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Abstract—This paper introduces a methodology for neural net-
work global optimization. The aim is the simultaneous optimiza-
tion of multilayer perceptron (MLP) network weights and archi-
tectures, in order to generate topologies with few connections and
high classification performance for any data sets. The approach
combines the advantages of simulated annealing, tabu search and
the backpropagation training algorithm in order to generate an
automatic process for producing networks with high classification
performance and low complexity. Experimental results obtained
with four classification problems and one prediction problem has
shown to be better than those obtained by the most commonly used
optimization techniques.

Index Terms—Maultilayer perceptron (MLP), optimization of
weights and architectures, simulating annealing, tabu search.

I. INTRODUCTION

RCHITECTURE design for a multilayer perceptron

(MLP) neural network [1] can be formulated as an
optimization problem, where each solution represents an archi-
tecture. The cost measure can be a function of the training error
and the network size. Thus, applying an optimization technique
in order to find the solution with the lowest cost performs the
search for the optimal architecture. There are several global op-
timization methods that can be used to deal with this problem,
but the most popular are simulated annealing (SA) [2], tabu
search (TS) [3], and genetic algorithms (GAs) [4].

When the solution represents the network topological infor-
mation but not the weight values, a network with a full set of
weights must be used to calculate the training error for the cost
function. This is often done by performing a random initializa-
tion of weights and by training the network using one of the
most commonly used learning algorithms, such as backpropa-
gation [1]. This strategy may lead to noisy fitness evaluation [5],
since different weight initializations and training parameters can
produce different results for the same topology.

Simultaneous optimization of neural network architectures
and weights is an interesting approach for the generation of ef-
ficient networks. In this case, each point in the search space is
a fully specified neural network with complete weight informa-
tion, and the cost evaluation becomes more accurate.
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Global optimization methods can be combined with a gra-
dient based technique (for example, the backpropagation algo-
rithm) in a hybrid training approach, which tries to join, in the
same system, the global efficiency of the optimization methods
with the fine tuning of the gradient based techniques. This com-
bination of global optimization methods with local search tech-
niques, which is called “hybrid training,” has been often used
with genetic algorithms [5]. However, it has not been popular in
the approaches using simulated annealing and tabu search, and
this is one of the main contributions of this paper.

This paper presents a methodology for the simultaneous
optimization of MLP network weights and architectures, which
combines the advantages of simulated annealing and tabu
search, in order to generate an automatic process for obtaining
MLP networks with small topologies and high generalization
performance. Results from the application of the methodology
to real-world problems are presented and compared to those
obtained by SA and TS.

The experiments data sets refer to four classification prob-
lems: 1) the odor recognition problem in artificial noses [6],
2) the diagnosis of diabetes in Pima Indians [7], 3) Fisher’s
iris data set [8], and 4) thyroid data set [9]; and one prediction
problem, which is Mackey—Glass time series [10].

The next section presents and discusses related works on
neural network optimization using SA and TS. Section III
describes the details of the optimization methodology proposed
in this paper. Section IV explains the data sets used in the
experiments. Section V presents the experiment results with
SA, TS, and the proposed methodology. Finally, in Section VI,
some final remarks are presented.

II. RELATED WORK

Both simulated annealing and tabu search have been used for
neural network training in several approaches. In general, the
aim is to minimize the main problem of the widely used back-
propagation algorithm: the local convergence.

Sexton et al. used tabu search for neural network training
[11]. The data set was generated by randomly drawing bidimen-
sional points, where each point is composed of two inputs: one
taken from the interval [—100, +100] and the other taken from
the interval [—10, 4+-10]. The target outputs were assigned by
simple mathematical functions (for example, the sum and the
product of the inputs). Two additional sets were generated in
order to test the network performance to interpolate and extrap-
olate. The interpolation test data set was also drawn from the
intervals [—100, {+}100] and [—10, +10], but it did not include
any common observations with the training set. The extrapola-
tion data set was drawn from [—200, —101] and [+101, +200]
for the first input and from [—20, —11] and [+ 11, +20] for the
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second input. Tabu search was used to train a fixed topology with
six hidden units. The solutions in the search space were repre-
sented as real-valued vectors containing all network weights. TS
derived solutions that were significantly superior to those gen-
erated by the backpropagation algorithm for in-sample, interpo-
lation, and extrapolation test data.

