutionary GA and 90 executions per database for each
of the multi-objective algorithms.

Executions with the above combinations of parameters
were also made using a genetic algorithm (GA), a multi-
objective GA and a multi-objective evolutionary strategy to
generate a single EFuNN. These algorithms were the same as
the co-evolutionary algorithms presented in Sections 5.1–5.3,
respectively, but using the initial population fitness/objective
functions for all generations and only one species. In this
way, 360 GA executions were made for each database and 90
executions of each of the multi-objective algorithms were made
for each database.

The above parameters were determined empirically and they
aim at not having a too high execution time, as the objective of
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Table 2
Measures related to the execution times (in seconds) for multi-objective co-evolutionary strategy

Cancer Glass Iris Wine Heart Pima Vehicle

Ens Av 345.4333 66.9333 10.6 29.1667 4018.2556 1628.5222 3401.9556
SD 37.0105 1.7340 0.7313 1.0626 19.1073 26.3477 103.6192
Min 287 65 3 27 3674 1276 1995
Max 391 81 9 31 4443 1919 4167

Sing Av 836.6111 109.1667 37.8667 95.4111 8406.4444 3465.2444 8343.3444
SD 72.6796 1.3841 2.3900 1.9308 27.8621 3.3603 6.1166
Min 748 106 34 92 8005 3398 8209
Max 985 112 43 99 8917 3538.0000 8481
Fig. 5. Execution time average (in seconds) per database for multi-objective
co-evolutionary strategy.

the paper is not finding the best co-evolutionary algorithm to be
used with CONE.

6.3. Execution time

The experiments show that the execution time of CONE
to generate EFuNN ensembles is always considerably lower
than the execution time of the corresponding evolutionary
algorithms to generate single EFuNNs.

Fig. 5 shows the execution time averages for CONE with
the co-evolutionary strategy and the corresponding evolutionary
strategy. Cancer execution time average is multiplied by 0.1 in
this figure. Table 2 shows the execution time averages, standard
deviations, minimal and maximum values.

For all databases, the execution time average of CONE
to generate EFuNN ensembles was statistically lower than
the execution time average of the multi-objective evolutionary
strategy to generate a single EFuNN. Paired T student statistic
tests (Witten & Frank, 2000) were performed to prove this
analysis. For a level of significance of 0.05, the p-values of
the statistic test that are less than 0.05 indicate that there is
difference between the compared algorithms. The lower the
p-value, the higher the confidence of the difference. This is
valid for all T Student tests presented in this paper. All the p-
values of the tests related to the execution time averages were
0.0000, indicating that there is significant difference between
the compared algorithms. Notice that these p-values are very
small.

Fig. 6 shows the division of the evolutionary algorithm’s
execution time by CONE’s execution time. The higher this
value, the higher the reduction in the execution time when
CONE is used. It is possible to observe that, for all databases but
Glass, the execution time of CONE was at least 2 times faster
than the corresponding multi-objective evolutionary strategy,
which can be considered a high reduction in the execution time.

The execution time of CONE with the other co-evolutionary
algorithms was also always considerably lower than their
corresponding evolutionary algorithms. Figs. 7 and 8 show
the execution time averages for the other co-evolutionary
algorithms. Tables 3 and 4 show the execution time averages,
standard deviations, minimal and maximum values for these
algorithms. The p-values of the T Student tests performed were
all 0.0000.
Fig. 6. Execution time reduction.
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Fig. 7. Execution time average (in seconds) per database for co-evolutionary
GA.

Fig. 8. Execution time average (in seconds) per database for multi-objective
co-evolutionary GA.

Table 3
Measures related to the execution times (in seconds) for co-evolutionary GA

Cancer Glass Iris Wine

Ens Av 104.5056 22.8528 2.6222 11.4722
SD 60.1617 9.4891 0.4912 1.9970
Min 38 9 2 7
Max 320 39 4 16

Sing Av 271 38.9361 10.3306 33.9139
SD 150.4960 21.8213 4.9402 11.7227
Min 105 11 4 15
Max 724 71 20 54
6.3.1. Relation between execution time and rule nodes number
As was explained in Section 3, the neural networks of each

species learn a reduced training set. In this way, they have
less nodes than a single neural network used to learn the
whole training set. So, each training example is presented to a
relatively small neural network, reducing the training time. This
section presents an analysis which shows the strong relation
between the reduction in the number of nodes and the reduction
in the execution time.

