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Hybrid Training Method for MLP: Optimization of
Architecture and Training

Cleber Zanchettin, Teresa B. Ludermir, and Leandro Maciel Almeida

Abstract—The performance of an artificial neural network
(ANN) depends upon the selection of proper connection weights,
network architecture, and cost function during network training.
This paper presents a hybrid approach (GaTSa) to optimize the
performance of the ANN in terms of architecture and weights.
GaTSa is an extension of a previous method (TSa) proposed by the
authors. GaTSa is based on the integration of the heuristic simu-
lated annealing (SA), tabu search (TS), genetic algorithms (GA),
and backpropagation, whereas TSa does not use GA. The main
advantages of GaTSa are the following: a constructive process to
add new nodes in the architecture based on GA, the ability to
escape from local minima with uphill moves (SA feature), and
faster convergence by the evaluation of a set of solutions (TS
feature). The performance of GaTSa is investigated through an
empirical evaluation of 11 public-domain data sets using different
cost functions in the simultaneous optimization of the multilayer
perceptron ANN architecture and weights. Experiments demon-
strated that GaTSa can also be used for relevant feature selection.
GaTSa presented statistically relevant results in comparison with
other global and local optimization techniques.

Index Terms—Genetic algorithms (GAs), multilayer perceptron
(MLP), optimization, simulating annealing, tabu search (TS).

I. INTRODUCTION

PTIMIZATION is the process of finding the best solution

for a problem from a group of possible solutions. An
optimization problem has an objective function and a group
of restrictions, both related to the decision variables. Genetic
algorithms (GA) [14], simulated annealing (SA) [18], and tabu
search (TS) [13] are iterative algorithms used to solve different
combinatory optimization problems.

These three algorithms are the most popular from a class of
optimization algorithms known as general iterative algorithms.
All three optimization heuristics have similarities [29]: 1) they
are approximation (heuristic) algorithms, i.e., they do not assure
the finding of an optimal solution; 2) they are blind in that they
do not know when they have reached an optimal solution, and
therefore, they must be told when to stop; 3) they have a “hill
climbing” property, i.e., they occasionally accept uphill (bad)
moves; 4) they are general, i.e., they can easily be engineered
to implement any combinatorial optimization problem; and
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5) under certain conditions, they asymptotically converge to an
optimal solution.

A manual selection of the artificial neural network (ANN)
parameters involves difficulties such as the following: the ex-
ponential number of parameters that need to be adjusted, the
need for a priori knowledge on the problem domain and ANN
functioning in order to define these parameters, and the require-
ment of an expert when such knowledge is lacking. In most
cases, the choice of parameters is performed manually through
the trial and error method, which is tedious, less productive, and
error prone. Furthermore, when the complexity of the problem
domain increases and when optimized networks are desired,
manual searching becomes quite difficult and unmanageable.
This paper presents a hybrid method based on global and
local optimization techniques (GaTSa), which automatically
optimizes the ANN architecture and performance. This method
is based on the integration of SA, TS, GA, and backpropagation
(BP). In this paper, the performance of GaTSa is investigated in
the simultaneous optimization of multilayer perceptron (MLP)
architecture and weights.

GaTSa presents some interesting characteristics: 1) search
optimized for generating new solutions; 2) pruning to eliminate
connections and to optimize network size; and 3) a constructive
approach for finding the best network architecture. With the
help of experiments, we investigate different cost functions for
searching the best ANN architecture in ANN optimization. The
experiments demonstrate that GaTSa can also be used for a
relevant feature subset selection. During network architecture
optimization, the network input processing units may be elim-
inated in accordance with the GaTSa performance. Thus, an
exclusion of the irrelevant network inputs is obtained in the
ANN optimization process.

This paper makes the following major contributions: 1) the
extension of TSa [21] into GaTSa; 2) the empirical evaluation
of GaTSa on 11 public-domain data sets and five cost functions;
3) the possibility of using GaTSa to feature selection; and
4) the use of the factorial experimental design to estimate the
configuration parameters of GaTSa.

II. RELATED WORK

A number of approaches in the literature have used the
integration of TS, SA, and GA for specific applications. This
section describes only those works that are more or less similar
to our work. An integration of the three heuristics was initially
proposed by Fox [11]. Tsai et al. [34] used a hybrid algorithm
to feedforward the ANN architecture and parameter design.
Palmes et al. [25] used a mutation-based algorithm to train
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TABLE 1
COMPARISON BETWEEN THE INVESTIGATED ALGORITHMS

Ludermir et al. (2006) GaTSa

Fox (1992) Stepniewski et al. (1997)
Heuristic GA, SA, TS and BP GA and SA
Initialization One solution One solution
Neighborhood | Generate new solutions Generate new solutions
from one solution from one solution
Evolving Genetic operators Genetic operators

Search order - Designer define the

Visitation Keep a list of visited solutions -
Acceptance Based in GA cost function
Stop criteria Iteration number Iteration number
Local tunning - -

maximum architecture

Based in Metropolis criterium

SA, TS and BP

One solution

Generate new solutions
from one solution
Inversion operators
Designer define the
maximum architecture
Randomlly visit solutions
Based in Metropolis criterium
Iteration number and G Ls
Using Backpropagation

GA, SA, TS and BP
Population of solutions
Evolve the population

by genetic micro-evolutions
Genetic operators

Start from minimum

and find the best architecture
Keep a list of visited solutions
Based in Metropolis criterium
Iteration number and G L5
Using Backpropagation

MLP. Gepperth and Roth [12] used an evolutionary multiobjec-
tive process to optimize the feedforward architectures. Works
using SA and TS for ANN optimization are scarce. The recog-
nition of signal responses using SA and BP was implemented
for the training of an MLP with a fixed architecture containing
two hidden layers [26].

The SA method was successfully used in some global op-
timization problems, as can be seen in Corana et al. [7] and
Sexton et al. [31]. In Stepniewski and Keane [32], SA and
GA were used to optimize the architectures of MLP. Similar
experiments were performed by Sexton ef al. [31]. Sexton et al.
[30] repeated the same experiments applying the TS algorithm.
Metin et al. [24] used SA to optimize the ANN architec-
tures applied to expert diagnosis systems. In Hamm [15], SA
was used to optimize the ANN weights. Mart and El-Fallahi
[23] presented a new proposal based on TS for MLP weight
optimization.

The integration of TS, SA, and BP (TSa) was proposed by the
authors in [21] for MLP architecture and weight optimization.
The method combines accepting the new solution scheme of
SA with the multiple search of TS. In this approach, a set
of new solutions with a fixed size (the maximum network
architecture needs to be defined) is generated in each iteration,
and the best one (i.e., the one with the lowest cost) is selected
according to the cost function, as performed by TS. In the
present study, some experiments compare the performance of
TSa with GaTSa.

Table I provides a comparison among GaTSa and three
other approaches with their differences and similarities. In
all approaches, SA, TS, and GA are typically used to adjust
the weights between processing units in fixed architectures.
GaTSa performs the simultaneous optimization of the MLP
architecture and weights, using a constructive way to find the
best network architecture and pruning to eliminate connections
and to optimize the network size.

III. FEATURE SELECTION METHODS

Feature selection is based on the reaction of the cross-
validation data set classification error due to the removal of fea-
tures (inputs). Feature selection with ANN can be thought of as
a special case of architecture pruning, where the input features,
rather than the hidden neurons or weights, are pruned [28].

In the literature, feature selection methods are categorized
as wrapper, embedded, and filter methods [4]. In the wrapper
method, subsets are evaluated and partitioned based on the

Random

\

Fig. 1. Forward, backward, and random search strategies.

output of the base classifiers before making the final decision.
In the filter method, subsets are partitioned prior to training.
This method is less expensive, and the selection of architecture
and base classifiers does not have to be made in advance. The
embedded method is a native part of the classifier itself and
is implemented by the learning-method evaluation criteria for
selecting the most relevant attributes.

