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Abstract. Since there is no individual approach that can be universally applied to effectively solve the hard problems of
artificial intelligence and data analysis, hybrid systems are necessary to better tackle specific tasks by exploiting the advantages
of different methodologies in a single framework. Based on known results of combining neural networks and rule-based
systems, this work presents a hybrid system with the purpose of simplifying rule sets obtained from rule induction algorithms
on classification problems without increasing the accuracy error. This is motivated by assuming that simplicity can lead to more
understandable models and rule induction algorithms often provide an excessive number of rules necessary to classify future
examples within a given accuracy error, even after pruning. Experimental evidence suggests effective gains on a benchmark of
sixteen data sets. Experiments were also performed to detect the effect of different components of the proposed approach in
achieving the results and so helping to explain why this hybrid system works.
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1. Introduction

Intelligent hybrid systems combine different methods for the solution of problems of artificial intel-
ligence. It is difficult to determine accurately the degree in which parts of a problem solver could be
considered “different approaches”. As a result, the concept of hybrid systems is itself ill-defined. Those
systems must integrate many “intelligent”, “sophisticated” techniques, but even those concepts change in
time [14]: well-succeeded intelligent techniques gradually become standard computational procedures.

It is easy to imagine systems in which the boundaries of categorization between hybrid and non-hybrid
solutions are very imprecise: one can consider a case-based reasoning system that uses a loose heuristic
to find an initial set of suitable cases and a more precise but computationally expensive procedure to refine
this set and return the best of the selected solutions. Would this strategy be considered a hybrid one? As
a result of the imprecise definition of hybrid systems, there are many different ways of categorization,
varying from aspects of implementation to more abstract criteria (for example [23]). One can assume
there is a whole continuum of categories, but as a general rule it is desirable that hybrid systems have a
considerable level of complexity and integration.
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Some concerns must be observed: hybrid systems are getting an increasing amount of attention from
researchers in artificial intelligence and related fields, but there are reasons to generate skepticism [15]:
many works seem to combine methodologies in an ad-hoc fashion, with no concerns in verifying the real
advantages of those hybridizations. A hybrid system can achieve a good performance, but it does not
mean that the basic techniques, when applied in isolation, are not better.

With those concerns on mind, one is motivated to create hybrid systems for machine learning and
data mining by various reasons. This work focuses on transforming available classifiers into more
comprehensible ones by removing several of its parameters on a data-driven approach,without necessarily
losing predictive accuracy. In Section 2, the general idea and motivation is given. Section 2.1 describes
how a given rule-based classifier is transformed into another representation and how one can interpret it.
Section 2.2 describes the processes used to simplify the model while trying to keep the same accuracy or
even increasing it. Section 3 discusses some experimental results, while Section 4 provides a discussion
of related work.

2. A hybrid system for rule simplification

According to Domingos [7], the real role of Occam’s razor as a criterion for model selection is
choosing the most comprehensible model from those that achieve the same generalization error. Com-
prehensibility is desirable for providing insight about the process that produced the observed data, where
the most noticeable application is aiding knowledge discovery in databases and analytical validation of
automatically generated expert systems. For example, it is common that data mining processes generate
large rule sets, resulting in incomprehensible models. In this case, the unintelligibility does not come
from the knowledge representation language, but from the complexity of the rule set seen as a whole.

It is not easy to define the ideal properties of comprehensible models. This concept may vary under
different domains and performance measures. For example, the structure of a model can be very complex,
but very comprehensible because it is only slightly different from currently widespread knowledge.

However, a common measure of understandability is the structural complexity of the model. This can
be determined as the number of parameters of the system, such as the number of premises of a rule base
or the number of weights of a neural network. While not ideal, this criterion has the merit of being
easily and generally applicable. It can be useful, for example, if it is used to discover that some pieces of
knowledge are unnecessary to explain a phenomenon by simply dropping it and verifying that it is still
possible to model the available data with high accuracy.

Under the context of hybrid systems, this paper proposes modifications in a classical neural network
and statistical model for processing sets of classification rules automatically generated by rule induction
algorithms. The motivation is to produce, by optimization techniques common in neural network learning,
a reasonably reduced number of rules and premises. The aim is on interpretation, not on prediction, but
of course one can achieve highly simplified models if a decrease on predictive performance is allowed.
So, we also state that it is highly desirable that classification accuracy does not decrease in this process.

Traditionally, pruning techniques are necessary and widely used, but they may not be sufficient. For
a more effective model simplification, steps of rule smoothing and fitting were added. The proposed
approach consists in remapping a set of Boolean rules in a (neural) network of smooth kernels and then
performing consecutive cycles of pruning and fitting until no further simplification can be performed
using the same data sets applied in the rule induction stage. Table 1 illustrates this process. The
final model should have classification accuracy comparable to the original rule base. A comparable
accuracy must be understood as an accuracy rate that is not different by a statistically significant margin
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Table 1
A proposed framework for rule set simplification

Task: find a simpler model with comparable classification accuracy
1. Parameterize a given rule base as a kernel-based neural network;
2. Following a determined order criterion, tentatively eliminate each unit from the network. If

the error in the pruning set increases, put the unit back in the network. Similarly, perform a
pruning of premises;

3. Optimize the network with a gradient-based learning algorithm (gradient descent, conjugate
gradients, etc.);

4. Perform pruning as described on Step 2;
5. If in Step 4 we pruned some component of the model, go back to step 3. Otherwise, stop the

process and output the network.

(according to a given hypothesis test) or by a practical margin (according to domain knowledge). The
other assumptions underlying the applicability of this model are:

– the classification task that must be performed would significantly benefit from the generation of
more comprehensible models;

– simplicity can be used as a measure of comprehensibility;
– the language used to reorganize the given rules is at least as comprehensible as the original proposi-

tional representation and may in fact give more insight about the model.

The meaning of this last statement must be clearly stated: the modified model is not a logical theory
anymore, since its components are not independent Boolean rules. Instead, they must be interpreted as
a mixture of probability density functions. Section 2.1.2 will discuss this issue in deeper detail.

