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Abstract. Meta-Learning has been successfully applied to acquire knowledge used to support the selection of learning algorithms.
Each training example in Meta-Learning (i.e. each meta-example) is related to a learning problem and stores the experience
obtained in the empirical evaluation of a set of candidate algorithms when applied to the problem. The generation of a good set of
meta-examples can be a costly process depending for instance on the number of available learning problems and the complexity
of the candidate algorithms. In this work, we proposed the Active Meta-Learning, in which Active Learning techniques are used
to reduce the set of meta-examples by selecting only the most relevant problems for meta-example generation. In an implemented
prototype, we evaluated the use of two different Active Learning techniques applied in two different Meta-Learning tasks. The
performed experiments revealed a significant gain in the Meta-Learning performance when the active techniques were used to
support the meta-example generation.

1. Introduction

In several domains of application,such as in Machine
Learning, there is a diversity of algorithms that can
be considered as candidates to solve particular prob-
lems. One of the most difficulty tasks in such domains
is to predict when one algorithm is better than anoth-
er to solve a problem at hand [13]. Traditional ap-
proaches to predicting the performance of algorithms
involve, in general, costly trial-and-error procedures,
or require expert knowledge, which is not always easy
to acquire [9]. Meta-Learning arises in this context as
an effective solution, capable of automatically predict-
ing algorithms performance for a given problem, thus
assisting users in the process of algorithm selection [9,
44].

Each training example for Meta-Learning (i.e., each
meta-example) stores the experience obtained from ap-
plying a number of candidate algorithms to a particu-
lar problem in the past. More specifically, each meta-
example stores: (1) the features used to describe the
problem; and (2) information about the performance
obtained by the algorithms in the problem. By receiv-
ing a set of such meta-examples as input, another learn-
ing algorithm (the meta-learner) is applied to acquire

knowledge relating the performance of the candidate
algorithms and the descriptive features of the problems.
The acquired knowledge is then used to support the se-
lection of adequate algorithms for new problems avail-
able in the future.

A difficulty that can be pointed out in the Meta-
Learning process is related to the generation of meta-
examples. In order to generate a meta-example from a
given past problem, it is necessary to perform an em-
pirical evaluation (e.g. cross-validation) to collect the
performance information of the candidate algorithms.
Hence, generating a whole set of meta-examples may
be expensive, depending for instance on the number
and complexity of the candidate algorithms, the effi-
ciency of the procedure used for algorithm evaluation,
the number of available problems and amount of data
available in each problem.

In this paper, we present the proposal of Active Meta-
Learning in which Active Learning techniques [7] are
used to support the generation of meta-examples. The
general motivation of Active Learning is to reduce the
number of training examples, at same time maintaining
the performance of the learning algorithms. In our spe-
cific proposal, Active Learning techniques are used to
reduce the number of meta-examples by selecting only
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the most relevant problems for meta-example genera-
tion, and consequently, reducing the number of empiri-
cal evaluations performed on the candidate algorithms.

In order to evaluate the proposed solution, we im-
plemented a prototype in which two different Ac-
tive Learning methods were used to generate meta-
examples for a k-NN (k-Nearest Neighbors) meta-
learner. The prototype was evaluated in two different
case studies, corresponding to meta-learning tasks pro-
posed in previous work. The experiments performed
in both case studies revealed a significant gain in the
meta-learner performance when the Active Learning
methods were used for generating meta-examples.

Section 2 brings a brief presentation of Meta-
Learning, followed by Section 3 which presents some
Active Learning techniques. Section 4 describes the
proposed solution and the implemented prototype, fol-
lowed by Section 5 which presents the performed ex-
periments and obtained results. Finally, Section 6 con-
cludes the paper.

2. Meta-Learning

According to [44], there are different interpretations
of the term Meta-Learning. In our work, we focused
on the definition of Meta-Learning as the automatic
process of acquiring knowledge that relates the per-
formance of learning algorithms to the features of the
learning problems [9]. In this context, each meta-
example is related to a learning problem and stores:
(1) the features describing the problem, called meta-
features; and (2) information about the performance of
one or more algorithms when applied to the problem.
The meta-learner is a learning system that receives as
input a set of such meta-examples and then acquires
knowledge used to predict the algorithms performance
for new problems being solved.