We use the classical feature selection methods, namely, hill-
climbing [35], random bit climber [8], best-first [1], beam
search [1], and Las Vegas [20], in a wrapper way to evaluate
the performance of GaTSa in optimal feature subset selection.
These methods were chosen because they are simple and similar
to GaTSa.

The input selection process is based on some saliency mea-
sure aiming to remove less relevant inputs. Fig. 1 explains the
three search strategies. For GaTSa, the input connections with
minor statistical relevance will be the first to be removed. If
GaTSa eliminates all input connections of one input processing
node, this input is eliminated from the network architecture.

IV. INTEGRATION OF SA, TS, AND GA
IN A CONSTRUCTIVE WAY

The SA method has the ability to escape from local minima
through the choice between accepting or discarding a new
solution that increases cost (uphill moves). The TS method, in
contrast, evaluates a group of new solutions at each iteration
(instead of only one solution as in SA). This makes TS faster as
it generally needs less iterations to converge. The GA evolution,
in turn, involves a sequence of iterations, where a group of
solutions evolves through selection processes and reproduction.
These observations motivated the proposal of an optimization
method (GaTSa) that combined the main advantages of GA,
SA, and TS in order to avoid their limitations.

Fig. 2 shows a summary of the major features borrowed (be-
tween parentheses) from different heuristics. GaTSa works in
the following manner: the initial solution has a minimum valid
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From the current population

Generate a new population by micro-evolutions
using genetic operators. (GA)
The initial solutions has the minimal topology.

CONSTRUCTIVE
Choose the best solution of the population. (GA/TS)
If (cost solution < cost current solution),
accept solution and update memory. (TS)
Else, PRUNING
The solution can be accept with a probability. (SA)
Increase the population size.
Perform micro-evolutions to visit the
CONSTRUCTIVE

neighborhood. (GA)

End of search,
return the best solution found. (GA/TS)

Keep the topology constant and use the weights
as initial ones for training with the local search
algorithm. Missing connections are set to zero.

Fig. 2. GaTSa composition.

architecture size. A group of new solutions is generated at each
iteration, starting from the microevolution of the current popu-
lation, as in GA. The cost of each solution is evaluated, and the
best solution is chosen, as in TS. However, unlike TS, this solu-
tion is not always accepted. The acceptance criterion is the same
as that used in the SA algorithm—if the chosen solution has a
smaller cost than the current solution, it is accepted; otherwise,
it can either be accepted or rejected depending on a probability
calculation. This probability is given by the same expression
as that used in the SA method. Previously visited solutions are
marked as tabu, as in TS. During the search, the chromosome
size is increased in a constructive manner in order to find the
best solutions according to the acceptance criterion. By the end
of the optimization process, only the best solution is returned.
The proposed technique has two well-defined stages: a global
search phase, where it makes use of the capacity for generating
new solutions from the GA, cooling process, and cost function
of the SA as well as the memory characteristics of the TS tech-
nique, and a local search phase, where it makes use of charac-
teristics such as gradient for a more precise solution adjustment.
During the global search stage, the proposed algorithm can
also optimize the number of hidden processing units in the hid-
den layer. Most optimization methods based on pruning require
the designer to set up the ANN maximum architecture. Hence,
the algorithm can eliminate connections from this structure
to find a network architecture with an acceptable result. The
GaTSa algorithm is based on a constructive methodology. Thus,
the initial solution represents the minimum valid architecture—
the number of nodes in the input layer gives the number of
problem attributes, the hidden layer has only one node, and the
output layer has nodes corresponding to the number of classes
in the problem. For the optimization process, new nodes are
added as and when required. New nodes are created with all
connections between adjacent layers and are eventually elimi-
nated according to their influence on the MLP performance.
The pseudocode of GaTSa is presented in Algorithm 1. Let
S be a group of solutions and f be a real cost function. The
proposed algorithm searches the global minimum s, such that
f(s) < f(s),Vs € 8. The process finishes after I,y itera-
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tions or if the stop criterion based on the validation error is satis-
fied. The best found solution Spsr (best so far) is returned. The
cooling process updates temperature 7; of iteration ¢ to each I
algorithm iteration. At each iteration, a new population with k
solutions of size z is generated. A genetic microevolution of g,
generations is used to generate this population from the current
population. The microevolution combines the best population
solutions and, in the process, creates and eliminates network
connections, like a pruning process. The initial solution is coded
with the minimum valid network architecture, and new hidden
nodes are added following the constructive process.

Algorithm 1—Pseudocode of the proposed algorithm

1. Py + initial population with K solutions s
2. andsizes,

3. List «— & (tabu list)

4.7y + initial temperature

5. Update Spgr with s of the P (best solution

6. found so far)

7.Update List < Spsr

8.Fori=0to Ipax — 1

9. If 1+ 1 isnot amultiple of Ip

10. Ti+1 — Tz

11. End — If

12. Else

13. T;41 < new temperature

14. 1If validation based stopping criteria

15. arenot satisfied

16. Stop global search execution

17. End — If

18. Increase the size of the population P;
19. P, +— P,

20. End — Else

21. For j =0tog,

22. Generate a new population P’ from P;
23. Pi — P,

24. End — For

25. Choose the best solution s; from P;
26. and isnot in tabulist

27. If f(s') < f(sk)

28. Spp1 < 8

29. List « List — (oldest solution) + sy,
30. End — If

31. Else

32. 541 < s'with probability e(/(s)—f(sk)/Tit1)
33. List < List — (oldest solution) + sy,
34. If f(sk41) < f(SBsr)

35. Update SBsk

36. End — If
37. End — Else
38. End — For

39. Keep the architecture contained in Spgp
constant and use the weights as initial ones
for training with the BP algorithm
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Fig. 3.

MLP codification sample.

A. Representation of Solutions

The MLP architecture definition depends on the choice of
the number of layers and the number of hidden nodes in each of
these layers. All MLP architectures have a single hidden layer
network, containing connections only between adjacent layers.
The network architecture contains N1 input nodes, N2 hidden
nodes, N3 output nodes, and BN2 and BN 3 as the bias for the
hidden and output layers, respectively.

Normally, parameters N1 and N3 are problem dependent
according to the data preprocessing and the number of input
and outputs features, but N2, BN2, and BN 3 must be defined
in the ANN implementation. Thus, the maximum number of
connections is given by

Npax = (N1 X N2+ BN2) + (N2 x N3+ BN3). (1)

Each solution s is coded in a vector that represents the C'
connections and the W weights among the ANN nodes. C'
means the connectivity, containing a set of bits that represent
the network architecture, and W contains real numbers that
represent the network weights

s=(C, W) (2
C=(c1,c2,...,0n,..) G€{0,1}, i=1,2,..., Npax (3)
WE(wlaw%-"vamax) wi€§R, i:172a~~-aNmax 4

where R is the set of real numbers.

Fig. 3 shows a sample of the vector that represents the MLP
architecture. Thus, connection i is specified by two parameters:
1) a connectivity bit (¢;), which is equal to one if the connection
exists and zero otherwise, and 2) the connection weight (w;),
which is a real number. If the connectivity bit is equal to zero, its
associated weight is not considered since the connection does
not exist in the network.

The initial solution sg is an MLP network with the mini-
mum architecture (/N1 and N3 are problem dependent) fully
connected (i.e., ¢; =1, ¢ =1,2,..., Nyax), and the initial
weights are randomly generated from a uniform distribution in
the interval [—1.0, +1.0].