Simulated annealing and GAs were implemented for the same
data [12]. Tsai et al. use a hybrid Taguchi-genetic algorithm to
solve the problem of tuning both network structure and param-
eters of a feedforward neural network [13]. Palmes et al. use a
mutation-based algorithm to train the network architecture [14].
In most cases, GAs performed better than SA. Two additional
real-world problems were examined. The first one is a bench-
mark classification problem for predicting breast cancer, while
the other is a financial time series prediction. Again, the con-
nection weights of a fixed topology (with six hidden units) were
trained with GAs and SA. The GAs achieved the best results.

In 1999, variations of hill-climbing algorithms (including
SA) were investigated for neural network training [15]. The data
set consisted of the 32 patterns of the 5-bit parity classification
task, which is a standard problem, where the network has to
classify the binary input vectors into two classes: class 0, formed
by the vectors with an even number of on-bits, and class 1,
which contains the other vectors. The algorithms were used to
train a fully connected MLP topology with two hidden units. A
hill-climbing algorithm which uses in-line search was proposed
and performed better than SA and standard hill climbing.

Treadgold and Gedeon combine backpropagation with SA,
where SA in the form of noise and weight decay is added to re-
silient backpropagation (RPROP) [16]. The resulting algorithm
is shown through various simulations to be able not only to es-
cape from local minima but also to maintain, and often improve,
the training times of the RPROP algorithm. The algorithm pro-
posed was tested on five standard benchmark problems, four
classification data sets—encoder, odd parity, iris, and thyroid—
and one regression problem—the complex interaction function.

In most of the approaches found in the literature, the simu-
lated annealing algorithm returns the solution found at the last
iteration as the final solution. However, there are some imple-
mentations that return the best solution found during the search
process [17]. In this paper, both approaches were implemented
and tested in two problems—the six-city traveling salesman
problem and a classification problem—to distinguish buried
nylon and wood targets from a highly cluttered background.
The main conclusion of the authors is that the traditional
implementation of SA is not necessary optimal.

Ying-Jian et al. introduced the SA method combined with ex-
pectation-maximization into the MLP network to optimize the
training method. Through one experiment in the task of iden-
tification of objects at different locations in color image where
good results were obtained, they claimed that their method is
efficient [18].

In 1997, a new model of tabu search was proposed, which im-
plemented parallelism [19]. In that approach, a set of standard
TS algorithms runs simultaneously. The proposed method was
used for training a recurrent neural network in order to identify
dynamic systems. The network had a fixed topology and was
trained with the proposed algorithm (the parallel TS), the stan-
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dard TS, and the backpropagation algorithm. The systems to be
identified were described by discrete-time equations with prede-
fined coefficients. The input signal of the system was randomly
generated in [—1.0, 4+1.0]. The results showed that the proposed
TS perform better than the standard TS and the backpropagation
algorithm for identification of linear and nonlinear plants.

A modified version of TS, called reactive tabu search (RTS)
[20], was presented and tested in 1995. The approach was im-
plemented to train fixed MLP topologies for classification prob-
lems. In that approach, each connection weight is described by
a binary string using the Gray code, which has the property that
integers n—1 and n+1 are obtained by changing a single bit
of the code of n (the codes of n—1 and n+1 have a Hamming
distance equal to one with respect to the code of n). The RTS
method performed successfully for classification tasks.

As can be seen, the approaches using SA and TS for neural
network training are usually constrained to adjusting connection
weights in fixed topologies. The aim of this paper is to present
interesting results on using SA and TS for the optimization of
MLP connection weights and topologies simultaneously, gen-
erating networks with low complexity and high generalization
performance.