The meta-features are, in general, statistics describ-
ing the training dataset of the problem, such as number
of training examples, number of attributes, correlation
between attributes, class entropy, among others [5,8,
13]. In a strict formulation of Meta-Learning, each
meta-example stores, as performance information, a
class attribute which indicates the best algorithm for
the problem, among a set of candidates [2,12,16,26,
27]. In this case, the class label for each meta-example
is defined by performing a cross-validation experiment
using the available dataset. The meta-learner is simply
a classifier which predicts the best algorithm based on
the meta-features of the problem.

In [22], the authors used an alternative approach to
labeling meta-examples. Initially, 20 algorithms were
evaluated through cross-validation on 22 classification
problems. For each algorithm, the authors generated
a set of meta-examples, each one associated either to
the class label applicable or to the class label non-
applicable. The class label applicable was assigned
when the classification error obtained by the algorithm
fell within a pre-defined confidence interval, and non-
applicable was assigned otherwise. Each problem was
described by a set of 16 meta-features and, finally, a
decision tree was induced to predict the applicability of
the candidate algorithms.

In [13], the authors performed the labeling of meta-
examples by deploying a clustering algorithm. Initial-
ly, the error rates of 10 algorithms were estimated for
80 classification problems. From this evaluation, they
generated a matrix of dimension 80 X 10, in which each
row stored the ranks obtained by the algorithms in a
single problem. The matrix was given as input to a clus-
tering algorithm, aiming to identify groups (clusters)
of problems in which the algorithms obtained specific
patterns of performance (e.g. a cluster in which certain
algorithms achieved a considerable advantage relative
to the others). The meta-examples were then associ-
ated to the class labels corresponding to the identified
clusters. Hence, instead of only predicting the best
algorithm or the applicability of algorithms, the meta-
learner can predict more complex patterns of relative
performance.

Different approaches have been proposed in order
to add new functionalities in the Meta-Learning pro-
cess. In [10,11], for instance, a set of different meta-
learners is used not only to predict a class label asso-
ciated to algorithms performance, but also to recom-
mend a ranking of algorithms. In this approach, a strict
meta-learner is built for each different pair (X, Y) of
algorithms. Given a new learning problem, the outputs
of the meta-learners are collected and then, points are
credited to the algorithms according to the outputs. For
instance, if ’X’ is the output of meta-learner (X, Y) then
the algorithm X is credited with one point. The rank-
ing of algorithms is recommended for the new prob-
lem directly from the number of points assigned to the
algorithms.

The Meta-Regression approach [4,14] tries to direct-
ly predict the accuracy (or alternatively the error) of
each candidate algorithm. The meta-learner in this case
may be used either to select the algorithm with the
highest predicted accuracy or to provide a ranking of
algorithms based on the order of predicted accuracies.
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In [4], for instance, the authors obtained good results
when a linear regression model was used to predict the
accuracy of 8 different classification algorithms.

In the Zoomed-Ranking approach [38], the authors
originally proposed the use of instance-based learning
in order to produce rankings of algorithms taking into
account accuracy and execution time. In this approach,
each meta-example stores the meta-features describing
a learning problem, as well as the accuracy and execu-
tion time obtained by each candidate algorithm in the
problem. Given a new learning problem, the Zoomed-
Ranking retrieves the most similar past problem based
on the similarity of meta-features. The ranking of al-
gorithms is then recommended for the new problem by
deploying a multi-criteria measure that aggregates the
total accuracy and execution time obtained by the algo-
rithms in the similar problems. More recently, the au-
thors provided a deeper investigation of these ideas [5].

The Landmarking approach [24] tries to relate the
performance of the candidate algorithms to the perfor-
mance obtained by simpler and faster designed learn-
ers, called landmarkers. This approach claims that
some widely used meta-features are very time consum-
ing, and hence, landmarking would be an economic ap-
proach to the characterization of learning problems and
to provide useful information for the Meta-Learning
process.