B. Cost Function

Unlike the constructive algorithms that generate a solution
only at the end of the process, the iterative algorithms derive
possible solutions for each iteration. The cost function is used to
evaluate the performance of successive iterations and to select
a solution that minimizes an objective function.

Different cost functions can be used to evaluate the quality
of a solution. Other authors had investigated the hole of the
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cost functions [17]. In this paper, five ways of performing cost
evaluation were investigated.

1) Average Method: The cost f(s) of solution s is given
by the mean of the classification error for the training set and
the percentage of the connections used by the network. For
classification problems, the cost f(s) of solution s is

() =5 (B(P) +4(C) 0
Nmax
W(C) = ;700 . ©)

i=1

Considering N classes in the data set, the true class of
pattern x from the training set P; is defined as

~v(z) €{1,2,...,N¢} Vx € P;. (7)

For prediction problems, the cost f(s) of solution s is given by

the mean of the squared error percentage (SEP) for the training

set and the percentage of the connections used by the network:

f(s) = 3 (SEP(P) +9(C)) ®)
O — O #h Ne
o max min . 2
SEP =100 i NZD, p§ 1 ? 1 (@)pi)” (9)

where ¢(z),; is the predicted class of pattern z and op,;,, and
Omax are the minimum and maximum values of the output
coefficients in the problem representation (assuming that these
are the same for all output nodes).

2) Weighted Average Method: In the experiments, the net-
work parameters, network performance, network connection
percentage, and percentage of the hidden nodes are weighted
by the parameters «, /3, and x, respectively.

For the classification problems

(B(P) +a) + (H(C) * ) + (N 1)

For the prediction problems
£(s) = (SEP(P) o) + (W(C) B) + (pN +5) ()

(a+B+K)

where pN is the percentage of the used hidden node con-
nections, o« = 1, = 0.5, and x = 0.25. These values were
determined empirically by previous experiments.

3) Weight Decay: The method was initially proposed as an
implementation to improve the BP algorithm for the preference
bias of a robust ANN that is insensitive to noise [16], [36]. In
a network architecture, the weight decay mechanism performs
differentially toward zeroes by reinforcing large weight con-
nections and weakening small weight connections. As small
weights can be used by the network to code noise patterns, this
weight decay mechanism is considered especially important in
noisy data.

The weight decay mechanism is used in the GaTSa cost
function to eliminate solutions with small weights that can
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be used by the ANN to code noise patterns. The GaTSa cost
function is presented in the following:

F$)=5 S BB+ 59(C)+ 3u S WE/ (14W3) (12)

where W;; is the weight connection from node j to node 7.

4) Multiobjective Optimization: This is the search for si-
multaneously minimizing the u components fx, k =1,..., u,
of a vector function f of a variable s in a universe u, where

f(s) = (fl(s)aafn(s))

Most problems usually have no unique global solutions, but
they have a set of equally efficient or noninferior alternative
solutions, known as the Pareto-optimal set [10]. The Pareto-
optimal solutions consist of all solutions for which the corre-
sponding objective cannot be improved in any one dimension
without degradation in another.

In the present work, the multiobjective strategy is used in
genetic operators to evolve the population, considering two
goals to be minimized—the MLP size and its generalization. In
contrast to the objective problem, the ranking of a population in
the multiobjective case is not unique.

5) Multiobjective Optimization and Weight Decay: The fifth
cost function investigated comprises a combination of multiob-
jective optimization and weight decay strategies.

13)

C. Insertion of New Hidden Nodes

The constructive process is used to add new hidden nodes in
the network architecture. The search process starts with a high
probability of adding new nodes in the network architecture,
but in order to perform a better error surface exploration, the
addition of new nodes is controlled by a probability. This
probability decreases over time by the multiplication of the
actual probability by a factor (e), which is smaller than but
close to one. The initial probability A\, and the factor ¢ must be
defined in the implementation as well as in /) (the number of
iterations between two consecutive probability variations) and
Ihax (the maximum number of iterations). Thus, the probability
of the insertion of new hidden nodes \; at iteration ¢ is given by

i
\ = €A1,
{)\ilv

D. New Solution Generation Mechanism

if i = kI,
otherwise.

_ Iax
F=12 e

The initial solution is randomly generated, with N1 and N3
being problem-dependent values and N2 € 1,2,..., N3. The
initial population is defined with a size of ten chromosomes.
From the current solution s = (C, W), the new solution s’ =
(C',W') is generated by the genetic microevolution of g,
generations. The chromosomes are classified by rank-based
fitness scaling [2]. Parent selection for the next generation is
accomplished in a probabilistic manner using universal stochas-
tic sampling [2]. Elitism was not used, and the crossover oper-
ator uniform crossover [33] was used for the combination of
parent chromosomes, with a probability of 80%. The crossover
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operation was performed by combining the parts of the parent
chromosomes that have the same length as in the succeeding
sample. The mutation operator used was the Gaussian mutation
[31], with a probability of 10%.

Uniform Crossover

ParemtA 1 1 111111111 1111
ParentB 0 0 0 0 0 0 0 O O O O
Mask 01011100110
Child A 11100100100 1111
Child B 010111001T10.

E. Stop Criteria

The optimization process stops for the following reasons:
1) the G L5 criterion defined in Probenl [27] is met (based on
the classification error or SEP of the validation set), or 2) the
maximum number of iterations is reached. For the implementa-
tion of the GG Lg criterion, the classification error or SEP for the
validation set is evaluated at each [ iteration.

The G L criterion is a good approach for avoiding overfitting
to the training set. The classification error for the validation set
P, is given by E(FP,). Thus, if V (k) denotes the classification
error E(P,) at iteration i = klp, k =1,2,..., Iyax/I7, the
generalization loss parameter (GL) is defined as the relative
increase in the validation error over the minimum-so-far. The
GLj criterion stops the execution when the parameter GL
becomes higher than 10%

_ Vk)
619 = (v L) (>

F. Feature Subset Selection

In training and improving the network weights and con-
nections, the GaTSa method is able to eliminate the input
connections of the ANN architecture. The input processing
node represents a feature of the data set. The input connections
with the highest usage frequency have the highest importance in
the classification and prediction tasks, and the inputs with minor
statistical relevance will possibly be the first to be removed. If
GaTSa eliminates all input connections of one input processing
node, that particular input is eliminated from the network
architecture.

Thus, the proposed method can be used to feature subset
selection, reducing the problem dimensionality and, conse-
quently, the complexity of the generated ANN. The feature
subset selection process performed by GaTSa is a combination
of the wrapper and embedded definitions.

G. Local Search Algorithm

Global optimization techniques are relatively inefficient for
minimum local search. In this case, it is important to improve
the performance of the ANNs training the best architectures
found in the global search phase with a local search method.
This strategy represents the second phase of the proposed opti-
mization method: without changing the architecture generated
by the global search, the final network produced is used as a
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TABLE 1I
CHARACTERISTICS OF THE USED DATA SETS

Database Examples Features Class

b c t b €
Artificial Nose 5,400 0 6 6 3 0
Iris 150 0 4 4 3 0
Diabetes 768 0 8 8 2 0
Thyroid 7,200 9 6 21 3 0
Card 690 0 51 51 2 0
Cancer 699 0 9 9 2 0
Glass 214 0 9 6 6 0
Heart-Cleveland 303 0 85 35 2 0
Horse 364 0 58 58 3 0
Soybean 683 0 82 82 19 0
MGlass 1,000 0 4 4 0 1

starting point in the local search. In this way, the connections
and weights obtained by global optimization are preserved.
The missing connections between nodes have their weights
initialized to zero. This architecture is used as the start search
point for local optimization. This combination of global and
local optimization techniques is often referred to as hybrid
training. In this paper, the BP algorithm using the sum squared
error (SSE) was chosen for local search optimization.