III. OPTIMIZATION METHODOLOGY

The simulated annealing method has the ability to escape
from local minima due to the probability of accepting a new so-
lution that increases the cost. This probability is regulated by a
parameter called temperature, which is decreased during the op-
timization process. In many cases, the method may take a very
long time to converge if the temperature reduction rule is too
slow. However, a slow rule is often necessary, in order to allow
an efficient exploration in the search space.

Tabu search tries to avoid this limitation by evaluating many
new solutions in each iteration, instead of only one solution, as
performed by simulated annealing. The best solution (i.e., the
one with lower cost) is always accepted as the current solution.
This strategy makes tabu search faster than simulated annealing,
but it demands implementing a list containing a set of recently
visited solutions (the tabu list) in order to avoid the acceptation
of previously evaluated solutions. Using the tabu list for com-
paring new solutions to the prohibited (tabu) solutions increases
the computational cost of tabu search when compared to simu-
lated annealing.

In order to minimize the limitations of simulated annealing
and tabu search, an optimization methodology for MLP networks
was developed. In this approach, a set of new solutions is gener-
ated in each iteration, and the best one is selected according to
the cost function, as performed by tabu search. However, the best
solution is not always accepted since this decision is guided by a
probability distribution, which is the same used by simulated an-
nealing. During the execution of the methodology, the topology
and the weights are optimized, and the best solution found so far
(sBsr) is stored. At the end of this process, the MLP architecture
contained in spgr is kept constant, and the weights are taken as
the initial ones for training with the backpropagation algorithm,
in order to perform a fine-tuned local search.

Given a set S of solutions and a real-valued cost function f,
the methodology searches for the global minimum s, such that
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f(s) < f(s),Vs’ € S. The search stops after I, epochs, and
a cooling schedule updates the temperature 7; of epoch . The
structure of the methodology is shown in Algorithm 1.

In order to implement this methodology for a problem, the
following aspects must be defined: 1) the representation of so-
lutions; 2) the cost function; 3) the generation mechanism for the
new solutions; and 4) the cooling schedule and stopping criteria.

A. Representation of Solutions

In this paper, all MLP topologies have a single hidden layer,
containing only connections between adjacent layers. The max-
imal topology must be defined, which contains /V; input nodes,
N5 hidden nodes, and N3 output nodes.

It can be seen that N; and N3 are problem-dependent, ac-
cording to data preprocessing and to the number of input fea-
tures and outputs, but N must be defined in the implementa-
tion. Thus, the maximum number of connections is given by

Nmax:NlN2+N2N3~ (1)

Each solution is composed of two vectors: C, containing a set
of bits which represent the network topology, and W, containing
real numbers which represent the network weights

s=(C,W) 2)
C=(c1,c2,- 30Ny ), G €{0,1}, i=1,2,..., Nyax
3)
W = (w1, we,...,wnN,,. ), wi €R, i=1,2,..., Nyax
“)

where R is the set of real numbers.

Algorithm 1: Optimization Methodology for MLP Neural
Networks

1. sg « initial solution

2. Ty « initial temperature

3. Update sgsp with sg (best solution found so far)
4.For1 = 0to Jpax — 1

5. If ¢+ 1is not a multiple of It

6. Tiy1 < T;

7. else

8. T;41 < new temperature

9. If stopping criteria is satisfied

10. Stop execution

11.  Generate a set of K new solutions from s;
12.  Choose the best solution s’ from the set
13, If f(s') < f(s4)

14. Siy1 — &

15. else

16.  si41 < s with probability ¢~ [/(s)~f(s0)]/Tits
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17.  Update spsr (if f(si_,_l) < f(SBSF))

18.  Keep the topology contained in spsp constant
and use the weights as initial ones for training with the
backpropagation algorithm.