The concepts and techniques of meta-learning were
mainly evaluated to select the best algorithms for classi-
fication tasks. In recent years, Meta-Learning has been
extrapolated to other domains of application, such as
in the selection of time series forecasting models [27]
and in the design of planning systems [42]. In such
domains, Meta-Learning can be seen as tool for anal-
ysis of experiments performed by using a number of
algorithms on a large set of problems that can be solved
by the algorithms. The knowledge acquired from this
analysis can be used to select algorithms for new prob-
lems. In this sense, Meta-Learning is a more general
framework and it is expected to be also useful to algo-
rithm selection in problems related to different domains
of application.

3. Active Learning

In the traditional supervised learning, the learner is
trained by taking as input a set of randomly chosen
training examples. This approach is referred in the lit-
erature as passive learning [31], and it has been broadly
applied in several applications. However, both empir-

ical and theoretical studies have shown that the learn-
ing performance can be improved when the learner is
allowed to ask questions to the teacher, i.e to decide
which data will be included in the training set.

Active Learning is a paradigm of Machine Learning
in which the learning algorithm has some control over
the inputs on which it trains [7]. The main objective
of this paradigm is to reduce the number of training
examples, at same time maintaining (or even improv-
ing) the performance of the learning algorithm. Active
Learning is ideal for learning domains in which the ac-
quisition of labeled examples is a costly process, such
as image recognition [20], text classification [30,41],
speech recognition [31] and information filtering [34].

One of the earliest approaches to Active Learning is
the membership query [3], in which the learner artifi-
cially creates informative examples in the input domain
and asks the teacher to annotate it. According to [23],
this approach is limited in practice since it is likely to
produce examples that do not have any sense in the
domain of application (e.g. an unrecognizable image).

According to [20], previous work in Active Learning
has been mainly concentrated in the selective sampling
approach. In this approach, the learning algorithm has
access to a set of (natural) unlabeled examples and, at
each moment, selects the most informative ones. The
teacher is asked to label the selected examples, which
will be then included in the training set. According
to [23], the selective sampling methods can be distin-
guished on three main categories, uncertainty-based
methods, version space reduction methods and error
reduction methods, described just below.

In uncertainty-based methods [18,20,30,35] for se-
lective sampling, in order to select unlabeled examples,
the learner initially uses the currently labeled examples
to generate a prediction for each unlabeled example.
Following, a degree of uncertainty of the provided pre-
diction is assigned for each unlabeled example. Final-
ly, the active method selects the example with high-
est uncertainty. According to [23], these methods can
be straightforwardly applied to many different learning
algorithms. A limitation of uncertainty based meth-
ods, however, is that they often select examples that
are outliers [32]. Such examples have in fact a high
degree of uncertainty but they should not be considered
as informative.

In the version space reduction methods (also called
committee-based methods) [1,19,21,36,41], a subset of
the version space (i.e. a committee of hypotheses con-
sistent with the current labeled examples) is generated
and then applied to make predictions for the unlabeled
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examples. The method then selects the unlabeled ex-
ample on which the members of the committee most
disagree. These methods are actually related to uncer-
tainty methods, since the degree of disagreement on the
committee’s predictions can be viewed as a measure of
uncertainty. Different committee-based methods were
proposed in the literature. These methods can be main-
ly distinguished by the way of generating the commit-
tees, which includes, for instance, the use of bagging
and boosting algorithms [1].

In the error reduction methods [20,32,40], the se-
lected unlabeled example is the one that minimizes the
expected error rate of the learner, once labeled and in-
cluded in the training set. Since the true label of an
unlabeled example is not known a priori, the expected
error rate is an average rate over the possible labels
that the example could be assigned to. Although these
methods have obtained good performance compared to
other selective sampling methods, they are computa-
tionally expensive, since for each candidate example
and possible label, it is necessary to re-train the learner
in order to compute the expected error rate [32].

As it was said, Active Learning methods have been
applied to improve learning performance in different
applications. As it will be seen, we propose here an
original work that use of Active Learning methods in
the context of Meta-Learning.

4. Active Meta-Learning

As seen in Section 2, in order to generate a meta-
example from a given problem, it is necessary to per-
form an empirical evaluation of the candidate algo-
rithms on the problem. The empirical evaluation is
performed in order to collect the performance informa-
tion of the algorithms, and hence, to define the target
attribute in the Meta-Learning process (e.g. the class
corresponding to the best algorithm).