V. EXPERIMENT METHODOLOGY

Ten classification (1-10) and one prediction (11) data sets
were used in the experiments: 1) the odor recognition problem;
2) diabetes diagnoses; 3) fisher’s iris; 4) thyroid dysfunction;
5) credit screening data set; 6) breast cancer; 7) glass iden-
tification; 8) heart disease; 9) horse colic; 10) soybean; and
11) Mackey—Glass time series [22]. The classification data sets
were obtained from the UCI repository [3] and Mackey—Glass
time series data set from [22].

In Table II, a summary of the used databases along with the
number of examples is presented. It includes the number of
binary (b), continuous (c), and total (t) features and the number
of binary (b) classes. In the selection of data sets to be used, we
seek databases with different characteristics, mixing problems
of classification and prediction. We are mainly concerned with
diversity in the experiments in order to support the obtained
results.

A. Training Methodology

The local training algorithm employed is the BP method
using SSE. The configuration parameters of all methods are
summarized in Table III. Training stops for the following
reasons: 1) the GLs criterion [27] is satisfied twice (to avoid
initial oscillations in validation errors); 2) the training progress
criterion is met, with Ps(¢) < 0.1 [27]; and 3) the maximum
number of iterations is reached.

We used 30 twofold iterations [5]. At each iteration, data
were randomly divided into halves. One half was the input for
the algorithm (65% for training and 35% for the validation
set), and the other half was used to test the final solution
(test set). All network units implemented the hyperbolic tan-
gent activation function. The patterns were normalized to the
range [—1, +1].

In the experiments, each solution represents an ANN ar-
chitecture. For the GA and GaTSa experiments, the chromo-

TABLE III
METHOD CONFIGURATION PARAMETERS

Parameters MLP GA TS SA TSa  GaTSa
Iterations 1.000 500 100 1.000 100 100
Population size - 10 20 1 10 10
Initial Temperature - - - 1 1 1
Temp. reduction factor - - - 0.9 0.9 0.9
Micro-Evolutions - - - - - 10
Crossover rate - 20% - - - 20%
Mutation rate - 10% - - - 10%
Elitism - 10% - - - -
Tabu size list - - 20 - - 20
Bit inversion - - 20% 20%  20% -
GL stop criteria 5 5 5 5 5 5
BP learning rate 0.001 - - - 0.001  0.001
BP momentum rate 0.7 - - - 0.7 0.7

somes (solution) are classified by rank-based fitness scaling
[2]. Parent selection for the next generation is accomplished
in a probabilistic manner using universal stochastic sampling
[2]. Elitism—the best chromosomes are preserved for the next
generation—was used in GA. For the combination of parent
chromosomes, the crossover operator uniform crossover [33]
was used. The mutation operator was Gaussian mutation [31].

For the TS, TSa, and GaTSa experiments, the proximity cri-
terion [29] was used to compare two solutions. A new solution
is considered identical to the tabu solution for the following
reasons: 1) each connectivity bit in the new solution is identical
to the corresponding connectivity bit in the tabu solution, and
2) each connection weight in the new solution is within +a of
the corresponding connection weight in the tabu solution. The
parameter « is a real number with a value of 0.001.

B. Subset Selection

1) Representation of Solutions:

a) Classical methods: In classical feature selection meth-
ods, each subset is represented by a vector that defines the
selected and nonselected attributes. In the experiments, we have
used different search strategies considering the characteristics
of the investigated search technique. With the hill-climbing,
best-first, and beam search, we use the forward, backward,
and random search strategies. The three search strategies are
shown in Fig. 1, where the white circles represent the not
selected features and the shaded circles represent the selected
features. The proposed GaTSa method implements its own
representation topology.

The forward strategy starts with the empty set and gradually
adds the features. The backward strategy starts with the full set
and deletes the features. The random approach starts from a
random set and randomly performs the addition and removal of
features. Unlike other strategies, the random bit climber method
has removed and added the attributes during the search process.
Thus, in order to carry out the search in different directions,
we use different initial states—initial solution without features,
with all features, and randomly selected features. The Las Vegas
and proposed GaTSa methods implement their own search
strategies.

2) Performance Classification:

a) Classical methods: To determine the classification ac-
curacy for the classical methods (hill-climbing, best-first, beam
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TABLE 1V
RESULTS FOR THE MLP NEURAL NETWORKS
Class.(%)/SEP  Std. Input Hidden Connec.
Artificial Nose 6.30 1.40 6 10 90
Iris 6.83 2.34 4 B 32
Thyroid 7.38 1.77 21 10 240
Diabetes 27.08 0.91 8 10 100
Card 27.12 690 51 8 424
Cancer 8.61 4.59 9 10 110
Glass 64.06 1.7 9 9 135
Heart-Cleveland 24.04 30 35 9 333
Horse 38.63 0.81 58 10 610
Soybean 85.50 350 82 10 1.010
Mackey-Glass 1.43 2.45 4 4 50

search, random bit climber, and Las Vegas), a KNearest neigh-
bor (k-NN) classification algorithm was used [9]. This strategy
was used to reduce the experiment time. The similarity function
used is straightforward, and it relies on equally weighted fea-
tures. To compute the similarity distance between two scaled in-
stances, we use the Euclidian distance. In the £-NN algorithm,
the value of k is seven, defined in an empirical way.

In the experiments for feature selection, the database was
divided into two groups—50% of the patterns was used in
the feature selection process, and the remainder was used for
testing the obtained subsets. The quality of each subset was
given by the performance of the classifier. The cross-validation
process was used to obtain the classifier performance.

The fivefold cross-validation in subset search and the tenfold
cross-validation in subset evaluation were used. This difference
in performance assessment was necessary in order to reduce the
computational cost of the search process for the optimal subset
of features.

b) GaTSa: Table VI presents the maximal topology of
the experiments. In all ANN architectures, the N1 and N3
values are problem dependent, and N2 was obtained from the
experiments in Section VI-A (for a fair comparison, a fixed
GaTSa architecture is used).

VI. RESULTS AND DISCUSSION
A. MLP Experiments

Apart from the GaTSa method, the other investigated opti-
mization techniques require a good initial network architecture
(maximum architecture) for a successful ANN architecture
optimization. To define this architecture, experiments were
performed with random architecture sizes on each one of the
data sets. For all data set experiments in each architecture,
we used 30 twofold iterations. Table IV presents the SEP and
the classification error of the test set obtained in the training
of a fully connected MLP by using a gradient descent with
momentum BP.

B. Optimization Methodology Experiments

1) GaTSa—Fixed Architecture Experiments: Table V pre-
sents the average performance of each investigated optimization
technique, starting the search with the same network architec-
ture as in the artificial nose data set. These results were obtained
for each technique as the optimization of the number of connec-
tions and weight connection values of an MLP. The parameters
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TABLE V
GaTSa FIXED ARCHITECTURE OPTIMIZATION IN ARTIFICIAL NOSE
Training | Validation Test
Technique | SEP Class| SEP Class| SEP Class |[Iterat.|Connec.
TS 18.74 5.44 18.86 5.88 18.75 5.3805 51 11.42
SA 19.65 6.91 19.76 7.47 19.65 6.9331 715 11.77
GA 21.66 15.8821.73 16.52 21.66 15.9240 315 16.64
GaTSa 18.69 3.58 18.76 3.81 18.69 3.5664 46 8.33
GaTSa + BP 4.78 - 241 - 2.14 2.8684* 86  8.33*
BP 630 - 315 - 2.84 6.7854 90 36
Comparison of the Approaches
40 800
@ Classification
35 ¥DConnec|ions 700 3
8 30 [ miteractions 600 ‘E
g 25 500 g
g 20 400 5
‘u:) 15 300 "é
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0 1]
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Fig. 4. GaTSa performance optimization in artificial nose.