Two measures will be used. One of them is the percentage of
execution time, which is the average execution time of CONE
divided by the average execution time of the corresponding
evolutionary algorithm. As the execution time of CONE in
the experiments is always lower than the execution time of
the corresponding evolutionary algorithms, this measure will
always be between 0 and 1. The lower its value, the higher the
reduction in the execution time when CONE is used.

The other measure is the percentage of nodes number, which
is the average weighted nodes number of the ensembles divided
by the average nodes number of the single EFuNNs. The
weighted nodes number of an ensemble is:

WRN =

i<E N−1∑
i=0

(Ti RNi )

i<E N−1∑
i=0

Ti

, (9)

where RNi is the number of rule nodes of EFuNN i of the
ensemble, Ti is the number of training instances associated with
the EFuNN i and E N is the ensemble size.

The experiments show that the weighted nodes number of
an ensemble generated by CONE is always lower than the
nodes number of a single EFuNN generated by a corresponding
evolutionary algorithm, as expected. In this way, the percentage
of nodes number is always between 0 and 1. As the percentage
of execution time, the lower its value, the higher the reduction
in the weighted rule nodes number when CONE is used.

Fig. 9 shows the percentage of execution time and the
percentage of nodes number for each of the 3 different
partitions of training data used in the experiments. It is
necessary to calculate the measures for each one of the different
partitions because they produce a different number of clusters
of the input space and, consequently, a different ensemble size.
It can be observed that a reduction/increase in the execution
Table 4
Measures related to the execution times (in seconds) for multi-objective co-evolutionary GA

Cancer Glass Iris Wine Heart Pima Vehicle

Ens Av 101.7556 22.2667 2.5444 10.2111 4018.2556 1628.5222 3401.9556
SD 27.6626 4.2075 0.5228 1.1167 19.1073 26.3477 103.6192
Min 55 12 2 8 3674 1276 1995
Max 203 33 4 13 4443 1919 4167

Sing Av 286.8889 37.1778 7.8778 29.0111 8406.4444 3465.2444 8343.3444
SD 54.4691 7.5633 1.9707 4.9865 27.8621 3.3603 6.1166
Min 186 20 5 20 8005 3398 8209
Max 416 54 13 44 8917 3538 8481
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Fig. 9. Percentages of execution time and rule nodes.
time is related to a reduction/increase in the percentage of nodes
number, showing the strong relation between them.

6.4. Accuracy

The experiments show that the accuracy of the ensembles
created by using CONE is statistically equal or better than
the accuracy of single EFuNNs created using a evolutionary
algorithm corresponding to the co-evolutionary algorithm
used with CONE. Besides, the weighted average combination
method is always either statistically more accurate or equal to
the arithmetic average.

Fig. 10 shows the classification error averages for the
ensembles generated by CONE with the co-evolutionary
strategy and the single EFuNNs generated by the corresponding
evolutionary strategy. Observe that the classification error
average of Glass database is multiplied by 0.1 in this figure.
Table 5 shows the classification error averages, standard
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Fig. 10. Classification error average per database for multi-objective co-
evolutionary strategy.