Although the proposal of Meta-Learning is to per-
form the empirical evaluation of the algorithms only in
a limited number of problems, the cost of generating
a set of meta-examples may be high depending on a
number of aspects, including, for instance, the method-
ology of empirical evaluation, the number of available
problems, and the number and complexity of the can-
didate algorithms. In this context, the use of Active
Learning may improve the Meta-Learning process by
reducing the number of required meta-examples, and
consequently the number of empirical evaluations on
the candidate algorithms.

Figure 1 presents the architecture of system follow-
ing our proposal, which has three phases. In the meta-
example generation, the Active Learning (AL) module
selects from a base of problems, those ones considered
the most relevant for the Meta-Learning task. The se-
lection of problems is performed based on a pre-defined
criteria implemented in the module, which takes into
account the features of the problems and the current
knowledge of the Meta-Learner (ML). The candidate
algorithms are then empirically evaluated on the select-
ed problems, in order to collect the performance infor-
mation related to the algorithms. Each generated meta-
example (composed by meta-features and performance
information) is then stored in an appropriate database.

In the training phase, the Meta-Learner acquires
knowledge from the database of meta-examples gen-
erated by the AL module. This knowledge associates
meta-features to the performance of the candidate al-
gorithms. The acquired knowledge may be refined as
more meta-examples are provided by the AL module.

In the use phase, given a new input problem, the
Feature Extractor (FE) module extracts the values of
the meta-features. According to these values, the ML
module predicts the performance information of the
algorithms. For that, it uses the knowledge previously
acquired as a result of the training phase.

In [28,29], we presented the initial experiments per-
formed to evaluate the viability of the proposed solu-
tion. In the current work, we present new experiments
that evaluated the proposed solution. Here, we imple-
mented a prototype which was applied in two different
case studies. In this prototype, the k-Nearest Neighbors
(k-NN) algorithm was used in the ML module, and two
different Uncertainty-based Active Learning methods
were used in the AL module. In the next sections, we
provide more details of the proposed implemented pro-
totype. In Section 5, we present the two case studies as
well as the experiments and obtained results.

4.1. Meta-Learner

The Meta-Learner in the prototype corresponds to a
conventional classifier, and it is applicable to tasks in
which the performance information is formulated as a
class attribute (e.g. the class associated to the best algo-
rithm or the class related to patterns of performance).
In the implemented prototype, we used the k-NN al-
gorithm which has some advantages when applied to
Meta-Learning [5]. For instance, when a new meta-
example becomes available, it can be easily integrat-
ed without the need to initiate re-learning [5]. In this
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Fig. 1. System architecture.

section, we provide a description of the meta-learner
based on k-NN. Other classes of learning algorithms,
such as neural networks and support vector machines,
can be applied in future work as meta-learners.

Let E = {e1, . . . , en} be the set of n problems
used to generate a set of n meta-examples ME =
{me1, . . . , men}. Each meta-example is related to a
problem and stores the values of p features X1, . . . , Xp

(implemented in the FE module) for the problem and
the value of a class attribute C, which is the perfor-
mance information

Let C = {c1, . . . , cL} be the domain of the class
attribute C, which has L possible class labels. In this
way, each meta-example mei ∈ ME is represented as
the pair (xi, C(ei)) storing: (1) the description xi of
the problem ei, where xi = (x1

i , . . . , x
p
i ) and xj

i =
Xj(ei); and (2) the class label associated to ei, i.e.
C(ei) = cl, where cl ∈ C.

Given a new input problem described by the vector
x = (x1, . . . , xp), the k-NN meta-learner retrieves the
k most similar meta-examples from ME, according
to the distance between meta-attributes. The distance
function (dist) implemented in the prototype was the
unweighted L1-Norm, defined as:

dist (x,xi) =
p∑

j=1

|xj − xj
i |

maxi(x
j
i ) − mini(x

j
i )

(1)

The prediction of the class label for the new problem
is performed according to the number of occurrences
(votes) of each cl ∈ C in the class labels associated to
the retrieved meta-examples.