An appropriate rule induction algorithm for initialization of the proposed model should identify rules
by boxing subregions of the input space whose concentration of correctly labeled data is high. Rules
induced by similar algorithms tend to correspond to the “bumps” of a multimodal distribution and so are
more similar to kernel-based approaches for classification. Following Friedman and Fisher [11], we call
our framework Bump Pruning and Fitting (BPF).

2.1. Mapping from Boolean rules to smooth kernels

The proposed model refines a set of classification rules specified in propositional logic using attribute-
value records of a training data set. Numerical and multi-valued symbolic attributes are allowed on
premises of each rule. The model can be graphically represented as a feed-forward neural network with
one hidden layer of local basis functions, each hidden unit corresponding to one rule. The output layer
uses one unit for each class of the domain and each hidden unit is linked to only one of the classes, in a
similar way to a probabilistic neural network [32].

The following sections describe how the parameterization of the network is done and how it is initialized
by a set of rules. More detailed information can be found in Silva [29].

2.1.1. Parameterization of individual units
Each hidden unit is built from a specific rule r as a local base function. This local function is

parameterized by:

– a measure of center µr = (µr1, µr2, . . . , µrd)T , where d is the dimensionality of the input space.
This parameter is fixed during the learning stage;

– two measures of dispersion, µr+ = (µr1+, µr2+, . . . µrd+)T and σr− = (σr1−, σr2−, . . . σrd−)T .
These are the free parameters adjusted during the learning stage.
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Even using local measures of variability, the number of free parameters remains reasonably limited in
the proposed model, because the vectors σr+ and σr− are highly sparse: just a small subset of the whole
set of domain variables is normally considered in each unit, as it is explained in Section 2.1.2. For those
variables considered irrelevant in unit r, the dispersion parameter is represented as ∞. Note that this
is one of the reasons for choosing two dispersion parameters σr+ and σr−: many of the variables are
bounded only by an upper or lower limit.

The activation function ar(x) for a hidden unit r given an input x is:

ar(x) =
∏
k

ark(xk) (1)

where ark(xk) is a function of attribute k at unit r.
The definition of the univariate function ark(xk) depends on the type of the variable xk. For ordered

(numerical) variables xk:

ark(xk) = e
− (xk−µrk)2

σ2
rk+ , if xk > µrk and σrk+ �= ∞

= e
− (xk−µrk)2

σ2
rk− , if xk < µrk and σrk− �= ∞ (2)

= 1, otherwise

This is also similar to many traditional models of fuzzy neural networks [19].
For symbolic variables k, the measure µrk is itself a vector,1 because multi-valued tests for categorical

attributes are allowed in the proposed model. So, ark(xk), where xk = v, is defined for unordered
(symbolic) variables as

ark(xk) = e
− (1−µrk,v)2

σ2
rk+,v , if µrk,v < 1 and σrk+,v �= ∞

(3)
= 1, otherwise

Each unit in the hidden layer is connected to exactly one unit in the output layer: the one that
corresponds to the class of the original rule from where the hidden unit was built. The parameters of
this final layer are not modified by gradient learning: the weights wr, r ∈ {1, . . . , R}, where R is the
number of hidden units, are computed according to the behavior of unit r given the training data. This
measure must penalize the less reliable units. There are similar concerns on developing rule induction
algorithms. For selecting rules during the learning process and solving conflicts of overlapping rules in
inference, one of the simplest measures is the apparent accuracy:

Apparent accuracy (r) =
n+

n+ + n−
(4)

where n+ is the number of training examples that are of the same class of the rule and are covered by it.
Equivalently, n− is the number of training examples that are of a different class and are covered by the
rule.

1µrk,v represents the vth component of this vector.
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In fact, for selecting rules during induction, this measure is not appropriate because a rule covering a
single item has perfect accuracy, as discussed by Clark and Boswell [5]. The rule induction algorithms
used in the experiments of Section 3 apply a measure that trades-off coverage and accuracy. For
inference purposes, the apparent accuracy measure is quite robust, especially if you consider computing
the classification by combining the contribution of each rule and pruning small disjuncts that do not
contribute for better prediction.

For the smooth rules used in the proposed model, a suitable measure is:

Weighted accuracy (r) =
∑

i I(C(xi)) = C(r))ar(xi)∑
i ar(xi)

(5)

where I(C(xi) = C(r)) is the indicator function for comparing the class of an example xi and a unit r.
It returns zero if xi is not from the same class of r. The sum varies through all examples i.

The activation function of unit yj of the output layer, where C(yj) = j, is computed by:

yj(x) =
∑

r I(C(r) = j)wrar(x)∑
r wrar(x)

(6)

where wr is the link between r and j as measured by Eq. (5).

2.1.2. Initialization
Let Pr be the set of premises of rule r. Prk is a premise concerning the k-th attribute in rule r.

For ordered (numerical) variables, Prk is represented by one of the following templates: (a < xrk <
b), (xrk < b) or (xrk > a). For symbolic variables, Prk assumes the template (xrk ∈ Valuesrk), where
Valuesrk is a subset of the domain of xk. If xk is not constrained in rule r (i.e., there is no premise
concerning xrk), then Prk = ∅.

Unordered (symbolic) variables are represented in a 1-of-n encoding [26]: xrk,v corresponds to the
function I(xrk = v), where I(x) is the indicator function, returning 1 if x is true and 0 otherwise;
v ∈ {1, 2, . . . , n} represents the v-th possible value of xk, and n is the dimensionality of the domain of
xk.