Thus, the connection ¢ is specified by two parameters: a con-
nectivity bit (c;), which is equal to one if the connection exists
in the network, and zero otherwise; and the connection weight
(w;), which is a real number. If the connectivity bit is equal to
zero, its associated weight is not considered, since the connec-
tion does not exist in the network.

The initial solution sg is an MLP network with the maximal
topology (i.e., ¢; = 1,0 = 1,2,..., Npax), and the initial
weights are randomly generated from an uniform distribution
in the interval [—1.0, +1.0].

B. Cost Function

Considering N¢ classes in the data set, the true class of the
pattern z from the training set F; is defined as

7(1")6{1727"'7]\76'} (5)

In this paper, the winner-takes-all classification rule was
used. For this reason, the number of output units (N3) is equal
to the number of classes (N¢).

Being o () the output value of the output unit & for the pat-
tern z, the class assigned to pattern x is defined as

()

V.Z'Ept

argmax og(x)
ke{1,2,...,N3}

The network error for the pattern x is defined as follows:

{ L, if ¢(x) # ~(x)

e(z) =

. 7)
0, if (x) = (o). (

Therefore, the classification error for the training set F;,
which represents the percentage of incorrectly classified
training patterns, can be defined as

®)

where #P; is the number of patterns in the set P;.
The percentage of connections used by the network is given

by

N,
100X
$(O) = §— ; ci. ©)

For classification problems, the cost f(s) of the solution s is
given by the mean of the classification error for the training set
and the percentage of connections used by the network

1) = 5 (B(P) +9(C)).

For prediction problems, the cost f(s) of the solution s is
given by the mean of the squared error percentage (SEP) for
the training set and the percentage of connections used by the
network

(10)

7(s) = 5 (SEP(P) +9(C)). (an
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The SEP error is given by

#pP, N.
_ Omax — Omin L 2
SEP = 10075 p; ; (B(x)pi = Y(@)p)? (12)

where 0pin and 0.« are the minimum and maximum values
of output coefficients in the problem representation (assuming
these are the same for all output nodes).

Therefore, the algorithm tries to minimize both network per-
formance and complexity. Only valid networks (i.e., networks
with at least one unit in the hidden layer) were considered.

C. Generation Mechanism for the New Solutions

From the current solution s = (C, W), a new solution s’ =
(C',W’) is generated, where C" = (c},¢h,...,cy JeW' =
(wi,wh, ..., wy ), in the following way: a random number
« is generated from an uniform distribution in [0, 1]. The new
connectivity bit ¢ for connection i is given by

Ci,
/ ’
Ci = ¢

Ci,

where ¢; is the inverse of the bit ¢; and p is the probability of
inverting each connectivity bit. Then, another random number 3
is generated from an uniform distribution in the interval [—1.0,
+1.0] and the new weight w/} of connection 7 is given by

ifa<p

ifa>p (13)

w, = w; + . (14)

Therefore, the generation mechanism acts as follows: first
the connectivity bits for the current solution are changed ac-
cording to a given probability (p). This operation deletes some
network connections and creates new ones. Then, a random
number taken from an uniform distribution in [—1.0,+1.0] is
added to each connection weight. These two steps change both
topology and connection weights to produce a new solution.

D. Cooling Schedule and Stopping Criteria

In this paper, the cooling strategy chosen is the geometric
cooling rule. According to this rule, the new temperature is equal
to the current temperature multiplied by a temperature factor
(r), which is smaller than but close to one. The initial tempera-
ture Tp and the temperature factor  must be defined in the im-
plementation, as well as I (number of iterations between two
consecutive temperature updates) e I, (maximum number of
iterations). Thus, temperature 7; of iteration ¢ is given by

g Imax
E:{TTi_h 1f’L:k‘IT./ ]{IZI/ZI/F (15)

T;, otherwise.

The optimization process stops if: 1) the G Lj criterion de-
fined in [21, Probenl] is met (based on the classification error
or SEP of the validation set) or 2) the maximum number of iter-
ations is achieved. For the implementation of the GG L5 criterion,
the classification error for the validation set is evaluated at each
I iterations.