TABLE VI
MAXIMUM MLP ARCHITECTURE USED IN THE EXPERIMENTS

N1 N2 N3 Nmaz
Artificial Nose 6 10 3 90
Iris 4 5 3 32
Thyroid 21 10 3 240
Diabetes 8 10 2 100
Card 51 8 2 424
Cancer 9 10 2 110
Glass 9 9 6 135
Heart-Cleveland 35 9 2 333
Horse 58 10 3 610
Soybean 82 10 19 1.010
Mackey-Glass 4 4 1 50

evaluated were the following: 1) the SEP and classification error
(class) of the training, validation, and test sets; 2) the algorithm
iteration number; 3) the ANN connection number; and 4) the
temperature value.

The technique that combined the heuristics of TS, SA, and
GA obtained the best performance. This technique worked
better without using the local search heuristic (GaTSa without
BP, performing only the global search phase) to optimize the
ANN connection values. Using GaTSa + BP, the average clas-
sification error was 2.86%, with an average of 8.33 connections
from 36 possible connections in a fully connected ANN. Using
a fully connected network, the local optimization technique BP
obtained an average error of 6.30%.

Fig. 4 shows the graphs comparing the performances of the
investigated techniques. The proposed technique obtained the
best results regarding the classification error, the final network
connection number, and the number of iterations needed for
architecture optimization.

2) GaTSa—Variable Architecture Experiments: Table VI
presents the maximal architecture (N 1—input units, N2—
hidden units, /N 3—output units, and N, ,x—maximum number
of connections) for SA, TS, GA, and TSa. In all ANN archi-
tectures, the N1 and N3 values are problem dependent, and
N2 was obtained by experiments (Table IV). For GaTSa, the
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TABLE VII
OPTIMIZATION TECHNIQUE PERFORMANCE IN MLP OPTIMIZATION

SA TS GA TSa |GaTSa+BP
Class. (%) | 3.3689 | 3.2015 [13.3884| 1.4244 | 0.7914*
Artificial Stand. Dev. | 3.1223 | 3.3121 | 2.9800 | 2.342 2.1222
Nose Input 5.9400 | 5.9667 | 4.9667 | 5.8800 5.2267
Hidden 7.8067 | 8.0667 | 1.9333 | 7.0567 4.4867
Connec. (%) [39.3000|40.7036 |31.3556 | 32.3370 | 36.2254
Class. (%) |[12.6496|12.4786|2.5641%| 4.6154 5.2564
Stand. Dev. | 6.3212 | 7.9887 | 6.3221 | 5.3221 4.9881
Iris Input 2.8500 | 2.8767 | 2.4333 | 2.7100 3.3600
Hidden 2.7567 | 3.4867 | 1.5667 | 2.6567 4.1333
Connec. (%) [26.0728 |25.9375(22.9792 | 24.2603 | 31.8538
Class. (%) | 7.3813 | 7.3406 | 7.2850 | 7.3322 7.1509
Stand. Dev. | 1.0112 | 1.2112 | 1.356 1.001 0.8901
Thyroid |Input 20.7700(20.7700| 12.8333| 20.3700 | 7.1233
Hidden 7.2267 | 7.4667 | 2.4000 | 6.3900 2.0833
Connec. (%) |34.8875(35.8916(14.3902 | 29.8111 | 12.6400
Class. (%) [27.1562(27.4045(25.9948 | 25.8767 | 27.0615
Stand. Dev. | 2.8737 | 2.8641 | 4.2954 | 3.2626 3.1088
Diabetes |Input 7.7600 | 7.7800 | 4.9667 | 7.5633 1.5100
Hidden 5.2700 | 5.3700 | 1.9333 | 4.5300 1.2000
Connec. (%)[30.3833 (30.8167|18.7033 | 25.5067 | 9.0975*
Class. (%) [23.4690|18.0426|31.7248| 21.2694 | 15.2422%
Stand. Dev. | 8.8920 | 2.8878 | 6.0588 | 5.6037 1.2111
Card  |Input 50.4667|50.5333| 51.000 | 50.4000 | 50.333
Hidden 5.1333 | 5.3333 | 7.0000 | 5.3000 5.000
Connec. (%) |41.7453 |44.5126|25.1222 | 43.4103 | 38.4419
Class. (%) | 7.1729 | 7.2779 | 7.4220 | 6.2846 7.1920
Stand. Dev. | 3.0291 | 3.1348 | 7.5863 | 4.4274 4.0314
Cancer |Input 8.9000 | 8.8333 | 9.000 | 8.9333 6.0300
Hidden 6.2333 | 5.5333 | 8.1667 | 5.5333 3.2600
Connec. (%) |35.7273|33.4545|57.6060| 34.3636 | 27.3379*
Class. (%) |58.3810]56.4127|58.0317| 57.7778 | 55.1428
Stand. Dev. | 4.7989 | 7.0948 | 4.6451 | 6.2893 6.0820
Glass  |Input 8.9667 | 8.9000 | 8.9667 | 8.833 7.400
Hidden 7.1000 | 6.5333 | 8.9667 | 6.4000 6.500
Connec. (%) |31.8025[32.9630(55.6518 | 31.0370 | 31.1730
Class. (%) |24.9227|23.5099|30.0221| 24.9007 | 22.2075
Heart- Stand. Dev. | 5.4095 | 3.5801 | 7.8017 | 4.0174 3.4422
Cleveland Input 34.8000 34.7000 | 35.000 | 34.7000 29.93
Hidden 6.2667 | 6.0000 | 7.6333 | 5.6667 5.433
Connec. (%) [42.0320(41.6116|61.3903 | 41.0711 | 38.3292
Class. (%) |39.9227|38.6996|41.5385| 39.2857 | 38.6996
Stand. Dev. | 2.6736 | 1.1054 | 4.5529 | 2.4434 1.5851
Horse |Input 57.5333|57.5000| 58.000 | 57.7667 | 50.030
Hidden 5.9333 | 5.2667 | 9.3000 | 4.1333 5.1000
Connec. (%) |32.7760|28.9617|60.7639| 26.7978 | 35.8939
Class. (%) [82.7647(81.2059|76.6961 | 84.7451 | 62.9412*
Stand. Dev. |10.6589|12.6064| 2.9971 | 9.5589 5.6785
Soybean |Input 81.9000|81.9333 |81.9667 | 81.8333 | 82.000
Hidden 6.8000 | 6.2667 | 10.000 | 6.7667 21.033
Connec. (%) |31.8680|32.6634|55.6930(29.9868* | 45.4494
SEP Test 2.0172 | 0.8670 | 0.6542 | 0.6847 | 0.72164
Mackey Stand. Dev. | 0.9088 | 0.9011 | 0.7200 | 0.8210 0.9123
Glass lnput 3.6167 | 3.7967 | 2.2667 | 3.4567 1.0533
Hidden 1.9000 | 2.2700 | 1.3667 | 1.8933 1.0100
Connec. (%) [19.2600(24.1400|15.9533 | 17.1334 | 11.4923*

same values with N1 and N3 are used, but the value of N2 is
optimized together with the network weights and connections
in a constructive manner.