Let Dr be the set of examples in the training set bounded by the corresponding rule r, where it is
considered only those examples that are of the same class of r. For ordered variables, the parameters of
the hidden units are initialized as follows:

– the center parameters µrk, computed for each attribute k, are given by the median of xrk in Dr;
– two spread parameters, σrk+ and σrk−, are computed for each attribute k. The initialization is

σrk+ =
√

2|b − µrk|/s and σrk− =
√

2|µrk − a|/s. Reasonable values of s are usually 2 or 3, as
explained later in this section. If Prk = ∅, we consider σrk+ = σrk− = ∞. If Prk = (xrk < b) or
Prk = (xrk > a), σrk− = ∞ or σrk+ = ∞, respectively;

For unordered variables, the parameters of the hidden units are initialized as follows:

– for all values v in the domain of xk, if v ∈ Valuesrk, then µrk,v = 1. Otherwise, µrk,v = 0;
– for the initialization of the spread parameters, there are two situations:

∗ if µrk,v = 0, σrk+,v =
√

2/s, σrk−,v = ∞. Typical values for s are 2 or 3;
∗ if µrk,v = 1, σrk+,v = σrk−,v = ∞;
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Finally, each hidden unit must be introduced in the network by linking it to an appropriate output unit.
The class Cr of the rule defines this relationship: the unit is linked only with the output unit representing
Cr.

The initialization of the spread parameters is motivated by the normal probability distribution: nearly
all of data fall in a distance of a few standard deviations of the center. The hard boundaries of a rule are
relaxed by considering that most, not all, of the data falls in the hyper-box defined by the premises. The
space between the center and a boundary is considered as a distance of two or three standard deviations,
which corresponds to s in the definitions above. Slightly more overlapping is obtained by setting s = 2.
The

√
2 factor is a small correction2 introduced because the normal density function exp(−(x−µ2)/2σ2)

uses the dispersion parameter multiplied by 2. Note that the activation function is not a normal density
function: asymmetric dispersions are considered and the median is used as a measure of center. Using
the median instead of the mean makes the parameterization more robust to outliers. The dispersion
parameters are indeed affected by outliers, but the fitting procedure (Section 2.2) is expected to correct
any undesired influence by supervised learning.

As in the mixture of experts model [18], the BPF architecture can be interpreted as a combination
of partial conditional probabilities P (C|i, x), where i is the corresponding unit initialized from a rule,
C is the class corresponding to unit i and P (C|i, x) is simply the activation function a i(x) under the
assumption of local variable independence. However, the mixing coefficients Eq. (5) are not a function
of x itself, as it would be necessary to model P (C|x). This simplification may lead to less accurate
predictions, but requires much less free parameters and facilitates creating an order criterion for pruning
purposes, as described in Section 2.2.

Concerning comparison with the original rules given as input, this approach clearly produces models
that are not logical theories: any decision computed by BPF networks must be interpreted as a combination
of uncertain pieces of evidence. There is no “rule extraction” step that translates this network of kernels
back to Boolean representations. Frequently, rule extraction techniques must generate increasingly more
complex models to get closer to the prediction accuracy of the original representation, and it is up to the
modeler decide the appropriate trade-off.

Allowing overlapping of rules may sound undesirable if our goal is improved understandability of a
model [16]. However, this is a common feature of pruning algorithms [12] and in fact is one of the
reasons why it is possible to obtain a smaller set of rules with the same predictive power. Mechanisms
such as decision lists are just conventions for handling rule conflict, not a solution to avoid the fact that
rules will usually overlap. Futhermore, most kernels do not contribute significantly for the classification
of a given point, and so one may consider only a small sets of probabilistic rules when trying to explain
the output obtained. According to the experiments described in Section 3.3, there is evidence this is a
likely outcome.

2.2. Pruning and fitting

A straightforward approach to pruning of parameters is used (as suggested for example by Tresp et
al. [34]):

– prune basis functions: all hidden units (probabilistic rules) are organized in a crescent order of
output weight. The pruning procedure tentatively removes the unit from the network and evaluates

2In the experiments described in Section 3, it gave slightly lower initial training errors. It must be clear that this is only a
theoretical observation: this constant can be absorbed in the value defined for s.
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the classification error. If the error on a pruning data set does not increase (it may decrease), the unit
is permanently removed. This process is repeated for each unit according to the given order;

– prune premises: a similar procedure is applied, when all premises are ordered according to a simple
sensitivity analysis criterion. Removing a premise is performed by setting its respective spread
parameter to infinite;

– repeat this process till no basis function nor any premise can be pruned;

The order criterion for premises is a linear function that computes a heuristic measure contribution
of each dispersion parameter. The contribution is defined by the change in the weight of a rule when a
given spread parameter is temporarily discarded (i.e., set to infinite). Let w be the weight of a given unit
and wσ the weight of the same unit when parameter σ is discarded. Then, we have

EvaluateSigma (σ) = (wσ − w)/w (7)

which returns higher values for those dispersion parameters that when discarded achieved greater im-
provements (or smaller losses) for the weight of its respective unit.

As discussed by Breslow and Aha [3], more elaborated pruning techniques of rule bases and trees often
require the transformation of the rules in a different representation, like graphs or rules with exceptions.
This would make the comparison of BPF and the original model hard to perform. For example, one
cannot directly compare the complexity of a tree and a rule set, because even though a tree can be
transformed in a rule set, it would not be a fair comparison: a single node on a tree defines a premise
for two rules, so it would be counted twice, when under the original tree representation it is represented
by a single node. On the other hand, the hierarchical structure of tree may make it more confusing to
understand when compared with relatively independent rules. Unless you want to face psychological
considerations of different representations, which we avoid by explicitly assuming that comprehensibility
will be measured by simplicity, it is desirable to follow conventional pruning techniques.

The straight approach adopted in this paper has similar counterparts like reduced error pruning
(REP [3]). It must be clear that order of evaluation for units and spread parameters is just a heuristic
measure for guiding the search in a model space (to avoid, for example, the computational complexity
of REP). It does not intend to produce the smallest possible model with respect to a given data set. It is
also useful when there is a huge quantity of parameters and one wants to cut the search at a given point,
assuming that units with the smallest weights and most sensitive spread parameters are more likely to be
eliminated.