The G L5 criterion is a good approach for avoiding overfitting
to the training set. The classification error for the validation set
P, is given by E(P,), which is calculated according to (8). In
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this way, denoting by V' (k) the classification error E(P,) at it-
erationi = kI, k = 1,2, ..., (Imax)/(IT), the generalization
loss parameter (G L) is defined as the relative increase of the
validation error over the minimum-so-far (in percent)

V (k) 1)
Hlinjgk V(j) '
The G L5 criterion stops the execution when the parameter
G L becomes higher than 5% [21].

GL(k) = 100 < (16)

IV. EXPERIMENTS

In this section, the experiments data sets are described.
Four classification problems are used: 1) the odor recognition
problem in artificial noses [6], 2) the diagnosis of diabetes in
Pima Indians [7], 3) Fisher’s iris data set [8], and 4) thyroid data
set [9]; and one prediction problem, which is Mackey—Glass
time series [10].

A. Artificial Nose Data Set

In this problem, the aim is to classify odors from three
different vintages (years 1995-1997) of the same wine (Al-
madén, Brazil) [6]. A prototype of an artificial nose was used
to acquire the data. This prototype is composed of six distinct
polypyrrol-based gas sensors, built by electrochemical deposi-
tion of polypyrrol using different types of doping agents. More
details on the construction of the prototype can be found in [6].

Three data acquisitions were performed for each vintage of
wine by recording the resistance value of each sensor at every
half-second during 5 min. Therefore, this experiment generated
three data sets with equal numbers of patterns: 1800 patterns
(600 from each vintage). A pattern is a vector of six values,
representing the resistances recorded by the sensor array, at the
same time.

In previous works, one-hidden-layer MLP networks were
used to classify the artificial nose data [22], [23].

B. Diabetes Data Set

Efforts to diagnose diabetes in Pima Indians, based on per-
sonal data (e.g., age, number of times pregnant) and the results
of medical examinations (e.g., blood pressure, body mass index),
try to decide whether a Pima Indian individual is diabetes pos-
itive or not. The data set has eight inputs, two outputs, and 768
examples. There are not absent values, but existing values are not
representatives. The dataset was obtained from [7].

C. Iris Data Set

Fisher’s iris data set contains 150 random samples of flowers
from the iris species setosa, versicolor, and virginica collected
by [8]. From each species there are 50 observations for sepal
length, sepal width, petal length, and petal width in centimeters.
This dataset was obtained from [7].

D. Thyroid Data Set

The data set comes from [9] and contains information related
to thyroid dysfunction. The problem is to determine whether a
patient has a normally functioning thyroid, an underfunctioning



1456

thyroid (hypothyroid), or an overactive thyroid (hyperthyroid).
There are 7200 cases in the data set with 3772 from 1985 and
3428 from 1986. The hyperthyroid class represents 2.3% (166
cases) of the data points, the hypothyroid class accounts for
5.1% (368 cases) of the observations, and the normal group
makes up the remaining 92.6% (6.666 cases). This highly unbal-
anced data set is a notoriously difficult problem for traditional
classification methods. For each of the 7200 cases, there are 21
attributes with 15 binary and six continuous variables used to
determine in which of the three classes the patient belongs. This
dataset was obtained from [7].

E. Mackey—Glass Data Set

In experiments, the neural network was used to predict points
of the time series that result of the Mackey—Glass equation in-
tegration [10], given by

dz

x(t—T)

It is a time series with chaotic behavior, recognized as a refer-
ence in the study of the learning and generalization capacity of
different architectures of neural networks and neurofuzzy sys-
tems. To obtain the time series value at integer points, fourth-
order Runge—Kutta method was applied to generate 1000 data
points. The time step used assumed the values 2(0) = 1.2, 7 =
17, and z(t) = 0 for t < 0.