4.2. Active Learning

The ML module acquires knowledge from a set of
labeled meta-examples. The AL module receives a set

of unlabeled meta-examples, associated to problems in
which the candidate algorithms were not yet evaluated.
The AL module incrementally selects unlabeled meta-
examples to be used for generating new labeled meta-
examples. In the prototype, the AL module consid-
ers two different uncertainty-based methods (see Sec-
tion 3) which selects the unlabeled example for which
the current learner has the highest uncertainty in its
prediction. These methods are described as follows.

4.2.1. Active Learning: Uncertainty Method A
The classification uncertainty of the k-NN algorithm

is defined in [20] as the ratio of: (1) the distance be-
tween the unlabeled example and its nearest labeled
neighbor; and (2) the sum of the distances between the
unlabeled example and its nearest labeled neighbors of
different classes.

In the above definition, a high value of uncertain-
ty indicates that the unlabeled example has nearest
neighbors with similar distances but conflicting label-
ing. Hence, once the unlabeled example is labeled, it
is expected that the uncertainty of classification in its
neighborhood should be reduced.

In our context, let E be the set of problems associated
to the labeled meta-examples, and let Ẽ be the set of
problems used to generate unlabeled meta-examples.
Let El be the subset of labeled problems associated
to the class label cl, i.e. El = {ei ∈ E|C(ei) = cl}.
Given the set E, the classification uncertainty of k-NN
for each ẽ ∈ Ẽ is defined as:

S(ẽ|E) =
minei∈E dist (x̃,xi)∑L

l=1 minei∈El
dist (x̃,xi)

(2)

In the above equation, x̃ is the description of prob-
lem ẽ. The AL module then selects, for generating a



Galley Proof 18/06/2008; 15:40 File: his65.tex; BOKCTP/Haina p. 6

6 R.B.C. Prudêncio and T.B. Ludermir / Selective generation of training examples in active meta-learning

new labeled meta-example, the problem ẽ∗ ∈ Ẽ with
highest uncertainty:

ẽ∗ = argmax
ẽ∈Ẽ

S(ẽ|E) (3)

Finally, the selected problem is labeled (i.e. the class
value C(ẽ∗) is defined), through the empirical evalu-
ation of the candidate algorithms using the avaliable
data of the problem.

4.2.2. Active Learning: Uncertainty Method B
In the second method considered in the AL module,

we adopted the concept of entropy to define classifica-
tion uncertainty. Assume that the k-NN can predict for
each given example a probability distribution over the
possible class values. Formally, the probability distri-
bution for an unlabeled problem ẽ can be represented
as:

pC(ẽ|E) = (p(C(ẽ) = c1|E), . . . , p(C(ẽ)

= cL|E)) (4)

According to [39], the entropy of the probability
distribution reflects the certainty of the classifier in the
predicted class value. The entropy of the probability
distribution is computed as:

Entropy (ẽ|E) = −
L∑

l=1

p(C(ẽ)

= cl|E) ∗ log2 p(C(ẽ)

= cl|E) (5)

If the probability distribution is highly spread, the
value of entropy will be high, which indicates that the
classifier is not certain in its prediction. On the other
hand, if the distribution is highly focused on a single
class label, the entropy is low, indicating a low degree
of uncertainty in predicted class value.

As in the previous section, in this method, the AL
module selects the problem ẽ∗ ∈ Ẽ with highest un-
certainty defined by the entropy measure:

ẽ∗ = argmax
ẽ∈Ẽ

Entropy (ẽ|E) (6)

In our work, the class probability distribution for
a given example is estimated by using the number of
votes that each class label received among the retrieved
meta-examples. In the next section, we present the
case studies that evaluated the two implemented active
methods.

5. Case studies

In this section, we present the application of the
implemented prototype to two different case studies
that correspond to two meta-learning tasks originally
presented in previous work [25,28]. Each case study
provides a set of meta-examples which was used in the
current work to perform experiments to evaluate the
implemented prototype.

5.1. Case Study I

In the first case study, the implemented prototype was
evaluated in a meta-learning task originally proposed
in [25] which consisted in selecting between two can-
didate algorithms for time series forecasting problems:
the Time-Delay Neural Network (TDNN) [15] and
the Simple Exponential Smoothing model (SES) [6].
In [25], a set of meta-examples was generated from the
evaluation of TDNN and SES on 99 time series col-
lected from the Time Series Data Library.1 Hence, 99
meta-examples were generated.