The fitting procedure consists in computing the gradient of an error function with respect to the training
set and using this information to update the vector of parameters. The error function utilized was the
mean squared error (MSE). Although Cherkassky and Mulier [4] point that the MSE is not ideal for
classification problems since a lower MSE does not guarantee a lower classification error, this is not a
major concern with BPF, because the generalization error remains approximately the same during the
fitting process. The weights in the output layer are adjusted after each update of the parameter vector.
This is a variation of an expectation-maximization algorithm.

3. Experiments

Lim et al. [21] performed one of the most recent benchmarks comparing classifiers, focusing on
decision trees, neural network-inspired algorithms and statistical methodologies. Their purpose was to
extend the available results by adding more recent algorithms and emphasizing other three important
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Table 2
This table summarizes information concerning the data sets studied in Lim et al. The first
column (“Id”) is the identifier that will be used along this section to refer to a given data
set. The second field (“Name”) is a short description of the modeled problem. For more
details, consult the reference. “#Attrib” gives the total dimensionality (i.e., the number of
attributes) of the respective problem, while “#Numeric” is the number of numeric attributes
only. “#Cl” is the number of classes. The last two columns show the number of instances
used for training and for testing. “10-fold cv” stands for 10-fold cross-validation procedures.

Id Name #Attrib #Numeric #Cl #Train #Test
bcw Wisconsin breast cancer 9 9 2 683 10-fold cv
bld BUPA live disorders 6 6 2 345 10-fold cv
bos Boston housing 14 13 3 506 10-fold cv
cmc Contraceptive method choice 9 2 3 1473 10-fold cv
hea StatLog heart disease 13 7 2 270 10-fold cv
led LED display 7 0 10 2000 4000
pid PIMA indian diabetes 7 7 2 532 10-fold cv
sat StatLog satellite image 36 36 6 4435 2000
seg Image segmentation 19 19 7 2310 10-fold cv
smo Attitude towards smoking 8 3 3 1855 1000
tae Teacher assistant evaluation 5 1 3 151 10-fold cv
thy Thyroid disease 21 6 3 3772 3428
veh StatLog vehicle silhouette 18 4 4 846 10-fold cv
vot Congressional voting records 16 0 2 435 10-fold cv
wav Waveform 21 21 3 600 3000

aspects, one of them the complexity of the induced trees, where complexity was defined by the number
of nodes obtained in the experiments.

Most of the data sets of this benchmark are from the UCI Machine Learning Repository [2].3 Sixteen
data sets were used, plus a replication of all of them with addition of attribute noise. A short description
of the most important features of fifteen of those data sets is presented in Table 2.4

Some observations concerning these data sets: all records containing missing values were eliminated.
The processed pid data set has one less attribute than the original specification that usually appears
in the literature (for example [28]). Problems that originally used non-uniform misclassification costs
(hea, for instance) are treated with uniform ones. There are two artificial data sets: led and wav. Most
data sets were evaluated using 10-fold cross-validation as indicated. For more details and references
about the data sets, see [21].

3.1. Experiments using PRIM, C4.5RULES and BPF

In this section, we discuss the results obtained using rules induced by PRIM [11] and C4.5RULES [27]
on the same data sets presented in the previous section. PRIM is suitable as an initialization algorithm
for BPF because it searches for salient subspaces where the average of a given function (Equation (4) in
our experiments) is higher than in the whole input space. This results in a rule set that is more similar to
a mixture of unimodal distributions.

We compare these algorithms with BPF initialized by PRIM (BPF-P) and BPF initialized by
C4.5RULES (BPF-C). It is important to stress that PRIM and C4.5RULES rule sets were also post-

3At the current time of this writing, all data sets, with the exact split in folders for cross-validation or hold-out samples used
in the experiments, are available at http://www.recursive-partitioning.com.

4The data set dna was excluded because the available implementation of PRIM, used in our experiments, does not handle
domains with more than forty attributes. Also, we did not use the replicated data sets with injection of noise.
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Table 3
Comparison of propositional rule sets and probabilistic rule sets refined by a BPF framework. The complexity measure is the
number of premises of the model. For data sets where cross-validation was applied, the results were averaged over the 10 trials.
Numbers in italic represent the standard variation of these results. Accuracy results were given to provide evidence that this
approach is able to effectively reduce the complexity of the rule sets while maintaining similar classification power in nearly all
data sets

Set Classification error Model complexity
PRIM C45R BPF-P BPF-C PRIM C45R BPF-P BPF-C

bcw 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.02 7.9 1.9 7.6 3.0 5.5 1.5 5.3 1.8
bld 0.34 0.08 0.31 0.05 0.31 0.06 0.35 0.05 24.9 4.4 23.4 7.7 15.9 5.9 10.6 4.9
bos 0.24 0.04 0.24 0.05 0.25 0.03 0.25 0.05 35 7.3 26.2 7.8 18.7 4.8 14.1 3.9
cmc 0.45 0.03 0.45 0.03 0.46 0.04 0.45 0.03 143 16.7 114 31.5 42.7 16.2 42.6 18.7
hea 0.15 0.07 0.20 0.07 0.16 0.05 0.19 0.08 16.4 4.9 17.9 6.6 8.2 3.2 11.2 3.1
led 0.27 – 0.28 – 0.28 – 0.27 – 58 – 50 – 29 – 35 –
pid 0.23 0.04 0.22 0.06 0.24 0.04 0.22 0.04 24.1 8.9 15.6 6.9 10.7 4.3 8.2 5.2
sat 0.14 – 0.14 – 0.13 – 0.13 – 292 – 212 – 165 – 125 –
seg 0.05 0.01 0.04 0.01 0.05 0.01 0.07 0.01 78.8 11.6 68.7 9.3 41.3 8.8 40.0 9.9
smo 0.31 – 0.31 – 0.31 – 0.31 – 10 – 14 – 12 – 16 –
tae 0.52 0.12 0.51 0.12 0.55 0.08 0.48 0.14 7.1 3.2 94.3 11.0 6.4 3.7 50.9 19,0
thy 0.01 – 0.01 – 0.02 – 0.03 – 16 – 8 – 9 – 3 –
veh 0.31 0.04 0.27 0.05 0.29 0.05 0.28 0.03 91 12.2 55.9 13.6 51.2 7.8 34.6 11.6
vot 0.06 0.04 0.05 0.03 0.05 0.03 0.04 0.03 5.1 2.5 12.1 3.2 4.2 2.1 7.10 3.4
wav 0.26 – 0.25 – 0.21 – 0.24 – 67 – 77 – 40 – 41 –

pruned by the same pruning policy, described in Section 2.2 using the training set as the pruning set:
for instance, the original rule sets produced by C4.5RULES were much larger than those reported on
this section. All accuracy results on Table 3 were measured with respect to pruned rule sets. The BPF
variations were initialized by a remapping of the final models obtained using PRIM and C4.5RULES
after pruning. This was performed to verify if the apparent extra simplification obtained by BPF is a
result not only of the pruning.

