
Journal of Intelligent & Fuzzy Systems 13 (2002/2003) 111–122 111
IOS Press

Model selection via Genetic Algorithms for
RBF networks

Estefane G.M. de Lacerdaa, André C.P.L.F. de Carvalhob and Teresa B. Ludermira

aFederal University of Rio Grande do Norte, Brazil
E-mail: estefane@dca.ufrn.br
bICMC – University of S̃ao Paulo, S̃ao Carlos, SP, Brazil
E-mail: andre@icmc.usp.br

Abstract. This work addresses the problem of finding the adjustable parameters of a learning algorithm using Genetic Algorithms.
This problem is also known as the model selection problem. In this paper, some model selection techniques (e.g., crossvalidation
and bootstrap) are used as objective functions of a Genetic Algorithm. The Genetic Algorithm is modified in order to allow the
efficient use of these objective functions by means of occam’s razor, growing, and other heuristics. Some modifications explore
intrinsic features of Genetic Algorithms, such as their ability to handle multiple and noise objective functions. The proposed
techniques are very general and may be applied to a large range of learning algorithms.

Keywords: Genetic Algorithms, model selection, crossvalidation, holdout, bootstrap, RBF networks

1. Introduction

Most Machine Learning techniques focus the prob-
lem of approximating a target functionf : X → Y
by using the information from a sample of exam-
ples (xi, yi), for i = 1, . . . , p, wherex ∈ X and
yi = f(xi). In principle, a learnerL (a learning al-
gorithm) builds a hypothesis functionh ∈ H that ap-
proximates the target functionf by determining the pa-
rameter settingθ of the hypothesis. Most of the time,
however, the hypothesis has a few parameters which
the learner itself is unable to determine: the adjustable
parameters.

Thus, for a particular learnerL, there are two kinds
of parameters in a hypothesis: the parametersτ (train-
ing parameters) that are determined automatically by
L and the parametersλ (adjustable parameters) that
are not determined byL. θ = τ ∪ λ andτ ∩ λ = ∅.
The adjustable parameters are typically determined by
human subjective judgment based on previous experi-
ence, rule of thumbs or heuristics provided by authors
and practitioners of the learning algorithm.

In other words, the adjustable parameters are deter-
mined by minimizing an estimative of thetrue predic-

tion error [2] (true error for short) over a set of ad-
justable parameters that is known to work well on the
training dataset. A common example of this procedure
is to train a neural network using the backpropagation
learning algorithm [17]. The backpropagation algo-
rithm sets the weight parameters of the network, but
is unable to define the number of hidden units (which
are the adjustable parameters of the problem). The
search carried out by the user in order to find the best
adjustable parameter is essentially a trial-and-test op-
timization method, which becomes inefficient if the
search space is too large. Hence, the human subjec-
tive judgment and heuristics to make the trial-and-test
method more efficient are needed. Others common
examples of adjustable parameters are the amount of
pruning of a decision tree, the degree of a polynomial
fit to a set of points, and the ridge parameter of the ridge
regression.

The problem of estimating the true error of hypoth-
esis using different adjustable parameters in order to
choose the (approximate) best one is known as model
selection [8]. The purpose of this work is to present
Genetic Algorithms (GAs) as an alternative to the trial-
and-test optimization method for model selection.

1064-1246/02/03/$8.00 2002/2003 – IOS Press. All rights reserved

112 E.G.M. de Lacerda et al. / Model selection via Genetic Algorithms for RBF networks

More formally, the optimization problem to be
solved by GA can be described as follows:

A hypothesish : X → Y (whereX × Y = E is the
example space) is built by the learnerL from a choice
of the value of the adjustable parameterλ and a training
datasetD. It is assumed that the learner is deterministic.
That is, for a particular choice ofλ andD, the learner
always builds the same hypothesis. Thus, hypothesish
can be represented ash(λ,D). The notationh(x;λ,D)
represents the prediction ofh(λ,D) for the data point
x.