Each meta-example was related to a single time se-
ries and stored: (1) the values of p = 10 meta-attributes
(features describing the time series data) and (2) a class
attribute which indicated the best forecasting model
(SES or TDNN) for that series. The set of meta-
attributes was composed by:

1. Length of the time series (X1): number of obser-
vations of the series;

2. Mean of the absolute values of the 5 first-order
autocorrelations (X2): the autocorrelation coeffi-
cient rs measures the correlation in a given series
Zt(t = 1 . . . T ) at different points in time (see
Eq. (7), where s is the order of the autocorrela-
tion, T is the length of the series and Z is the
mean value of the series). High values of this fea-
ture suggests that the value of the series at a time
point is very dependent of the values in recent
past points.

rs =
∑T−s

t=1 (Zt − Z)(Zt+s − Z)∑T
t=1(Zt − Z)

(7)

3. Test of significant autocorrelations (X3): pres-
ence of at least one significant autocorrelation
taking into account the first 5;

1TSDL – http://www-personal.buseco.monash.edu.au/˜hyndman/
TSDL
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4. Significance of the first, second and third autocor-
relation (X4, X5 and X6): indicates significant
dependences in more recent past points;

5. Coefficient of variation (X7): measures the de-
gree of instability in the series;

6. Absolute value of the skewness and kurtosis co-
efficient (X8 and X9): measure the degree of
non-normality in the series;

7. Test of Turning Points for randomness (X10): Zt

is a turning point if Zt−1 < Zt > Zt+1 or Zt−1 >
Zt < Zt+1. The presence of a very large or a very
low number of turning points in a series suggests
that the series is not generated by a purely random
process.

The above features are classical measures for de-
scribing time series and can be quickly computed even
for a large number of series [37]. Different works in the
literature used at least part of these features for model
selection purposes [26,27,37,43].

In this case study, the labeling of a time series
(i.e. definition of the class attribute for training meta-
examples) is performed through the empirical evalua-
tion of TDNN and SES in forecasting the series. For
this, a hold-out experiment was performed,as described
in [25]. Given a time series, its data was divided into
two parts: the fit period and the test period. The test
period consists on the last 30 points of the time series
and the fit period consists on the remaining data. The fit
data was used to calibrate the parameters of both mod-
els TDNN and SES. Both calibrated models were used
to generate one-step-ahead forecasts for the test data.
Finally, the class attribute was assigned as the model
which obtained the lowest mean absolute forecasting
error on the test data.

5.1.1. Experiments
The prototype was evaluated for different configu-

rations of the k-NN meta-learner (with k = 1, 3, 5, 7,
9 and 11 nearest neighbors). For each configuration,
a leave-one-out experiment was performed to evalu-
ate the performance of the meta-learner, also varying
the number of meta-examples provided by the Active
Learning module. This experiment is described just
below.

At each step of leave-one-out, one problem is left out
for testing the ML module, and the remaining 98 prob-
lems are considered as candidates to generate meta-
examples. The AL module progressively includes one
meta-example in the training set of the ML module, up
to the total number of 98 training meta-examples. At

each included meta-example, the ML module is judged
on the test problem left out, receiving either 1 or 0 for
failure or success. Hence, a curve with 98 binary judg-
ments is produced for each test problem. Finally, the
curve of error rates obtained by ML can be computed
by averaging the curves of judgments over the 99 steps
of the leave-one-out experiment.

The above procedure was applied for each Uncer-
tainty method considered in the AL module (see Sec-
tion 4.2). As a basis of comparison, the same above
experiment was applied to each configuration of k-
NN, but using in the AL module a Random Sampling
method for selecting unlabeled problems. According
to [20], despite its simplicity, the random method has
the advantage of performing a uniform exploration of
the example space.

Finally, we highlight that the experiments were per-
formed in 30 different runs for each configuration of
the k-NN meta-learner.

5.1.2. Results
Figure 2 presents the curves of error rates obtained

by the k-NN meta-learner averaged across the different
configurations of the parameter k and runs of experi-
ments. The figure presents the average curve obtained
when the three methods were used: the Uncertainty
Method A (which was proposed in [20]), the Uncer-
tainty Method B (which used the concept of entropy)
and the Random Sampling method.