The optimization procedure used for adjustment of parameters was the conjugate gradients algorithm.
The data was normalized to a 0–1 range to increase stability of the optimization method. In all
experiments, the stop criterion for the fitting stages was convergence of the conjugate gradients procedure.

The metric of model complexity was the number of premises in a rule set. The results obtained show
that BPF variations were able to deliver more simplified rule sets in all studied data sets, but this does
not mean that it will happen in all situations. BPF-C seems to be a winner compared with BPF-P, but
one must consider that BPF-C was a bit less stable: for the data sets bld, seg and thy, it indeed
increased the classification error rate by a margin bigger than 1% (or, in the case of thy, three times
larger), while BPF-P had problems with tae. The average ratio of simplification5 for BPF-P was 59.9%
with a standard deviation of 0.097, while BPF-C achieved a ratio of 55.05% with a standard deviation of
0.089. Some special care must be taken regarding comparison of BPF-P and BPF-C: in BPF and PRIM,
premises involving symbolic attributes add a parameter for each value that is not present in the original
rule premise. This means that in data sets like tae, where there are symbolic attributes with nearly
thirty values, a typical premise of C4.5RULES is counted as having almost thirty parameters. However,
it must be stressed that in this benchmark, only hea, led, smo, tae and vot have symbolic variables,
where led and vot have only binary variables (which makes no difference when comparing PRIM with

5This ratio is defined as the number of parameters of BPF divided by the number of parameters of the corresponding PRIM
and C4.5RULES pruned rule sets. The data sets cmc and smo were treated as outliers and excluded from the computation of
this statistic, because no algorithm was able to achieve a classification error less than the default rule.
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Table 4
The differences in classification error on train and test sets for pruned PRIM rule
sets and a BPF variation not yet optimized. Note that the highest differences are on
the training sets, not the test ones. The differences in training sets for a not pruned
PRIM rule set and a BPF representation are usually lower

PRIM BPF-P PRIM BPF-P
train test train test train test train test

bcw 0.02 0.04 0.05 0.05 seg 0.02 0.05 0.09 0.09
bld 0.18 0.30 0.26 0.31 smo 0.29 0.334 0.30 0.312
bos 0.14 0.24 0.23 0.29 tae 0.44 0.55 0.52 0.53
cmc 0.34 0.46 0.41 0.45 thy 0.004 0.01 0.024 0.03
hea 0.11 0.16 0.14 0.19 veh 0.13 0.30 0.27 0.33
led 0.24 0.27 0.31 0.33 vot 0.03 0.05 0.03 0.05
pid 0.14 0.24 0.20 0.25 wav 0.09 0.22 0.18 0.21
sat 0.06 0.13 0.11 0.14

C4.5RULES) and smo is not a useful data set to compare, because the classifiers did not perform better
than the default rule.

Notice that in data set smo, plain PRIM produced less parameters than BPF-P itself. This is possible
because the PRIM and C4.5RULES variations used in this experiments classify a new input according to
the class of the rule that first matches it, following a decision list organized in a decreasing order of rule
weight. The pruning performed under this approach usually results in smaller rule sets than under the
policy that combines rule results in a neural-network style. This last variation was adopted to post-prune
rule sets that were used to initialize BPF-P and BPF-C (and so they may have more parameters), because
in principle this initial pruning is performed in a rule set whose functional form is more biased towards
the neural network representation. However, in practice, this additional care may be unnecessary.

3.1.1. Explaining gains
This subsection discusses some reasons why BPF works consistently well for simplification of rule

sets and how it could behave with different pruning policies. It also evaluates its sensitivity to the
initialization procedure.

Rule induction algorithms usually generate overlapping regions in the input space, which result in
redundant components that can be successfully eliminated from the model with no harm to its predictive
capabilities. But there are many situations when even a pruned Boolean rule base can be simplified when
reparameterized as a local basis function network: examples that are uncovered when a given rule is
eliminated are correctly classified by others because the smoother activation functions Eq. (1) are able
to cover them.

This justifies the cycle of pruning and fitting indicated on Table 1, where retraining is done after any
model simplification: some units are fitted in a way to subsume the roles of other units. So, it is expected
that there is the possibility of further pruning after a session of model refinement. Pruning makes those
rules cover more of the input space. This increases the chance of a bias mismatch between the original
rule set and the network of smooth kernels, having a negative impact on the described initialization
procedure. However, the cycle of pruning and fitting performed by BPF makes this model more robust to
violations of the assumption of similarity. Table 4 shows a comparison of PRIM results and an initialized,
but not optimized, BPF. Note that the biggest differences are on the training sets, not the test ones. In
fact, the initial difference in test set errors and training set errors is much lower in untrained BPF models
than in the original rule-based classifier. This provides evidence for part of the answer to why BPF
successfully simplifies rules: it ignores some of the overfitting of the rules by smoothing out irrelevant
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details. The degree of smoothness is controlled by the parameter s, as described in Section 2.1.2. This
has a relation with adjustment of Parzen windows and the bias-variance trade-off [13].

After the pruning and fitting cycles, some of the training errors reached approximately the same of
the original PRIM rule sets, while others converged to higher training errors, but with no damage to
generalization. In the experiments performed with the discussed benchmark, BPF achieved a training
error of 0.07 in sat and 0.10 in wav, which are basically the same achieved by PRIM, while getting
higher error in bos (0.19) and pid (0.19), for instance.