Table 5
Measures related to the classification errors for multi-objective co-evolutionary
strategy

Cancer Glass Iris Wine Heart Pima Vehicle

W Ens Av 0.0332 0.2673 0.0490 0.0133 0.4722 0.2394 0.2661
SD 0.0104 0.0340 0.0339 0.0182 0.0034 0.0021 0.0016
Min 0.0172 0.1698 0.0256 0 0.4190 0.2031 0.2347
Max 0.0632 0.3774 0.1026 0.0667 0.5333 0.3021 0.3052

A Ens Av 0.0386 0.2736 0.0490 0.0133 0.4722 0.2389 0.2673
SD 0.0138 0.0414 0.0339 0.0182 0.0034 0.0021 0.0016
Min 0.0172 0.1698 0.0256 0 0.4190 0.2031 0.2394
Max 0.0805 0.3962 0.1026 0.0667 0.5333 0.3021 0.3052

Sing Av 0.0414 0.2845 0.0712 0.0333 0.4815 0.2399 0.2776
SD 0.0127 0.0415 0.0330 0.0214 0.0028 0.0024 0.0016
Min 0.0172 0.2075 0 0 0.4333 0.1771 0.2394
Max 0.0862 0.3962 0.1282 0.0889 0.5523 0.2969 0.3099

Table 6
P-Value of T Student Test comparing the classification error averages for multi-
objective co-evolutionary strategy

Cancer Glass Iris Wine Heart Pima Vehicle

W Ens x A Ens 0.0000 0.0000 = = = 0.1172 0.0010
W Ens x Sing 0.0000 0.0027 0.0000 0.0000 0.0003 0.8414 0.0000
A Ens x Sing 0.0000 0.0726 0.0000 0.0000 0.0003 0.7066 0.0000

deviations, minimal and maximum values. In this table and in
the other tables of this paper, “W Ens” means Weighted EFuNN
ensemble (which uses weighted combination method), “A Ens”
means Arithmetic EFuNN ensemble (which uses arithmetic
combination method) and “Sing” means Single EFuNN. Table 6
shows the p-values of the paired T Student tests performed
to prove the analyses made with the classification errors. The
signals “=” indicate that the classification errors of all the
paired executions were equal and it is not possible to calculate
the p-value. The p-values that are less than 0.05 are emphasized
in bold and indicate that there is a difference between the
compared algorithms.
Fig. 11. Classification error average per database for co-evolutionary GA.

Table 7
Measures related to the classification errors for co-evolutionary GA

Cancer Glass Iris Wine

W Ens Av 0.0492 0.3495 0.0512 0.0267
SD 0.0196 0.1101 0.0370 0.0275
Min 0.0115 0.1698 0.0256 0.0000
Max 0.1207 0.6604 0.1282 0.1333

A Ens Av 0.0531 0.3507 0.0515 0.0267
SD 0.0244 0.1094 0.0371 0.0276
Min 0.0057 0.1509 0.0256 0.0000
Max 0.1379 0.6604 0.1282 0.1333

Sing Av 0.0512 0.4340 0.0698 0.0316
SD 0.0240 0.1648 0.0377 0.0209
Min 0.0057 0.1698 0.0000 0.0000
Max 0.1379 0.8868 0.2051 0.1111

Table 5 in combination with Table 6 shows that the
classification error averages of the weighted ensembles were
considered statistically lower than the classification error
averages of the single EFuNNs for all databases but Pima. For
Pima, the average of the ensembles and single EFuNNs was
considered statistically equal. The classification error averages
of the arithmetic ensembles were considered statistically lower
than the classification error averages of the single EFuNNs for
all databases but Glass and Pima. For Glass and Pima, the
average of the ensembles and single EFuNNs was considered
statistically equal. Notice that the p-values are very low to
almost all databases.

For Cancer, Glass and Vehicle databases, the classification
error averages of the weighted EFuNN ensembles were con-
sidered statistically lower than the classification error averages
of the arithmetic EFuNN ensembles. For Wine, Iris, Heart and
Pima, the averages were considered statistically equal.

For the executions with the other co-evolutionary algo-
rithms, the accuracy of ensembles generated by using CONE
was also always either equal or better than the accuracy of sin-
gle EFuNNs generated by the corresponding evolutionary algo-
rithms. The only exception was when the multi-objective co-
evolutionary genetic algorithm was used with Cancer database
and arithmetic average of the EFuNNs’ outputs. Although, this
is a database in which usually a good accuracy is attained by
learning methods and it is known that ensembles are more help-
ful when used to solve difficult problems.