As it is expected, for all methods, the error rate ob-
tained by the ML module decreased as the number of
meta-examples in the training set increased. However,
the error rates obtained by deploying the Uncertainty
methods were, in general, lower than the error rates
obtained by deploying the Random method. In abso-
lute terms, the Uncertainty Method A steadily achieved
better performance compared to the Random method
from 13 to 87 meta-examples included in the training
set. The Uncertainty Method B, in turn, obtained better
performance compared to the Random method from 13
to 95 points in the curve or error rates (excepting the
point 46). Hence, for both Uncertainty methods, an
absolute gain in performance was obtained in the most
part of the curve of error rates.

In the performed experiments, we also compared the
Uncertainty methods to the Random Sampling in sta-
tistical terms, by applying a t-test (95% of confidence)
to the difference of error rates. Figure 3 presents the
points in the curve of error rates in which the Uncer-
tainty methods were statistically better than the Ran-
dom method. The Uncertainty Method A obtained a
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Fig. 2. Case Study I – Average curves of error rates for both Uncertainty methods evaluated in the AL module and for the random sampling
method.

statistical gain in 37 points of the curve of error rates,
which represent about 38% of the 98 points. These
points ranged from 23 to 80 meta-examples, with some
observed interruptions (see Fig. 3(a)). The Uncertain-
ty Method B in turn obtained a statistical gain in 44
points of the curve of error rates (about 45% of the 98
points). The statistical gain in this method was more
regular compared to the Uncertainty Method A and it
was observed especially in the second half of the curve
(see Fig. 3(b)). From 54 to 91 included meta-examples,
we observed a statistical gain with Uncertainty Method
B without interruptions.

5.2. Case Study II

In the second case study, the prototype was evaluat-
ed in a meta-learning task proposed in [28] which con-
sisted in predicting the performance pattern of Multi-
Layer Perceptron (MLP) networks for regression prob-
lems. Below, we provide a brief description of the
meta-examples related to this task. More details can be
found in [28].

The set of meta-examples was generated from the
application of MLP to 50 different regression problems,

available in the WEKA project.2 Each meta-example
was related to a regression problem and stored: (1)
the values of p = 10 meta-attributes describing the
problem; and (2) a class attribute which indicated the
performance pattern obtained by the MLP network on
the problem. The set of meta-attributes was composed
by:

1. Log of the number of training examples (X 1);
2. Log of the ratio between number of training ex-

amples and number of attributes (X2);
3. Min, max, mean and standard deviation of the

absolute values of correlation between predictor
attributes and the target attribute (X3, X4, X5 and
X6);

4. Min, max, mean and standard deviation of the
absolute values of correlation between pairs of
predictor attributes (X7, X8, X9 and X10).

In [28], the meta-examples were assigned to class
labels which indicated specific patterns of performance
obtained by the MLP. The possible class labels for the
meta-examples were defined from a clustering proce-
dure applied on the MLP performance over the 50 prob-

2These datasets are specifically the sets provided in the files numer-
ic and regression available to download in http://www.cs.waikato.ac.
nz/ml/weka/.
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Fig. 3. Case Study I – Comparison of the uncertainty methods to the random sampling in statistical terms. The circles indicate the points in
which a statistical gain in performance was observed by using the uncertainty method.

lems. The motivation was to discover groups (clusters)
of problems with similar pattern of algorithm perfor-
mance, and to use the identified clusters as class la-
bels for meta-examples. Such meta-learning approach
was adopted, for instance, in [13] (see Section 2). The
meta-attributes in this case are used by a meta-learner to
predict the specific pattern of algorithms performance
for new tasks being presented. The methodology used
in [28] to labeling of meta-examples is described below.