The true error measures how well a hypothesis
h(λ,D) predicts the response value of a future example.
The true error may be defined as

e(λ) = E〈δ(y, h(x;λ,D))〉 (1)

whereδ(x, y) is a loss function. The expectation in
Eq. (1) refers to repeated sampling of examples ran-
domly drawn from the example spaceE with the same
probability that was used to select the examples from
training datasetD. Regression problems usually em-
ploy the quadratic loss functionδ(x, y) = (x − y)2.
Classification problems usually make use of the0/1
loss function: δ(x, y) = 1 if x = y, otherwise
δ(x, y) = 0. By using the0/1 loss function, the func-
tion e(λ) represents the probability of correctly classi-
fied examples.

The problem of choosing the adjustable parameter
(i.e., model selection problem) can be defined as:

Findλ that minimizese(λ) (2)

The true errore(λ) is unknown, once the only avail-
able information on the target function is contained into
the datasetD. Because of this, a number of methods for
estimating the true error have been proposed [2]. The
most commonly used methods for true error estimation
are:

– Holdout;
– Crossvalidation;
– Bootstrap.

Consider that̂e(λ,D) is an estimation ofe(λ) using
the information from the datasetD by means of those
methods. The problem of optimizating the adjustable
parameter can be reformulated as:

Findλ that minimizeŝe(λ,D) (3)

The best estimations of the true error are usually
obtained by the crossvalidation and bootstrap meth-
ods, which transform this optimization problem into
a difficult problem. Crossvalidation and bootstrap are
computer procedures, but may be interpreted as simple
functions from the optimization view point. As objec-
tive functions, they have the following drawbacks:

– These functions are not easy to be handled alge-
braically, and hence derivatives are not easy to
calculate.

– These functions are also multimodals (i.e., there
are several values ofλ that minimizes the function
locally).

– For a given pointλ, to obtain the response of the
crossvalidation and bootstrap functions, a large
amount of CPU time may be needed, making their
minimization hard for any optimization technique
(including GAs).

Because of the complex nature of this optimization
problem, GAs are a natural candidate for solving it.
Unlike other optimization techniques, GAs provide a
suitable framework for the model selection problem,
due to its peculiar search mechanism able to handle
many hypotheses simultaneously. This search mecha-
nism enables GAs to use (and to create) new heuristics
(as shown later), to cope with noise estimation of the
true error and to be used for multiobjective optimiza-
tion.

This work addresses GAs search mechanism, instead
of other more studied aspects, like encoding and genetic
operators (mainly for Neural Networks [21]). This
paper is organized as follows. A simple GA method
with occam elitism for model selection is described
in Section 2. Section 3 shows an example of a Ma-
chine Learning model (that will be used throughout
the paper), its genetic representation and experimen-
tal studies. Crossvalidation, bootstrap and other ob-
jective functions are presented in Section 4, together
with some experimental results. Section 5 evaluates a
multiobjective GA employing two heuristics (growing
and shuffling) that aim to improve the quality of the ge-
netic hypothesis. Finally, Section 6 presents the main
conclusions.

2. A simple GA method for model selection

The application of GAs for model selection involves
the optimization of the adjustable parameters. It is
worth noting that the adjustable parameters of a hy-
pothesis do not only depend on the features of the hy-
pothesis, but also on the learner. Different learners can
produce different adjustable parameters for the same
hypothesis.

To avoid proliferating notation, the symbolλ will
represent both the chromosome and the adjustable pa-
rameters it encodes. Throughout the text, the dataset

E.G.M. de Lacerda et al. / Model selection via Genetic Algorithms for RBF networks 113

D = {(xi, yi); i = 1, . . . , p} (4)

represents the set of all the examples avaliable for the
problem at hand.