Another explanation for the simplification gains of BPF comes from the nature of the fully supervised
learning procedure embedded in this framework. Since the minimization of the training error is performed
with respect to the network as a whole (unlike the separate-and-conquer process of recursive covering),
BPF is able to redistribute its basis functions in a similar way by which fully supervised learning in RBFs
works. This leads to the formation of redundant components that are later removed by pruning cycles.

One could argue that the applied pruning procedure did not fully explore possibilities of simplification
for the rule-based classifier, since it used the same data sets for induction and pruning. Extra experiments
were performed using a separated pruning set [30], and BPF still maintained a fair difference compared
to the original Boolean representations.

3.2. Learning curves and model complexity

Usually, all classifiers achieve an asymptotic level of generalization accuracy as a function of the
amount of data used for training. Learning curves are a useful way to visualize this process. These
graphs plot the number of instances against the (average) resulting accuracy of a process of training.
It is interesting to observe the behavior of model complexity under those asymptotic conditions. It is
desirable that a learning model does not increase in complexity when it is not possible, under its fitting
capabilities, to improve the generalization accuracy when more data is given.

Many non-parametric models like tree and rule inducers are especially sensitive to this problem, as
pointed out by Oates and Jensen [25]. They present evidence of an approximate linear relationship
between model complexity and number of available instances, regardless if accuracy increases or not, in
a series of experiments involving popular algorithms. This leads to needlessly complex and cumbersome
rule sets. Empirically, cost-complexity pruning methodologies, like those introduced by CART decision
trees, which explicitly accept a trade-off between accuracy and complexity, are much less susceptible
to this problem (but may result in higher generalization errors). The framework proposed in this paper
does not intend to sacrifice predictive power. It is interesting to see how it behaves under the condition
of increasing data sets.

We performed an experiment with one of the data sets used by Oates and Jensen, the led-24 domain.
Its objective is to classify the image of a digit from a led display in one of ten classes (from 0 to 9), using
0-1 valued attributes, where each attribute indicates if the corresponding light of the led is on or off. In
principle, it is a very easy problem, but to test the robustness of a classifier, 10% noise was added to each
attribute. Also, 17 random attributes are added: their values are chosen within a uniform distribution
not related with the class of the instance. The Bayesian optimal error is about 26% and according to
the documentation available at the UCI Machine Learning Repository [2], it is considered a difficult
problem.6

6As one should expect from the effects of the curse of dimensionality, it is interesting to notice that plain nearest neighbors
algorithms (that do not use adaptive measures of distance) fail by a large margin to achieve reasonable results: the UCI
Repository reports an error rate of 59% for a standard nearest neighbor model.
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Fig. 1. Complexity curves for BPF and a post-processed C4.5RULES.

Table 5
Variation in the number of parameters as a function of the number
of training instances. The column increase indicates the ratio
between the correspondent number of premises with respect to
the number of premises obtained with 2000 instances

BPF C4.5RULES
premises Increase premises increase

2000 instances 70 – 226 –
2500 instances 76 8.6% 327 44.7%
3000 instances 90 28.6% 292 29.2%
3500 instances 73 4.3% 399 76.5%
4000 instances 78 11.4% 367 62.4%
4500 instances 137 95.7% 518 129.2%
5000 instances 109 55.7% 505 123.4%

Seven trials were performed with a varied amount of data for comparison of BPF and C4.5RULES.
Figure 1 depicts a graphical comparison between the two classifiers. C4.5RULES sets were post-
processed by the same pruning procedure, with an ordered decision list as the conflict policy. The mean
error rate of BPF was 25.09%, with a standard deviation of 0.004. C45RULES achieved 27.62% and
a standard deviation of 0.007. The low standard deviations are an indication that the error was nearly
uniform in all trials, independently of the amount of data.

Even though BPF considerably simplifies rules obtained by C4.5RULES with a slight increase in
classification accuracy, there is still some effect of linear increase in complexity. Table 5 details statistics
obtained during the trials, with the corresponding increase in complexity when compared with the number
of premises in the model induced with 2000 instances. There is a huge leap at 4500 instances, denoting
that in principle there is still a bias favoring increase in complexity even under the BPF framework.
However, the increase has different practical impact when one considers that jumping from 70 premises
to 109 is less harmful for understandability purposes than jumping from 226 to 505 according to the
absolute number of parameters.

3.3. More about rule quality: Weight distribution and small disjuncts

In this section, we evaluate how the BPF framework changes some characteristics of the rule sets given
as input. The objective is to give insight about distribution of the rules, their locality characteristics and
also other possible explanations of how BPF is able to carefully simplify a network of kernels without
losing prediction accuracy.
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Table 6
Weight statistics, showing mean and standard deviation of the average weight associated with the
kernels of the network

PRIM BPF-P PRIM BPF-P
mean sd mean sd mean sd mean sd

bcw 0.8635 0.0423 0.9369 0.0805 Seg 0.7143 0.0396 0.7795 0.1019
bld 0.6981 0.0307 0.6572 0.0467 Smo 0.4146 – 0.2478 –
bos 0.6613 0.0327 0.6940 0.0623 Tae 0.4764 0.0219 0.4030 0.0275
cmc 0.5466 0.0128 0.4772 0.0345 Thy 0.7539 – 0.4921 –
hea 0.7820 0.0315 0.7299 0.0543 Veh 0.6278 0.0195 0.6650 0.0740
led 0.4939 – 0.3951 – Vot 0.8397 0.0347 0.7984 0.0550
pid 0.7162 0.0373 0.6922 0.0376 Wav 0.7745 – 0.8510 –
sat 0.6888 – 0.8092 –

Moody and Darken [24] report experiments using full supervised learning for radial basis function
networks (RBFs). They obtained kernels with very broad receptive fields. Since BPF uses less rules to
express a mapping, one could suppose that the final model is more “distributed”, or less “local”, than
the original one, i.e. what was previously classified by a single rule (or a small subset of rules) is now
the result of a combination of a significantly larger set of kernels. For interpretability purposes, this
may seem somewhat undesirable, although much less problematic than distributed representations in
dictionary methods [4], such as RBFs, where the same components are used for every class. However,
we still want to evaluate how kernels are weighted, since one of the motivations of not treating the output
weights as adaptive parameters was to bias the kernels towards local coverage. Table 6 summarizes
information concerning weight distribution for the benchmark discussed in Section 3.1. For a given
training set divided in cross-validation folders, we took the average of the hidden unit weights in each
trial, and then computed the mean and standard deviation of those trials.