Initially, the MLP was empirically evaluated on
the 50 regression problems by using two training
algorithms, the Backpropagation (BP) [33] and the
Levenberg-Marquardt (LM) [17]. Following, the test
error rates obtained by using BP and LM on the 50
problems were analyzed by a clustering technique. In
this clustering process, the objects to be grouped were
points in a bidimensional space, in such a way that each
point represented the test error rates obtained by BP and
LM on a specific problem. Two clusters of problems
were identified and used to define class labels: (1) the
cluster1, composed by 26 problems, in which both BP
and LM algorithms obtained low test errors; and (2)
the cluster2, composed by 24 problems, in which the
LM algorithm obtained intermediate error rates and BP
obtained high error rates when used to train the MLP.

5.2.1. Experiments
The experiments performed on this case study fol-

lowed the same methodology applied in the first case
study. We performed 30 runs of experiments for each
different value of the parameter k (1, 3, 5, 7, 9 and 11)
adopted in the ML module. As in the first case study,
the ML module was evaluated by progressively includ-
ing meta-examples in its training set. The methodol-
ogy of experiments was applied for both Uncertainty

Sampling methods and for the Random procedure. The
average curves of error rates were computed across the
different values of k and runs of experiments.

5.2.2. Results
As in the first case study, the error rates decreased

as the number of meta-examples in the training set
increased, considering the three evaluated methods.
However, the curves of error rates obtained by both Un-
certainty methods were more stable, showing a lower
degree of oscillation in the error rates (see Fig. 4), com-
pared to the pattern of results obtained in the first case
study. In absolute terms, the results obtained by the
Uncertainty methods were also better than the Random
method in the most part of the curve of error rates.

The Uncertainty Method A, proposed in [20], ob-
tained lower error rates earlier, when compared to the
Uncertainty Method B which is based on entropy. In
fact, in the first half of the curve of errors rates the
performance of the Uncertainty Method A was steadi-
ly better than the entropy-based method. However,
from 30 to 35 meta-examples in the training set, there
is a turning point in the curves of error rates, in such
a way that the Uncertainty Method B became better
than method A. The lower performance of Uncertainty
Method A in the second half of the curve of error rates
was also observed in the first case study. Based on
these results, we intend to investigate in future work,
the combination of the two methods in order to obtain
a consistent performance in the whole curve of error
rates.

The good results of the Uncertainty methods were
also observed to be statistically significant compared
to the Random Sampling (see Fig. 5). A t-test (95%
of confidence) applied to the difference of error rates
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Fig. 4. Case Study II – Average curves of error rates for both the classification uncertainty and the random method.

0 10 20 30 40 50
25

30

35

40

45

50

55

Number of MetaExamples in the Training Set

A
ve

ra
ge

 E
rro

r (
%

)

0 10 20 30 40 50
25

30

35

40

45

50

55

Number of MetaExamples in the Training Set

A
ve

ra
ge

 E
rro

r (
%

)

(a) Uncertainty Method A (b) Uncertainty Method B 

Fig. 5. Case Study II – Comparison of the uncertainty methods to the random sampling in statistical terms. The circles indicate the points in
which a statistical gain in performance was observed by using the uncertainty method.

indicated that the Uncertainty Method A obtaining a
gain in performance compared to the Random Method
in 31 points in the curve of error rates (about 63% of the
49 points). The Uncertainty Method B in turn obtained
a statistical gain in performance in 30 points in the
curve of error rates (about 61% of the points).

6. Conclusion

In this paper, we presented the proposal of Active
Meta-Learning in which Active Learning was used to

support the generation on training examples for Meta-
Learning. We can point out contributions of our work
to two different fields: (1) in the Meta-Learning field,
we proposed a new approach to improve meta-learning
performance, speeding up the meta-example genera-
tion; and (2) in the Active Learning field, we applied
its concepts and methods in a context which had not
yet been tackled. We envisioned that different devel-
opments of the current work will be proposed in the
future.

A prototype was implemented using the k-NN algo-
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rithm as meta-learner and Uncertainty-based methods
for Active Learning. The prototype was evaluated in
two different case studies, and the results obtained by
the Active Learning methods were significantly better
than a Random method for selecting meta-examples.

In future work, we intend to evaluate the use of
other Active Learning methods (e.g. committee-based
and error-reduction methods), as well as to investigate
the combination of different Active Learning methods
in the context of Meta-Learning. We also intend to
adapt Active Learning methods for other meta-learners
which were not deployed in the current work (e.g. Meta-
Regression techniques).
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