A typical GA for model selection has the following
characteristics:

1. The chromosome encodes only the adjustable pa-
rameters.

2. A learnerL is embedded in the procedure that
evaluate the chromosome.

3. A method for estimating the true error.

A simple GA for model selection is illustrated in
Fig. 1. The procedureevaluate() in Fig. 1 computes
the fitness function, that is, the estimation of the true er-
ror ê for each chromossome by using traditional meth-
ods for model selection, such as holdout, crossvalida-
tion and bootstrap. In the next section, the holdout
function is presented.

2.1. The holdout fitness function

One of the most used methods for model selection,
the holdout method [10], as can be seen in Fig. 2,
divides a datasetD into two parts: the training set
Dt, on which the hypothesis is built, and the holdout
set Dh (also known as validation set), on which its
performance is measured. Thus,

Dh = D \ Dt (5)

Leth(λ,Dt) be the hypothesis built from the dataset
Dt using the adjustable parameterλ. The fitness of the
chromosomeλ is given by:

f(λ) =
1

|Dh|
∑

(x,y)∈Dh

δ(h(x;λ,Dt), y) (6)

In order to improve the simple GA from the Fig. 1,
the use of the occam elitism is proposed.

2.2. The occam elitism

Occam’s razor is a principle attributed to the 14th
century philosopher William of Occam. The principle
states that “entities should not be multiplied unneces-
sarily”. With this “razor”, Occam cut out all super-
fluous, redundant explanations. Scientists have rein-
tepreted the Occam’s razor. A useful statement of the
principle for scientists is, “when you have two compet-
ing theories which make exactly the same predictions,
the one that is simpler is the better.” Machine learning
scientists [13] have stated that principle as “prefer the
simplest hypothesis that fits the data”. For this work,
the following statement is used:

Fig. 1. A Genetic Algorithm for Model Selection.

Fig. 2. The data set partition by the holdout method.

Occam’s razor: given two hypothesiswith the same
estimation of true error, the one that is simpler is the
better because it is likely to have lower true error.

The traditional elitism is a well known strategy in
GAs which works by never replacing the best chro-
mosome in a population with inferior solutions. That
is,

Elitism: the best chromosome is kept from genera-
tion to generation.

The occam elitism is based on the assumption that
theκ best hypotheses in the population are equivalent

114 E.G.M. de Lacerda et al. / Model selection via Genetic Algorithms for RBF networks

w0

wm

bias

zm(x)

z1(x)

w1
x1

xn

x1

xn

Σ
h()x

input layer hidden layer output layer

Fig. 3. RBF Network.

in terms of estimation of true error (at least under some
statistical confident limit). Hence,

Occam elitism: the simplest hypothesis among the
κ best chromosomes is kept from generation to gen-
eration.

In order to illustrate the performance achieved by
the proposed GA for model selection, this method is
employed to find the adjustable parameters of a ma-
chine learning model: Radial Basis Function (RBF)
networks.

3. RBF networks design using Genetic Algorithms

RBF networks have their origin in the solution of the
multivariate interpolation problem [16]. A hypothesis
h : Rn → R is represented by a RBF network [14]
(Fig. 3) as a linear combination of the basis function as
follows:

h(x) = w0 +
m∑

i=1

wizi(‖x− ci‖) (7)

where‖ · ‖ is the Euclidean norm. The complete set
of parameters of a typical RBF network is shown in
Table 1.

A radial basis function is a nonlinear function that
monotonically decreases (or increases) asx moves
away from its vector centercj . Usual basis functions
are:

1. The thin-plate-spline function:

z(v) = v2 log v (8)

2. The Gaussian function:

z(v) = exp(−v2/σ2) (9)

3. The multiquadratic function:

z(v) = (v2 + σ2)1/2 (10)

4. The inverse multiquadratic function:

z(v) =
1

(v2 + σ2)1/2
(11)

The parameter widthσ is a scaling factor for the
radius‖x − ci‖.