Figs. 11 and 12 show the classification error averages for
the other co-evolutionary algorithms. Tables 7 and 8 show the
classification error averages, standard deviations, minimal and
maximum values for these algorithms and Tables 9 and 10 show
the p-values of the T Student tests.
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Fig. 12. Classification error average per database for multi-objective co-
evolutionary GA.

Table 8
Measures related to the classification errors for multi-objective co-evolutionary
GA

Cancer Glass Iris Wine Heart Pima Vehicle

W Ens Av 0.0398 0.3096 0.0530 0.0254 0.4727 0.2614 0.2917
SD 0.0132 0.0611 0.0397 0.0239 0.0031 0.0029 0.0027
Min 0.0172 0.1698 0.0256 0.0000 0.4190 0.1771 0.2441
Max 0.0805 0.4340 0.1282 0.0889 0.5381 0.3438 0.3897

A Ens Av 0.0424 0.3122 0.0536 0.0254 0.4726 0.2608 0.2947
SD 0.0151 0.0647 0.0395 0.0239 0.0031 0.0029 0.0026
Min 0.0172 0.1698 0.0256 0.0000 0.4190 0.1823 0.2441
Max 0.0862 0.4340 0.1282 0.0889 0.5381 0.3438 0.3803

Sing Av 0.0375 0.3157 0.0612 0.0311 0.4744 0.2577 0.2907
SD 0.0130 0.0740 0.0337 0.0213 0.0027 0.0027 0.0024
Min 0.0057 0.1132 0.0000 0.0000 0.4238 0.1927 0.2441
Max 0.0632 0.5660 0.1795 0.1333 0.5333 0.3177 0.3615

Table 9
p-value of T Student test comparing the classification error averages for co-
evolutionary GA

Cancer Glass Iris Wine

W Ens x A Ens 0.0000 0.0283 0.0453 0.3180
W Ens x Sing 0.1176 0.0000 0.0000 0.0048
A Ens x Sing 0.1629 0.0000 0.0000 0.0054

Table 10
p-value of T Student test comparing the classification error averages for multi-
objective co-evolutionary GA

Cancer Glass Iris Wine Heart Pima Vehicle

W Ens x A Ens 0.0076 0.0331 0.1585 = 0.3200 0.1051 0.0000
W Ens x Sing 0.2415 0.4948 0.0495 0.1276 0.4751 0.3120 0.8078
A Ens x Sing 0.0182 0.6984 0.0627 0.1276 0.4627 0.3933 0.2887

6.5. Multi-objective co-evolutionary GA versus multi-objective
co-evolutionary strategy

All the results presented in this section correspond to
executions which have used either CONE with the multi-
Table 11
p-value of T Student test comparing the classification error averages for multi-
objective co-evolutionary strategy and multi-objective co-evolutionary GA

Cancer Glass Iris Wine Heart Pima Vehicle

Weig Ens Multi-obj 0.0002 0.0000 0.4695 0.0002 0.9271 0.0000 0.0000
ES x GA
Arit Ens Multi-obj 0.0773 0.0000 0.4071 0.0002 0.9362 0.0000 0.0000
ES x GA

objective co-evolutionary GA presented in the Section 5.2
or CONE with the multi-objective co-evolutionary strategy
presented in the Section 5.3. The comparisons made in this
section show that by changing the co-evolutionary algorithm
used with CONE it is possible to attain different classification
rates and execution times, although the main properties of
CONE are the same (Sections 6.3 and 6.4). In this way, it is
important to choose the co-evolutionary algorithm according
to the requirements of the problem. For instance, the multi-
objective co-evolutionary GA could be used when the emphasis
is the reduction in the execution time. When the accuracy is
more important, the multi-objective co-evolutionary strategy
presented in the Section 5.3 could be used.

Fig. 13 shows the classification error averages of the EFuNN
ensembles using multi-objective co-evolutionary GA and multi-
objective co-evolutionary strategy. Table 11 shows the p-values
of the not-paired T student tests made to prove the analyses
made in this section.