Table VII displays the average performance of each inves-
tigated optimization technique. These results were obtained
for each technique by the optimization of the number of con-
nections and weight connection values of an MLP. The cost
function used was average. The parameters evaluated were the
following: 1) the SEP and classification error (class) of the
test set; 2) the mean number of the input units; 3) the mean
number of the hidden units; and 4) the percentage of network
connections.
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For all data sets, the optimized ANN obtains a lower classi-
fication error than those obtained by MLP without architecture
optimization (Table IV), and the mean number of connections is
lower than the maximum number allowed. In most of the simu-
lations, the best performance to optimize the ANN architecture
was obtained by GaTSa.

In the experiments with GaTSa, the average of the number
of connections was computed relative to the maximum network
architecture generated, rather than it being calculated with the
maximum fixed architecture (as in the other models). This
seemed to be the fairest approach. However, it seemed to have
harmed the model because, most of the time, GaTSa gener-
ated an architecture with less connections than the maximum
allowed.

A paired-difference ¢ test with a 95% confidence level was
applied in order to confirm the statistical significance of these
conclusions. In Table VII, statistically significant results are
indicated by asterisk. Statistically, GaTSa achieves better opti-
mization of the architecture input nodes. Despite its finding ar-
chitectures with a smaller number of hidden nodes, all methods
were statistically equivalent regarding the optimization of these
units. This is an indication that the constructive strategy works
in the definition of the number of hidden nodes. The MLP
performance obtained from the optimized ANN was statisti-
cally equivalent for the thyroid, diabetes, cancer, glass, Heart-
Cleveland, horse, and Mackey—Glass data sets. The GaTSa
method obtained better results in the artificial nose, card, and
soybean data set, whereas GA had the best performance in the
iris data set.

3) GaTSa—Cost Function Influence: In the experiments,
the maximal architecture is defined in Table VI. Table VIII
displays the experimental results with different cost functions.
The evaluated cost functions are the following: the average
method (average), weighted average (WA), weight decay (WD),
multiobjective (MO), and combination of multiobjective and
weight decay (MO+WD). The parameters evaluated were the
following: 1) the SEP and classification error (class) of the
test set; 2) the mean number of the input processing units;
3) the mean number of the hidden processing units; and 4) the
percentage of the network connections.

In the artificial nose data set, the best classification results
were obtained by the multiobjective approach, and the best ar-
chitecture optimization was found by the weight decay method.
The combination of weight decay and genetic operators using
multiobjective optimization presented the best performance
in the iris, horse, soybean, Heart-Cleveland, card, and glass
data sets. The weight decay presented the best optimization
performance in the thyroid, diabetes, and Mackey—Glass data
sets. In the cancer data set, the multiobjective cost function
presented the best optimization performance.

The rate of success of using each of the five cost functions
in the optimization techniques was studied. Besides the better
performance of weight decay, the different cost functions pre-
sented unequal behavior in each data set. This behavior can be
explained by the presence of noise in the data sets.

Noisy data sets are complex problems in ANN training. In
some analyses, the artificial nose, diabetes, and thyroid data sets
presented absolute deterministic and absolute random noises.
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TABLE VIII
CoST FUNCTION EXPERIMENTAL RESULTS

Average| WA WD MO |MO+WD

Class. (%) |11.8595] 11.0807 | 7.5462 | 7.0407 | 12.6237

Anificial | |Stand. Dev. | 2.3466 | 22329 | 4.0355 | 3.4536 | 6.3426

rtificial

ool |mput 5.9967 | 6.000 | 5.9233 | 5.9967 | 5.9867

Hidden 0.1533 | 8.5133 | 7.5600 | 8.4833 | 8.6200

Connec. (%) |50.2400| 53.3834 | 33.2433 | 49.6500 | 42.0467

Class. (%) | 6.1197 | 5.4615 | 6.9316 | 42735 | 3.0820

Stand. Dev. | 42170 | 2.1070 | 3.9070 | 2.0110 | 3.0100

Iris Input 3.5667 | 3.8367 | 3.8167 | 3.8567 | 3.1467

Hidden 3.7967 | 3.1900 | 4.4367 | 3.5500 | 3.0767

Connec. (%) |13.3867| 16.1367 | 18.1167 | 15.8600 | 9.8000

Class. (%) | 7.1024 | 7.1798 | 6.8196 | 6.9270 | 6.8600

Stand. Dev. | 1.6500 | 1.4510 | 2.0981 | 13070 | 1.9080

Thyroid  |Tnput 20.6733| 20.9300 | 20.7800 | 20.9800 | 20.9767

Hidden 7.1833 | 3.5633 | 7.8067 | 8.5233 | 8.5167

Connec. (%) |83.8800] 99.3200 | 91.6700 |114.6667|115.0933

Class. (%) |28.4583| 28.4323 [ 25.7552 [ 28.2630 | 25.8542

Stand. Dev. | 3.5030 | 3.3450 | 3.9070 | 3.0070 | 4.3480

Diabetes  [Input 77367 | 7.9267 | 7.7767 | 7.9700 | 7.9667

Hidden 5.6100 | 2.3067 | 5.2000 | 4.4133 | 6.3100

Connec. (%) |31.8433] 38.1833 | 31.7433 | 43.2700 | 42.0367

Class. (%) |17.1027] 18.7694 [ 39.9516 | 21.6270 | 40.4554

Stand. Dev. | 2.5686 | 4.0774 | 9.0395 | 3.1156 | 9.9026

Card  |Input 50.9667| 50.9667 |50.53333| 50.9667 | 50.8000

Hidden 6.6000 | 2.6000 | 5.1667 | 6.1333 | 5.1000

Connec. (%)| 242.33 | 260.50 | 198.66 | 247.86 |216.5667

Class. (%) | 5.1576 | 5.3205 [17.8415 | 5.7784 [21.8011

Stand. Dev. | 23070 | 2.0629 |10.7535 | 1.8510 | 14.9891

Cancer  |Input 8.9667 | 9.0000 | 8.8000 | 9.0000 | 8.9667

Hidden 7.000 | 3.6000 | 5.4000 | 7.2333 | 6.8000

Connec. (%) [45.9667| 52.33 | 33.66 | 50.93 | 43.90

Class. (%) |51.9365| 48.5307 | 73.1111 | 54.8571 | 73.7143

Stand. Dev. | 6.3850 | 5.4823 | 11.3728 | 4.6428 | 13.3558

Glass  |Input 8.9667 | 9.0000 | 8.7000 | 8.9667 | 8.9333

Hidden 8.9000 | 8.6667 | 7.4000 | 8.7667 | 8.6667

Connec. (%)| 65.13 | 79.7667 | 39.2333 | 66.90 | 53.2667

Class. (%) [21.6777] 21.4570 | 35.5620 | 23.7969 | 35.7616

Stand. Dev. |3.1829 | 5.2134 | 8.7515 | 3.7420 | 8.7651

Heart- — p ¢ 34,9333 34.9333 | 34.8667 | 34.9667 | 34.9333

Cleveland  p1:44en 73667 | 3.5000 | 6.0333 | 7.3333 | 6.1000

Connec. (%) | 185.16 | 200.06 | 151.40 | 189.06 |167.2333

Class. (%) |39.3040] 39.6520 | 47.755 | 41.4286 | 50.0000

Stand. Dev. |2.91000] 2.7075 | 10.3868 | 3.5096 | 11.0089

Horse  |Input 58.0000| 58.0000 | 57.9333 | 58.0000 | 57.9333

Hidden 9.3000 | 4.0667 | 7.9000 | 83667 | 8.0333

Connec. (%) | 354.60 | 353.80 | 303.00 | 338.86 | 31036

Class. (%) |65.9000] 64.0000 | 69.2000 | 77.432 | 74.5202

Stand. Dev. | 42161 | 44703 | 5.2232 | 3.7609 | 3.2086

Soybean  |Input 82.000 | 82.000 | 819333 | 81.9667 | 81.9000

Hidden 10.000 | 10.000 | 10.000 | 10.0000 | 10.0000

Connec. (%) | 641.60 |681.6333| 514.83 | 569.36 | 505.86

SEP Test | 0.6215 | 0.8070 [0.2721% | 05745 | 0.6293

Stand. Dev. | 0.9130 | 0.8910 | 0.9820 | 0.9202 | 0.9800

Mackey |y 1.1067 | 1.4100 | 1.0533 | 2.0933 | 1.7867

Glass  |Hidden 1.0000 | 1.0000 | 1.0067 | 1.0100 | 1.1800

Comnec. | 2.1533 | 2.5433 |2.0833* | 3.6300 | 3.3233

The sources of absolute deterministic noise are computational
errors and systematic measurement errors. Absolute random
noise is typical in optimization problems such as adaptation,
learning, and pattern recognition. This noise in the data sets
probably influenced the experiments, but the average perfor-
mance of the cost functions was confirmed.