The widths are usually defined by computation-
ally inexpensive heuristics [18]. Moody and Darken,
in [14], suggest that a single valueσ for all basis func-
tions gives good results. They usedσ = 〈‖ci − cj‖〉,
wherecj is the nearest center toci and〈·〉 indicates
the average over all such pairs. Others methods use a
different valueσi for each basis function. In [18], each
width σi is defined as:

σi = α‖ci − cj‖, (12)

whereα is an overlap factor andci andcj are defined
as before.

In general, the weights are training parameters,
whereas the other parameters are either adjustable or
training parameter depending on the learner used. Once
centers and widths have been fixed, the RBF network
may be interpreted as a case of multivariate linear re-
gression:

y = Zw + ε (13)

wherey = [y1, y2, . . . , yp]
T, Z denotes the design

matrix with thej th column equal to:

[zj(‖x1 − cj‖), zj(‖x2 − cj‖), . . . ,
zj(‖xp − cj‖]T,

w = [w1, w2, . . . , wm]T andε is the vector of errors.
The vectorw is determined minimizing the sum of
squared errorsSSE = εTε. The solution to this least
squares problem can be obtained by solving the well-
known linear system:(

ZTZ
)

w = ZTy (14)

3.1. The proposed Genetic Algorithm

This work optimizes the RBF network using the GA
proposed by [11]. In this GA, the RBF network pa-
rameters are divided in adjustable (λ) parameters and
training (τ) parameters, as follows:

λ = {m, c1, . . . , cm, α}
τ = {w}

wherem is the number of basis functions,α is the
overlap factor from Eq. (12) that define how large the

E.G.M. de Lacerda et al. / Model selection via Genetic Algorithms for RBF networks 115

Table 1
Parameters set of a RBF network

Number of basis functions m

Basis functions z1(·), . . . , zm(·). Wherezi(·) is the function performed by the hidden layer nodei.

Centers cj for 1, . . . , m. Wherecj = [cj1, cj2, . . . , cjn]T is the vector center of the basis functionzj(·).
Widths σ1, . . . , σm. Whereσj is the width of basis functionzj .

Weights w = [w1, . . . , wm]T. Wherewj is the weight connecting thejth hidden unit to the output unit.

widths are, andcj ’s are the centers. The weightsw
are training parameters, once they are obtained by the
learnerL (embedded in the procedure that evaluates the
chromosome) using Eq. (14).

The encoding is one of the key aspects to be consid-
ered when using GAs. The adjustable parameters are
coded into a tuple given by:

P = (α,p1,p2, . . . ,pK) (15)

whereα is the overlap factor,K is the number of re-
gions (these are regions of the input space which will
be discussed in Section 3.2), andpj encodes a hidden
unit, which is expressed by the following tuple:

pj = (bj , cj1, cj2, . . . , cjn) (16)

This tuple represents a basis function whose cen-

ter cj = [cj1, . . . , cjn]T is inside the regionRj (i.e.,
cj ∈ Rj). The parameterbj is a boolean flag: ifb
= TRUE thenpj is valid, otherwisepj is discarded
during the decoding. In spite of having fixed length
(the number of coded hidden units is always equal to
K), the chromosome can produce network topologies
with variable sizes because some basis functions will
be discarded (depending on whetherb j is TRUE or
not).

3.2. Partitioning the input space

The partition of the input space creates a set ofK
rectangular regions{R1, . . . , RK}, which are placed
in the areas where there is a high density of training
input examples, as showed in Fig. 4. The width of the
regionRi along each coordinate direction is determined
by the corresponding components of the vectorsl i =
[li1, . . . , lin]T andui = [ui1, . . . , uin]T. That is,

Ri = {x ∈ �n : li1 � x1 � ui1, . . . ,
(17)

lin � xn � uin}
In other words, the componentsl ik anduik are the

lower and upper limits, respectively, of the regionR i

along a coordinate direction.
The vectorsli andui are obtained from the clusters

of training input examples generated by theK-means

Fig. 4. Partioning the input space by means of clusters of examples.

clustering algorithm. ConsiderSi a cluster of input
examples. The vectorsli andui (which determine the
regionRi) are obtained from the clusterSi as follows:

lik = min
x∈Si

xk (18)

uik = max
x∈Si

xk (19)

for all k = 1, . . . , n. By using this procedure, the
regionRi embraces all examples of the clusterSi.