The neural network training was done using 500 data points
(t = 118 to 618), using 250 data points to validation (f = 618
to 868), by giving four inputs (¢t — 18,¢ — 12,¢ — 6 and t), and
we attempted to predict the output (¢ + 6). The neural network
were tested with another 250 data points (¢ = 867 to 1118).

In the classification problems, the data for training and testing
the artificial neural network were divided as follows: 50% of the
patterns from each class were assigned randomly to the training
set, 25% were assigned to the validation set, and 25% were re-
served to test the network, as suggested by [21, Probenl].

All network units implemented the hyperbolic tangent acti-
vation function. The patterns were normalized to the range [—1,
+1], the processing units were implemented by hyperbolic tan-
gent activation function.

V. RESULTS AND DISCUSSION

Simulated annealing, tabu search, and the proposed method-
ology were implemented.

A. MLP Experiments

In experiments, for each topology, ten runs were performed
with 30 distinct random weight initializations. Table I presents
the training of a fully connected MLP neural network by using
a gradient descent with momentum backpropagation. The
learning rate was set to 0.001, and the momentum term to 0.7.
The parameters evaluated were 1) mean classification error of
test set and 2) SEP.

The best performance of MLP in the artificial nose data set
was the topology using ten hidden units (which contains 90
connections), a mean classification error of 6.31%. In the iris
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TABLE 1
RESULTS FOR MLP NEURAL NETWORKS

Data set | Artificial Iris Thyroid | Diabetes | Mackey
Numbei Nose Glass
of hidden units Mean test set classification error (%) SEP

02 33.6296 | 19.0598 | 10.2000 - 4.2146
03 - 18.2051 - - -
04 17.8123 7.9487 9.2704 | 27.8819 1.4357
05 - 6.8376 - - -
06 14.1185 | 10.6838 - 30.2951 1.8273
07 - 8.9744 - - -
08 11.1136 - 13.1519 | 28.4201 1.9045

10 6.3086 - 7.3800 | 27.0833 1.5804

12 8.8667 - 7.3804 | 27.3264 | 2.3831

14 11.9704 - 7.4824 | 28.4549 2.7860

16 - - 10.2537 - -

data set, the best results was obtained by the topology with five
hidden units (which contains 35 connections), a mean classifi-
cation error of 6.84%. In the thyroid data set, the smallest mean
classification error (7.38%) was obtained by the topology with
ten hidden units (using 240 unit connections). The full con-
nected MLP presented the best performance in the diabetes data
set using ten hidden units (which contained 72 connections), a
mean classification error of 27, 08%. In the prediction problem,
the Mackey—Glass data set, the best performance of the MLP
was found in topology using four hidden units (which contains
20 connections), a squared error percentage of 1.43.

Therefore, it becomes important to optimize the network
topologies, in order to verify if MLP networks can obtain
better performances when the architecture is defined by an
optimization method.

B. Optimization Methodologies Experiments

For SA, TS, and the proposed methodology, the maximal
topology in the artificial nose data set contains six input units,
ten hidden units, and three output units (N; = 6, N, = 10,
and N3 = 3; the maximum number of connections (Npax) is
equal to 90). In the iris data set, the maximal topology contains
N1 =4,Ny =5, N3 = 3 and Ny, = 35. For the thyroid data
set, the maximal topology contains N1 = 21, N = 10, N3 = 3
and Np,.x = 240. In the diabetes data set, the maximal topology
contains N; = 8, Ny = 10, N3 = 2 and Np.x = 100. In
the Mackey—Glass experiments, the maximal topology contains
N1 = 4.,N2 = 47N3 = 1 and Nmax = 20.

In the experiments with simulated annealing, the representa-
tion of solutions, the cost function, and the generation mecha-
nism for new solutions were the same as explained in Section III.
The probability of inverting the connectivity bits (p) was set to
20%. The initial temperature (Tp) was set to 1, and the tempera-
ture factor (r) was set to 0.9. The temperature was decreased at
each ten iterations (I7), and the maximum number of iterations
(Imax) Was set to 1000.