The better performance of weight decay and multiobjective
approaches demonstrates the capacity of this method in restrict-
ing the type of functionality that the network can produce by
favoring networks that produce smoother functions. Smooth
output functions are generally more likely to represent the
underlying functions of the real-world data. Moreover, the use

TABLE IX
FEATURE SELECTION PERFORMANCE
Iris Diabetes Thyroid

Attrib.  Class.  Attrib.  Class.  Attrib.  Class.
All Features 4 6 8 27.53 21 7.04
MLP 4 6.83 8 27.08 21 7.38
BF-B 2 4.29 5 31.58 10 1.44
BF-R 2 371 4.5 30.79 8.2 2.61
BF-F 1 4.29 2 30.00 5 1.08
BS-B 2 4.29 5 31.58 10 1.44
BS-R 1.9 4.14 3.9 30.21 8.9 2.19
BS-F 1 4.29 4 31.32 5 1.08
HC-B 2 4.29 5 31.58 10 1.44
HC-R 1.9 15.14 5.4 31.50 1129 398
HC-F 1 4.29 2 30.00 5 1.08
RB-All 2 4.29 4 28.68 2 1.08
RB-R 1.8 471 44 30.68 2 11,37
RB-None 2 4.29 7 30.00 5 1.08
Las Vegas 1 4.29 4 31.32 8.9 1.78
GaTSa 3.36 5.23 1.51 27.06 7.12 7.15

of weight decay can modify the error surface of a given problem
in such a way as to reduce the growth of large update values. In
addition, the parameter ; was empirically determined. A fine
tuning in this parameter may improve the results.

The use of multiobjective optimization in genetic operators
presented interesting results in some data sets but exhibited
a poor performance in most. The main problem with this
approach is the construction of the Pareto ranking. There is no
efficient algorithm for checking nondominance in a set of feasi-
ble solutions. Traditional algorithms have serious performance
degradation as the size of the population and the number of
objectives increase [6]. The multiobjective approach presented
some outlier results in the experiments.

Another possible problem was to choose the best solution
when there were several solutions at the same position in the
Pareto ranking. In such a case, the solution with the lower
classification error was chosen. However, there is no guarantee
that this solution has a small number of connections. Possibly,
the best solution would be to choose the solution with the best
average of classification errors and connection number. These
problems hampered the performance of the combination of
weight decay and multiobjective optimization.

The best problem search space exploration was achieved with
the use of the combination of weight decay and multiobjective
approach. This method generated solutions with low complex-
ity architecture and low number of errors.

4) GaTSa—Feature Subset Selection: Table IX displays the
results of the k-NN classifier (for classical methods) and MLP
(for the GaTSa method) in data sets with all attributes. The
k-NN was used to determine the classification accuracy of the
solutions (network input configuration) obtained by the clas-
sical methods. The labels Attrib. and Class. mean the number
of features selected by the technique and the classification
performance, respectively.

This table displays the average performance—the num-
ber of attributes following feature selection and performance
classification—containing the results of the feature selection
technique with the forward (F), backward (B), and random (R)
search strategies, e.g., the best-first experiments are labeled as
BF-F, BF-B, and BF-R, respectively.
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The performance of the algorithms was obtained in a tenfold
cross-validation process. The same method was used to evaluate
the precision of the classifier with all features. The results of the
random strategy correspond to the average of ten runs due to the
random characteristics of this model.

In the experiments, there were similarities between the best-
first (BF) and beam search (BS) algorithms. Although using a
beam size of 15 and having the number of expansions without
improvement (o) set at 50, the two algorithms presented very
close results. It is possible that the difference between the
methods is only apparent in data sets with more attributes. In
the performed experiments, the explored search space was the
same in both methods.

The results from the best-first and beam search were obtained
with a high computational effort. For example, in the thyroid
data set, over 2000 subsets were evaluated before the algorithms
presented the best found solution. This result was found even
with setting a low number of expansions without improvement.

The number of selected features reflected most of the differ-
ences between the variants (forward, backward, and random).
The forward variant obtained solutions with the least attributes,
mostly in the thyroid data set (better than 76% reduction in data
set dimensionality).

The best-first and beam search methods obtained interesting
results regarding feature selection. The k-NN classifier also
exhibited a good performance. In the thyroid data set, k-NN
obtained better results than the MLP that is fully connected
with all attributes (MLP obtained a 7.38% classification error).
The characteristics of the data set can explain these results. This
database has a nonbalanced data distribution. The class proba-
bility distributions are 5.1%, 96.2%, and 2.3%, respectively.

Unlike previous experiments, the hill-climbing forward vari-
ant obtained worse results than the backward and random vari-
ants. The characteristic of the forward strategy is the evaluation
of a small number of subsets.

In the Las Vegas simulations, the maximum number of
subsets generated without improvement was 50. The Las Vegas
method does not exhibit variations in the search strategy. This
algorithm is characterized as random search. It cannot perform
the forward or backward strategies.

The simulations carried out with the Las Vegas and beam
search algorithms (random) obtained the best results in the
fisher iris data set where only one attribute was selected. In
the thyroid and diabetes data sets, the best algorithms were
hill-climbing and random bit climber (random), with two and
five attributes selected, respectively. The method classification
performance was similar in almost all experiments. The clas-
sification degradation regarding simulations with all attributes
was low.

Most of the algorithms using the forward variant presented
less subset evaluation than the backward and random strategies.
The evaluation of a few subsets can hinder the selection of in-
terrelated attributes (attributes that produce better results when
combined than when isolated).

The forward method is faster than its backward counterpart.
This is expected because the forward method starts with small
subsets and enlarges them, whereas the backward method starts
with large subsets and shrinks them. It is computationally more
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expensive to determine the criterion value for large subsets than
for small subsets.

The proposed GaTSa method obtained interesting results in
relevant feature selection. GaTSa obtained results that are very
close to classical feature selection methods in the problems
investigated. Even if it is not being specifically developed for
relevant feature selection, the GaTSa method, even though in an
indirect way, is able to eliminate features that are nonrelevant
to learning algorithms.

In order to find suitable solutions, the remaining search
techniques require the definition of a good initial ANN architec-
ture. The method may eliminate network connections through
pruning. GaTSa is able to automatically optimize the network
size in the search.

In case of GaTSa, the mean number of connections was less
than all remaining approaches. It can be seen that the method is
able to perform a better exploration in the architecture search
space due to a combination of the advantages of GA, SA,
and TS in order to generate an MLP with a small number of
connections and high classification performance. In the search
process, irrelevant connections are eliminated from the network
architecture through pruning. The integration of SA and TS has
the same characteristics, but the use of GA operators incorpo-
rates more domain-specific knowledge in the search process.
Fig. 5 shows a summary of the results.