3.3. Decoding the chromosomes

To evaluate the fitness of the chromosomes, they need
to be decoded. Consider the following chromosome
to be decoded:P = (α,p1,p2, . . . ,pK). The pa-
rametersα, cj1, cj2, . . . , cjn were encoded as floating-
point values and normalized in the interval[0, 1]. The
decoding is caried out as follows:

c′jk = lrj,k + cjk(urj ,k − lrj,k) (20)

σ′
j = sσj (21)

for k = 1, . . . , n. The coefficients = 5 is a scaling
factor.

3.4. Genetic operators

The proposed GA uses a modified crossover opera-
tor, here named cluster crossover, and a set of mutation
operators.

116 E.G.M. de Lacerda et al. / Model selection via Genetic Algorithms for RBF networks

Fig. 5. Cluster crossover.

p1j , p2j

Fig. 6. Cluster crossover combined with blend crossover.

Fig. 7. Hermite polynomial.

The cluster crossover is described as follows. Let
P1 = (p11, . . . ,p1K) andP2 = (p21, . . . ,p2K) be
the parents, wherepkj = (bkj , ckj1, ckj2, . . . , ckjn).
Let Q = (q1, . . . ,qK) be their child. The cluster
crossover is shown in Fig. 5. Note that the cluster
crossover itself does not change the value of the cen-
ters. To change these values, the cluster crossover is
combined with the blend crossover [3] (a well-known
crossover for real-coded GAs) as shown in Fig. 6, in
which the subroutineBlendCrossover() refers to the
blend crossover.

The cluster crossover operator works like the tradi-
tional uniform crossover. Its main difference is that it
exchanges regions (which represents clusters)R i in-
stead of structural chunks of chromosomes (as per-
formed by the standard uniform crossover). The clus-
ter crossover is a method for the exchange of hyper-
volumes on the phenotype space, whereas the stan-
dard uniform crossover operators are performed on the
genotype space.

The following mutation operators were used:

– Uniform mutation: replaces centers and the over-
lap factor with uniform random numbers;

– Addition and delete operators add and delete ran-
domly chosen basis functions.

Next section shows experiments using this GA. It
also compares the traditional elitism with the occam
elitism operator.

3.5. Experimental studies

In the experiments performed, the proposed GA was
applied to a benchmark dataset: a Hermite polynomial
approximation [12,15] (see Fig. 7), which is defined
by:

f(x) = 1.1(1 − x− 2x2) exp
(
−x2

2

)
(22)

The datasets used in the experiment were gener-
ated under the same conditions adopted in [15]. Each
dataset has 40 examples randomly chosen in the range
[−4,+4] with added gaussian noise. The following
noise variances were used: 0.0001, 0.0003, 0.001,
0.003, 0.01, 0.03, and 0.1. For each noise variance, the
GA program was executed, at least, 50 times (where
each execution used a different random dataset) and
the results were averaged.1 The GA program used the
parameters shown in Table 2. The holdout method
generated the holdout dataset with 50% of the origi-
nal dataset. The performance of the hypotheses was
measured using the Root-Mean-Square Error (RMSE
= p−1

√
SSE) over a test set with 200 uniformly spaced

noiseless examples in the range [−4,+4]. The occam
elitism was used withκ = 5. Thus, the smallest net-
work among the five best chromosomes was kept from
generation to generation.