The performance of simulated annealing is impacted by the
choice of its parameters, but there are no rules for adjusting the
configuration to produce better results. Thus, the configuration
used in this paper, which was chosen after some preliminary
experiments, may not have been optimal for the problem. A
more rigorous parameter exploration may have generated better
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results, but this paper does not intend to present an exhaus-
tive exploration of the adjustable parameters, which would be
very time consuming. This paper aims to show that good results
have been achieved by simulated annealing for the optimization
problem, despite its difficulty for parameter adjustment.

In the experiments with tabu search, the representation of so-
lutions, the cost function, and the generation mechanism for new
solutions are the same as used in the SA implementation, as well
as the probability of inverting the connectivity bits. In each it-
eration, the generation mechanism produces 20 distinct new so-
lutions, and the algorithm chooses the best one (in terms of the
cost function) which is not in the tabu list.

The tabu list stores the ten most recently visited solutions.
Since the connection weights are real numbers, the likelihood
of finding solutions that are identical is extremely small. There-
fore, a proximity criterion is used to relax the strict comparison
of weights, as implemented by Sexton et al. for the training of
feedforward neural networks [11]. According to this criterion, a
new solution is considered equal to one of the tabu solutions in
the list if each connectivity bit in the new solution is identical
to the corresponding connectivity bit in the tabu solution and if
each connection weight in the new solution is within /N of the
corresponding connection weight in the tabu solution, where the
parameter IV is a real number. In this paper, NV is set to 0.01.

As in the SA experiments, there are no rules for adjusting the
TS parameters to produce better results, and the configuration
used in this paper was chosen after some preliminary experi-
ments and may not have been optimal for the problem. Again,
this paper aims to show that good results can be achieved by TS
for the problem, despite its difficulty for parameter adjustment.

The maximum number of iterations allowed for TS is 100.
This number is less than the maximum number of iterations in
the SA experiments (1000), since each iteration of TS evaluates
a set of neighbors, instead of only one neighbor solution. For
this reason, TS needs, in general, fewer iterations to converge
than SA.

The proposed methodology was implemented using the same
parameters adopted in the SA experiments, but the maximum
number of iterations was set to 100, since the method evaluates
a set of 20 new solutions at each iteration, as done by TS.

In order to improve the generalization performance of the
networks, the topologies given as solutions by optimization
methods were trained with the backpropagation with mo-
mentum algorithm, in a hybrid training approach, as discussed
before. The parameters of the backpropagation algorithm
for fine-tuning were: learning rate was set to 0.001 and the
momentum term to 0.7. For each initial topology, ten distinct
random weight initializations were used, and the initial weights
were taken from a uniform distribution between —1.0 and +1.0.

The results for SA, TS, and the proposed methodology are
presented in Table II. It can be seen, for all data sets, that the
networks obtain low classification error when compared to
those obtained by MLP networks without topology optimiza-
tion (Table I) and the mean number of connections is much
lower than the maximum number allowed. In all data sets, the
best optimization performance was obtained by the proposed
methodology. For the artificial nose data set, the classification
error was around 1.42% (the full connected MLP obtained a
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TABLE II
RESULTS FOR THE OPTIMIZATION APPROACHES

Method SA TS Methodology
Data set

Class. (%) 3.3689 3.2015 1.4244
Artificial Input 5.9400 5.9667 5.8800
Nose Hidden 7.8067 8.0667 7.0567
Connec. 35.3700 36.6333 29.1033
Class. (%) 12.6496 12.4786 4.6154
Iris Input 2.8500 2.8767 2.7100
Hidden 2.7567 3.4867 2.6567
Connec. 8.3433 8.3000 7.7633
Class. (%) 7.3813 7.3406 7.3322
Thyroid Input 20.7700 20.7700 20.3700
Hidden 7.2267 7.4667 6.3900
Connec. 83.7300 86.1400 71.5467
Class. (%) 27.1562 27.4045 25.8767
Diabetes Input 7.7600 7.7800 7.5633
Hidden 5.2700 5.3700 4.5300
Connec. 30.3833 30.8167 25.5067
SEP Test 2.0172 0.8670 0.6847
Mackey Input 3.6167 3.7967 3.4567
Glass Hidden 1.9000 2.2700 1.8933
Connec. 9.6300 12.0700 8.5667