The way weights are computed in PRIM is slightly different from BPF but the purpose of this
comparison is to show that there is not a definitively better approach between these methods, and so this
difference is not much relevant. PRIM wins in nine of the fifteen data sets, but it is not clear if this result
could be extended to a larger sample of data sets. In fact, excluding the ill-defined smo (where normally
a classifier converges to the default rule), PRIM wins in 8 of 14 data sets, or only 57% of the experiments.
One cannot say that there is a clear dominant representation even in this benchmark, especially when
considering that in some data sets (as pid and vot) the difference is relatively small.

The large difference in thy can be explained by the fact that in this data set the error rate is extremely
low in a reasonable large data set. Some original rules of very high weight, but small coverage when
compared to the size of the data set, were excluded by the smoothing process of initialization, significantly
impacting the average weight of the final network produced by BPF. For the led data set, the Boolean
rules already composed a model of low average weight. BPF followed this bias by making the mapping
even more distributed. Both tae (much higher error rates than those achieved by CART, according to
Lim et al. [21]) and cmc (much higher number of rules, even after pruning with BPF) are exceptional
domains where PRIM bias was not appropriate, and hence weakens the relevance of weight distribution
difference for those data sets.

A different approach to evaluate the quality of the induced model can be undertaken by observing the
sensitivity of the probabilistic rules to the problem of small disjuncts. The problem of small disjuncts
was formalized by Holte et al. [17]: rules with small coverage are highly error-prone. Most of the errors
committed by rule-based classifiers (including decision trees) are due to rules that cover a small portion
of the input space. For example, Holte et al. present a set of experiments where rules with individual
coverage less than ten cases were responsible for up to ninety-five percent of the classification errors.
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Fig. 2. In (a), we have a typical distribution of accumulative percentage of coverage against accumulative percentage of errors
in a real-world data set (one of the training sets derived from data set seg of Section 3.1). Picture (b) shows an idealized
distribution where the percentage of error is proportional to the accumulated coverage.

Collectively, those rules were able to match a reasonable amount of data, but it is still far from the
proportion of committed errors.

Figure 2 depicts a typical graphic for analyzing this problem. One axis is proportional to the accumu-
lated coverage, obtained by summing the coverage of individual rules in a crescent order of number of
matched instances: i.e., for the partial coverage of the first j rules,

Coverage (ri) = number of instances covered by ri (8)

AccumulatedCoverage (j) = Coverage

(
j⋃

i=1

ri

)
(9)

and if k > j, then Coverage (rk) � Coverage (rj).
The other axis gives the percentage of all incorrectly classified instances that are covered by the j

rules that correspond to the point of AccumulatedCoverage (j). For example, for a point where the
accumulated coverage percentage (Eq. (9) divided by the total number of instances) is 0.45 and the
error percentage is 0.70, it means that the smallest disjuncts that cover 45% of all training instances are
responsible for 70% of all errors. In Fig. 2, 50% of coverage gives raise to more than 90% of all errors.

Note that small disjuncts are a major factor causing the increase in the number of components of a
rule-based classifier. As stated in the beginning of this section, the next paragraphs will focus on the
evaluation the quality of the probabilistic rules obtained: we are not trying to give any different treatment
to small disjuncts in order to improve accuracy.

Following Ali and Pazzani [1], it is interesting to emphasize the role of weighted rules in measuring the
small disjuncts effect. They concluded that allowing formation of overlapping disjuncts and choosing a
class by a function of the weights of the rules that cover a given input lessen the impact of small disjuncts,
as they demonstrate by a comparison using different relational learning models. For Boolean kernels as
those obtained by PRIM, we define that a rule “covers” an instance if it has the highest weight among
all rules that matches the given input. For BPF kernels, we define that a (probabilistic) rule covers an
instance if the product of its activation and its weight is the highest among all rules. Ties are rare and in
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Table 7
Summarized information concerning the distribution of accumulated coverage against accumulated
errors for PRIM and BPF

PRIM BPF-P PRIM BPF-P
mean sd mean sd mean sd mean sd

bcw 0.2247 0.0961 0.0898 0.1072 seg 0.3085 0.0421 0.2524 0.0595
bld 0.0498 0.0349 −0.0177 0.0327 smo −0.0059 – −0.0937 –
bos 0.1225 0.0207 0.0449 0.0369 tae −0.0086 0.0188 −0.0197 0.0313
cmc 0.0346 0.0140 0.0169 0.0158 thy 0.3906 – 0.0923 –
hea 0.0832 0.0420 0.0467 0.0596 veh 0.1159 0.0336 0.1163 0.0338
led 0.0309 – 0.0449 – vot 0.1356 0.0519 0.1770 0.1166
pid 0.0555 0.0339 0.0194 0.0362 wav 0.1233 – 0.0321 –
sat 0.1718 – 0.1215 –

practice this criterion guarantees that instances are not counted twice. The accumulated error is just the
number of instances that are covered by a unit that is from a different class.

To summarize the comparison of accumulated covering against accumulated errors, CE, we report the
following statistic

CE(model) =
1
N

N∑
j=1

{AccumulatedError (j) − AccumulatedCoverage (j)} (10)

where N is the number of rules. AccumulatedError (j) is the percentage of instances incorrectly covered
by the first j rules. AccumulatedCoverage (j) is defined in Eq. (9). Note that this statistic can be negative.
It can be interpreted as an estimator proportional to the area above the diagonal of a Coverage × Error
graphic (like Fig. 2) minus the area below the diagonal. Table 7 presents the results for the benchmark
of Section 3.1 comparing PRIM and BPF. Note that this definition counts errors with respect to the units
and, though similar, not necessarily corresponds to the accumulated errors of the whole mapping.