It can be observed that the classification error average of
the ensembles created using multi-objective co-evolutionary
strategy are statistically equal or lower than the averages of the
ensembles created using multi-objective co-evolutionary GA.
However, as shown by Fig. 14 and the p-values of the statistic
tests made to compare the execution time averages (which
were all 0.0000), the execution time using multi-objective co-
evolutionary strategy is always statistically higher than the one
using multi-objective co-evolutionary GA. In this way, it is
important to choose the co-evolutionary algorithm according to
the requirements of the problem.

7. Conclusion

This paper introduces CONE, which is an approach to
create neural network ensembles. It creates the ensembles in
an innovative way, by explicitly partitioning the input space
through a clustering method. In this way, the neural networks
that compose the ensemble specialize in different parts of the
problem space and work in a divide-and-conquer manner. The
clustering of the input space also allows a reduction in the
number of nodes of the neural networks that compose the
ensemble, thus reducing the execution time of the learning
process. By using the approach in a distributed way, it would be
possible to further reduce the execution time. A co-evolutionary
algorithm can be used to optimize the architecture of the neural
networks that compose the ensemble.

The experiments show that CONE indeed considerably
reduces the execution time of the learning process even when
a distributed implementation is not used. Besides, the accuracy
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Fig. 13. Classification error average per database for multi-objective co-evolutionary GA and multi-objective co-evolutionary strategy.
Fig. 14. Execution time average (in seconds) per database for multi-objective
co-evolutionary GA and multi-objective co-evolutionary strategy.

of the ensembles generated by CONE is similar or higher than
the accuracy of a single EFuNN created using an evolutionary
algorithm. The experiments used 3 different co-evolutionary
algorithms, showing that these results are obtained even using
different co-evolutionary algorithms. However, it is important
to notice that different co-evolutionary algorithms are more
appropriate to different problem purposes. For example, when
accuracy is more important, a multi-objective co-evolutionary
strategy (Section 5.2) could be used. When the execution time
is more important, a multi-objective co-evolutionary genetic
algorithm (Section 5.3) could be used. The experiments also
reveal that the weighted average combination method has
always higher or equal accuracy to the arithmetic average.

Future work includes the analysis of the effect of other
co-evolutionary algorithms with CONE, the use of more than
one representative of each species to compose the ensemble of
neural networks, the execution of CONE in a distributed way,
the extraction of rules explaining the ensemble’s working and
the analysis of CONE’s behaviour in on-line mode.
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Appendix A. Clustering method

The clustering algorithm used with CONE in this paper was
the Evolving Clustering Method (ECM) (Kasabov, 2001a). The
Algorithm A.1 presents it.

In this paper, the distance between two vectors x and y
denotes the General Euclidean Distance, defined as follows:

‖x − y‖ =

√√√√√ size−1∑
0
(xi − yi )2

size
. (A.1)

Algorithm A.1 (Clustering Method). Let NumEx be the
number of patterns and Dthr be a distance threshold.

(i) Create the first cluster C0 by simply taking the position of
the first pattern as the first cluster center Cc0 and setting a
value 0 for its cluster radius Ru0.

(ii) For each input pattern xi from i = 1 to Num Ex − 1 do:
(a) Determine the distance between xi and all N cluster

centers Cc j already created:
Di j = ‖xi − Cc j‖, j = 0, 1, . . . , N − 1.

(b) If there is a distance value Di j ≤ Ru j , it means that xi
belongs this cluster. In this case, neither a new cluster
is created nor an existing cluster is updated.

(c) Else
(i) Find the cluster Cα with the minimum distance

Diα = ‖xi − Ccα‖ = min(‖xi − Cc j‖), j =
0, 1, . . . , N − 1.

(ii) If Diα > Dthr , create a new cluster, in the same
way as described in the step (i).

(iii) Else update Cα: increment the number of patterns
accommodated by Cα (N Exsα = N Exsα + 1);
update Ccα (Ccα = Ccα + (xi − Ccα)/N Exsα)
and make Rα be the maximum between the
following values: 1. the distance between the old
Ccα and the new Ccα plus the old Ruα and 2. the
distance between xi and the new center Ccα .