classification error of 6.30%) and the mean number of connec-
tions 29.10 (the maximum number allowed was 90). In the iris
data set, the best classification error was of 4.61% (6.84% in
a full connected MLP) and the mean number of connections
7.73 (maximum of 35). In the thyroid data set, the mean clas-
sification error was 7.33% (7.38% in a fully connected MLP)
and the mean number of connections 71.54 of 240 allowed
in a fully connected network. For the diabetes data set, the
mean classification error was of 25.87% (the fully connected
MLP obtained an error of 27.08%) using mean connection
number of 25.50 (100 connections allowed). For the prediction
problem, the Mackey—Glass data set, the obtained squared error
percentage was 0.68 (1.43 in a full connected neural network)
using a mean of 8.56 connections of 20 allowed in a fully
connected MLP.

It can be seen that the performances of TS and SA are similar,
for all data sets. A paired-differences ¢ test with 95% confidence
level [24] was applied in order to confirm the statistical signifi-
cance of these conclusions.

The superiority of the results obtained by TS, in most of the
cases, can be explained in the following way: at each iteration,
TS evaluates 20 new solutions; therefore it has a greater chance
to find better solutions in the search space. The SA method
evaluates a single new solution at each iteration; thus it needs
more iterations to find good solutions. The maximum number
of iterations for SA was 1000, but this quantity may have not
been enough for allowing a satisfactory exploration in the search
space. In contrast with SA, TS used a maximum of 100 iterations
in experiments.

For the proposed methodology, the ¢ test has concluded that
the classification error was statistically lower than the iris and
artificial nose data sets and statistically equivalent to that ob-
tained by the other methods in the remainder data sets. The mean
number of connections for the proposed methodology was lower
than all remaining approaches, for all data sets. It can be seen



1458

that the proposed methodology is able to perform a better ex-
ploration in the topology search space due to the combination
of the advantages of SA and TS, in order to generate MLP net-
works with small number of connections and high classification
performance.

All the approaches implemented in this paper are able to elim-
inate input units in MLP topologies. Therefore, it is important
to verify which input features are discarded and which are more
relevant in the neural networks results. In experiments, the pro-
posed methodology performed a better exploration in the ar-
chitecture search space than the remaining approaches, gener-
ating a larger number of topologies, which do not need all these
inputs. The inputs with the highest usage frequency have the
highest importance in the classification or prediction task (e.g.,
in the artificial nose data set, the first sensor certainly has ob-
tained the most significant differences in the responses for the
three vintages of wine). This information can be used in real
applications to reduce the database complexity and improve the
performance of the classifier.

VI. FINAL REMARKS

This paper has shown that the combination of simulated
annealing and tabu search in the proposed methodology can
be used successfully for simultaneous optimization of MLP
network topology and weights. Both the architecture and the
weights of an MLP network were represented in the same
solution, which is considered as a point in the search space. In
this way, the methodology searches for the global minimum,
which represents an MLP network with low complexity and
good performance.

Considering the data sets used in this paper, the methodology
was able to generate automatically MLP topologies with many
fewer connections than the maximum number allowed. The re-
sults also generate interesting conclusions about the importance
of each input feature in the classification and prediction task.

The proposed methodology was originally not designed to
deal with different number of hidden layers but it does work
with different numbers of hidden layers. Some experiments
were made with more than one hidden layer. In any case, a
decision needs to be made about the size of the initial topology.
So in the experiments made in this paper, the initial topologies
have only one hidden layer with all possible feedforward
connections.

As future work, some regularization methods, such as weight
decay and weight elimination [25], could be used to improve the
cost function.
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