A number of differences between the feature selection meth-
ods and the proposed algorithm are evident. One of the main
differences is the random characteristics of the model. In this
kind of method, the expected value will depend upon the ran-
dom choices in the algorithm and not on the imposed probabil-
ity distribution of the input features. This behavior distinguishes
the expected processing time in random algorithms from the
mean case complexity normally used in deterministic algorithm
analysis.

It is important to say that the behavior of the random algo-
rithms may change even when repeatedly applied to the same
entrance. Thus, the processing time is a random variable, and
the processing time analysis requires a better comprehension of
the associated probability distribution.

Intuitively, a higher number of database attributes mean a
greater classifier discriminatory power and a greater facility in
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TABLE X
SELECTED FEATURES BY THE TECHNIQUES

Method Database Thyroid (Attributes)
Beam Search 38 5 17 7 18 19 4 6 12 13 15
Best-First 3 8 17 7 21 19 13 12 5 18 15 9
Hill-Climbing 312 8 S5 17 15 9 4 12 18 19 11
Random Bit Climber 3 8 13 17 15 21 7
Las Vegas 317 8 21 7 10 2 4 5
GaTSa S S A A DTS
Database Diabetes (Attributes)
Beam Search 2 7 5 8 1
Best-First 2 8 4 5 6 1
Hill-Climbing 2 8 1 4 6 5 7
Random Bit Climber 2 1 8 6 5
Las Vegas 2 5 7 8
GaTSa 2 8

Database Fisher Iris (Attributes)

Beam Search
Best-First
Hill-Climbing
Random Bit Climber
Las Vegas

GaTSa

S bW BN
B W W
[\

extracting the database knowledge models. In practice, how-
ever, the real world presents evidence that this is not always
true as many methods suffer the curse of dimensionality—the
algorithm computational time increases aggressively with the
database attribute number. Moreover, the experiments confirm
that the number of samples used to ensure a classification rate
increases exponentially with the number of irrelevant attributes
present in the data set [19].

It is not possible to compare, in a fair manner, the classifi-
cation performance of the methods used because the classical
feature selection algorithms implemented the classifier k-NN
in a wrapper model, whereas GaTSa implements MLP. De-
spite the higher complexity of GaTSa, in the experiments, we
found out that the characteristics of some data sets favored the
k-NN model. For example, the thyroid data set has a probability
distribution that favored one class (92.6% of the data is from the
underfunctioning thyroid class).

Table X displays the attributes selected by each investigated
technique. The table presents the attributes that, on average,
have more relevance in the database. The attributes are sorted in
the order of importance, as defined by the number of citations
for each algorithm in each simulation performed. As observed,
GaTSa presents very similar feature selection results as the
classical methods.

C. Sensivity Test of the GaTSa Parameters

The design of the experiments was applied in order to de-
termine the factors with the greatest influence on the system’s
performance. When analyzing the influence of each of these
parameters, the designer should pay most attention to the ones
presenting values that are statistically most significant. This
makes it possible to avoid the necessity for a detailed analysis
of different configurations that might, in fact, lead to the design
of various models with very similar behavior patterns.

We expected a small number of parameters to have a great
influence on model performance in different databases. In this
analysis, we verified the most influential parameters and also
the interaction and interrelationship between them. In the study
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TABLE XI
GaTSa EXPERIMENT CONFIGURATION
Factors Levels
Inferior (-1) Superior (+1)
A Neighborhood Size 5 10
B Temperature Factor 0.7 0.9
C Iterations 50 100
D Number of Micro-evolutions 5 10
E Crossover Rate 0.7 0.9
F Mutation Rate 0.1 0.3
G Tabu List Size 10 20
TABLE XII
ANOVA TABLE
S.Squares D.F  M.Square F-Ratio Sig.level
Main Factors
D 317.128 1 317.128 72.43 0.000
E 233.301 1 233.301 53.28 0.000
Sig. Interac.
DE 100.888 1 100.888 23.04 0.000
AG 17.692 1 17.692 4.04 0.000

performed with GaTSa, we opted to accomplish a factorial
experiment with two levels (2* factorial experiment), seeking
to reduce the amount of experiments done. Table XI presents
the controlled factors.

The factors H = sigmoid logistic (type of activation func-
tion), I = backpropagation (local optimization algorithm),
J =0.001 (learning rate), K = 0.6 (momentum), L = 10
(interaction number to successive temperature reduction),
M =5 (k for GL(k) stop criteria), and N = 1 (initial temper-
ature) were fixed during the experiments.

The analyses were accomplished in an aleatory manner.
Seven control factors (variables) were considered, each one of
them with two levels, resulting in 128 combinations. Each level
combination of the control factors was accomplished five times,
totaling to 640 analyses. Due to the random characteristics of
the model, in each of the 640 analyses, 30 runs of the algorithm
were performed (one result is the average of 30 runs) so that
19200 simulations were performed.

Through the variance analysis of the factorial experiment,
considering the statistically significant level of 5% in the F
distribution, two factors were identified as having a larger
influence on the performance of the MLP optimized by the
proposed model.

A deeper analysis revealed that, statistically, a smaller num-
ber of generation and a larger crossover rate can induce net-
works with better performance. The differences in the number
of solutions generated in each iteration, the initial value of the
temperature, and the size of the tabu list did not significantly
influence the model result. It was also found that a smaller
number of iterations and a higher mutation rate contribute to
the success of the model.

Table XII gives the variance analysis. The more relevant
factors are the following: the number of microevolutions in
the genetic operators (D), corresponding to ~32.64% of the
system variance, and the genetic operator crossover rate (E),
corresponding to ~24.04% of the variance. The interaction
(variation among the differences between means for different
levels of one factor over different levels of another) among the
factors was also identified: the number of microevolutions in the



1108

genetic operators (D) and genetic operator crossover rate (E)
(=10.39% of the system variance) and the neighborhood
size (A) and list tabu size (G), corresponding to ~1.82% of the
total data variance.

The experiments confirmed that, despite the large number
of the configurable parameters of the method, very few have
a significant influence on the performance of the optimized
ANNSs. This is an interesting characteristic because even the
inexperienced designers can successfully use it. The parameters
that are most influential in the method performance were the
variables that controlled the solution’s evolution in the search
space. GaTSa is robust to other settings because it did not show
a significant change in the network’s generated performance.

VII. FINAL REMARKS

This paper has shown that the combination of GA, SA,
and TS in the proposed methodology can be successfully used
for the simultaneous optimization of the MLP network topol-
ogy and weights. According to the experiments, based on the
network performance, GaTSa outperforms the TSa previously
proposed by the authors. GaTSa surpassed other methods from
the literature explored in this paper for most problems, and it is
situated among those with better performance for the remaining
ones. The experiments have also demonstrated that this method
can be used for relevant feature selection. Additionally, the
experiments have indicated that the most relevant parameters
in GaTSa are the number of microevolutions in the genetic
operators and the genetic operators’ crossover rate.

In the context of feature selection, the main disadvantage
of the proposed method is the difficulty in getting a good
performance by the model when some information in the
database is missing and when the classification task is not
performed with the required low errors. This occurs because
the elimination of the connections does not take each input
node into consideration. The elimination of an input node only
happens if all connections that connect this node are eliminated.
The nonselection of a feature occurs as a consequence of the
process of connection reduction. The proposed method does
not verify the contribution of each input during optimization,
and the emphasis is on the contribution of each connection.

As future work, the time complexity of GaTSa must be
analyzed, and ways of reducing time consumption must be pro-
posed. Other recently proposed optimization heuristics such as
particle swarm optimization could be explored [37]. GaTSa will
be explored in solving some real-world problems in science,
business, technology, and commerce.
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