This measurement can be interpreted as another indicative of the quality of the rules. Since rules
of small coverage commit fewer errors, and they are the majority, they are more likely to individually
contribute for the classification without interfering with other kernels.

Also, distributions more similar to Fig. 2(a) than Fig. 2(b) tend to require more fragmented rule sets,
implying more complex models (i.e., larger rule sets). However, this is only another partial factor
that explains why BPF generates simpler models, since for some data sets (e.g., veh) there is no real
difference in this statistic.

4. Related work

Networks of kernel functions are widespread in many applications of artificial intelligence, and its
relation to rule-based knowledge is discussed at length in several publications (for example [19]). The
greatest depart that the proposed approach takes is focusing on delivering sets of probabilistic rules that
perform comparatively well in prediction accuracy while avoid unnecessary complexity.

Tresp et al. [34] presents one of the most similar frameworks. Among the differences, one has a distinct
way to parameterize the individual kernels. Tresp et al. interpret kernels as unconditional distributions.
Premises for numerical variables, for instance, are symbolically represented as xk = value, and are
parameterized as normal distributions centered at value. BPF maps intervals such as x k < value into
conditional distributions.
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Some of the first works about hybrid systems of neural networks and rules were surveyed in [33].
However, those frameworks focused mainly on multilayered perceptrons, and not local basis functions.
The primary purpose was refining a given theory expressed in logical rules. One interesting advantage
was allowing the output of a rule to be used as an input of another, instead of the straight input-output
mapping that is common in kernel-based networks. Some variations included a step that translated the
neural network back to a logical representation at a considerable computational cost.

Tree-based RBF [20] is very similar to BPF concerning the methodology of mapping from rules to
smooth kernels. However, TB-RBF focuses on fitting the neural network in order to improve prediction
accuracy. The free parameters are the output weights of the network, and each kernel is linked to all
output units representing classes (even if the kernel is not related to the classes represented by such units).
This full connection between rules and classes may not help to make the model more comprehensible,
but Kubat’s experiments gave evidence it was fundamental to improve its accuracy over the original rule
base (in fact, a classification tree).

From another perspective, hybrids of networks of local basis functions and rule-based knowledge has
been used for various purposes: Smyth et al. [31] use the partitions defined by classifications trees as
a way to select features and diminishes the impact of the curse of dimensionality in Parzen windows
estimators of probability. Similarly, Friedman et al. [10] applies a related combination for information
retrieval. Wettschereck et al. [35] discusses many applications of gradient-based optimization for learning
of local measures of attribute importance for instance-based models.

There is also a close relation with the RIPPER [6] methodology of rule optimization. RIPPER
algorithm alternates steps of pruning, rule revision and rule addition to cover any remaining positive
examples. This process is repeated k times, and those variants are called RIPPERk induction algorithms.
There is no rule smoothing, which was one of the main factors that contributed for model simplification
under BPF framework. Notice that one can use the final set of rules output by RIPPER as an input to
BPF.

5. Conclusions

The BPF framework does not intend to offer new approaches for rule induction, but rather building on
existing ones by allowing alternative techniques for model interpretation. In principle, any rule induction
algorithm can be used as part of this hybrid system, even those that already perform repeated cycles of
pruning.

Due to these various restrictions for interpretability warranties, in practice BPF hardly improves the
classification accuracy for rules generated by adequate rule induction algorithms. There is no adaptive
recombination of kernels, unlike the TB-RBF approach of Kubat [20]. There is no addition of extra
components (i.e., rules and premises) to explicitly lower the classification error, which in fact would
conflict with the purpose of model simplification. Indeed, many neurofuzzy approaches for classification
(highly similar to BPF) can be criticized for failing to achieve reasonable accuracy improvements [15].

The algorithm is less useful for problems where noisy is a minor issue, or there are few variables or
little data. Under these situations, rule induction algorithms will be less prone to generate unnecessary
rules. Also, since the procedure relies on gradient-based optimization, it will require more computational
time when compared with greedy rule induction algorithms, and one may want to apply some principled
procedure to choose the smoothing factor (e.g., by cross-validation) to assure no loss of accuracy or even
a trading-off predictive power for simplicity.

Some topics for future work are:
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– scaling up. A straight implementation of gradient-based optimization is usually very slow for larger
data sets, where “large” can be as little as 10,000 instances depending on the number of parameters.
However, improvements can be achieved by taking advantage of the local characteristics of kernels.
Omohundro [22] sketches some structures to rapidly evaluate basis functions that can be used as a
starting point to the development of faster BPF algorithms;

– evaluating BPF as an approach for recovering from overpruning. Since some pruning algorithms
may cause true losses in classification prediction [8], how the supervised learning would be able
to recover the model from those losses without addition of new kernels, i.e., just by fitting the
existing parameters? For example, by branching the process at a given point into separated networks
(allowing some α% increase on the pruning set error), performing the fitting and returning the one
with lowest classification error in a training/validation set. If networks with ( values greater than
zero are chosen, it will result in even simpler models. The computational cost of this beam search
in a model space is higher, of course, but easily leads to parallel implementations;

– handling variance. The variance in the number of parameters after BPF remained high, inheriting it
from the rule-based induction itself and the adopted pruning methodology. It would be interesting
to experiment how different pruning methodologies [3] to reduce this variance;

– creating measures of rule surprisingness for knowledge discovery purposes [9]. One could investigate
how the differences between the initial and final states of a given rule would be related to its degree
of surprisingness. For example, rules of low coverage tend to be discarded as noisy or irrelevant
components by the smoothing, pruning and fitting process. If they remain in the final rule base with
little or no modification, they could be pointing to interesting subclasses of the domain.
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