Appendix B. EFuNNs

This section describes the EFuNN learning procedure. It is
recommended to read Kasabov (2001b) for further details.

EFuNNs are a class of ECoSs which join the neural networks
functional characteristics to the expressive power of fuzzy
logic. They have a five-layer architecture. The first layer
represents the input vector, the second represents the fuzzy
quantification of the input vector, the third represents the
associations between fuzzy input space and fuzzy output space,
the fourth represents the fuzzy quantification of the output
vector and the fifth represents the output vector.

Learning occurs at the rule nodes layer. Each node rj of
this layer is represented by two vectors of connection weights
(W1(rj) and W2(rj)). W1 represents the coordinates of the
nodes in the fuzzy input space and it is adjusted through
unsupervised learning. W2 represents the coordinates of the
nodes in the fuzzy output space and it is adjusted through
supervised learning. The learning rules are the following:

W 1(r j (t + 1)) = W 1(r j (t))
+ lr1(r j (t)) ∗ (x f −W 1(r j (t))) (B.1)

W 2(r j (t + 1)) = W 2(r j (t))
+ lr2(r j (t)) ∗ (y f − A2) ∗ A1(r j (t)),(B.2)

where: x f and y f are the fuzzy input and fuzzy output vectors;
lr1(r j (t)) and lr2(r j (t)) are the learning rates for the W 1 and
W 2 weights of the node r j at time t ; A2 is the fuzzy output
activation vector and A1(r j (t)) is the activation value of the
rule node r j at time t .

The EFuNN learning algorithm is briefly described below.

Algorithm B.1 (EFuNN Learning Algorithm).

(i) Set initial values for the following system parameters:
number of membership functions; initial sensitivity
threshold S of the nodes (it is also used to determine the
initial radius of the receptive field of a node r j , when it is
created (R(r j ) = 1 − S); error threshold E ; aggregation
parameter Nagg; pruning parameters OLD and Pr ; m-of-
n value (number of highest activation nodes used in the
learning); maximum radius of the receptive field Mrad;
rule extraction thresholds T 1 and T 2.

(ii) Set the first rule node r0 to memorize the first example
(x, y):

W 1(r0) = x f and W 2(r0) = y f ,

where x f and y f are the vectors of fuzzy quantification of
the vectors x and y, respectively.

(iii) Repeat for each new input-output pair (x, y) presentation:

(a) Determine the local normalized fuzzy distance D
between x f and the W 1 weights. The distance D
between two fuzzy vectors x1 and x2 is calculated as
follows:
D(x1, x2) = subabs(x1, x2)/sumabs(x1, x2),
where subabs(x1, x2) is the sum of all absolute values
of the vector obtained after subtraction of the fuzzy
vectors x1 and x2 and sumabs(x1, x2) is the sum of
all absolute values of the vector obtained after sum of
the fuzzy vectors x1 and x2.

(b) Calculate the activations A1 of all rule nodes. An
example of how it can be calculated is:
A1 = 1− D(W 1(r j ), x f ).

(c) Select the rule node rk that has the smallest distance
D(W 1(rk), x f ) and that has activation A1(rk) >=

S(rk). In the case of m-of-n learning, select m nodes
instead of just one node.

(d) If this node does not exist

(i) Create a new rule node for (x f , y f ).
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(e) Else
(i) Determine the activation A2 of the output

layer and the normalized output error Err =
subabs(y, y′)/Nout , where y is the desired
output, y′ is the obtained output and Nout is the
number of nodes of the output layer.

(ii) If Err > E , create a new rule node for (x f , y f ).
(iii) Else, apply the learning rules to W 1(rk) and

W 2(rk) (in the case of m-of-n learning, the rules
are applied to the m rule nodes).

(f) Apply the aggregation procedure after the presentation
of Nagg examples.

(g) Update the parameters S(rk), R(rk), Age(rk) and
T A(rk). T A(rk) can be, for example, the sum of
the activations A1 obtained for all examples that rk
accommodates.

(h) Prune rule nodes, if necessary, according to O L D and
Pr .

(i) Extract rules, according to T 1 and T 2.
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