According to the results presented in the Fig. 8,
which shows the number of centers as a function of
noise level, the occam elitism produced notably smaller
networks than the traditional elitism. Moreover, GA
with occam elitism also produced a lower true error, as
shows the Fig. 9. These results suggest that the occam
elitism may be an effective method. Because of this,
all the following experiments in this work will use the
occam elitism (withκ = 5).

1GA may produce outliers (spurious networks with large errors)
due to premature convergence. The average value is strongly influ-
enced (become biased towards) by the outliers. As a result a 5%
trimmed mean was used instead of the mean. The 5% trimmed mean
results in the elimination of both the top 5% and the bottom 5% of the
ranked samples. The mean is calculated for the remaining samples.

E.G.M. de Lacerda et al. / Model selection via Genetic Algorithms for RBF networks 117

Table 2
GA parameters

Population 500
Generations 500
Number of regions 15
Crossover rate 0.60
Mutation rate 0.05
Addition rate 0.3
Deletion rate 0.3
Basis function Gaussian

Fig. 8. Comparing the performance of occam and traditional elitism
in terms of the number of basis functions.

4. Others fitness functions for model selection

This section presents methods widely used in ma-
chine learning for model selection (to select a hypoth-
esis (a model) among several candidate hypotheses).

4.1. Thek-fold-crossvalidation fitness function

This method [20,10] divides the datasetD (Eq. (4))
in k subsets (also namedfolds): D1,D2, . . . ,Dk. The
folds have equal size and are mutually exclusive. Thus,
the method producesk hypothesish1, . . . , hk, where
each hypothesis is built from the datasetD \ Dj (see
Fig. 10) using the adjustable parameterλ, as follows:

hj = h(λ,D \ Dj), for = j = 1, . . . , k (23)

The performance obtained by each hypothesish j is
measured on the datasetDj . The fitness ofλ is equal
to the average of the performances of thek hypotheses.
The fitness of the chromosomeλ is given by:

f(λ) =
1
|D|

k∑
j=1

∑
(x,y)∈Dj

δ(hj(x), y) (24)

If k = |D|, thek-fold-crossvalidation is known as
leave-one-out.

Fig. 9. Comparing the performance of occam and traditional elitism
in terms of the error on the test set.

Fig. 10. Thek-fold-crossvalidation method withk = 5.

4.2. The Generalized Cross-Validation fitness function

The Generalized Cross-Validation (GCV) is a for-
mula derived from the leave-one-out crossvalidation
under the assumption that the model is linear. Thus,
GCV is often used for linear models. RBF networks
are nonlinear models, but, in practice, GCV has been
used in model selection for RBF networks [9,15]. Be-
cause GCV is computationally inexpensive, it becomes
attractive to be used with GAs.

The chromosome is trained with the whole dataset
D. The fitness of the chromosomeλ is given by GCV
Equation:

f(λ) = GCV =
p SSE

(p−m)2
(25)

118 E.G.M. de Lacerda et al. / Model selection via Genetic Algorithms for RBF networks

where SSE denotes the sum of squared errors on the
datasetD,m is the number of weights (free parameters)
andp is the number of examples inD.

If the RBF network learning uses ridge regression
(regularization) [9] to compute the weights, the GCV is
modified in order to include the ridge parameterθ [7]:

f(λ) = GCV =
(1/p)‖(I −A)y‖2

[(1/p)trace(I −A)]2
(26)

whereA = Z(ZTZ − θI)−1ZTy.

4.3. The .632 Bootstrap fitness function

The .632 Bootstrap method is a member of the
bootstrap family introduced by Efron [2]. All boot-
strap based estimates are computed by using a set
of bootstrap datasets. A bootstrap dataset is created
by samplingp = |D| examples (with replacement)
from D. This method createsB bootstrap datasets:
D1,D2, . . . ,DB. Note that the datasets are not mu-
tually exclusive. This method producesB hypotheses
h1(λ), . . . , hB(λ), where each one is built from the
datasetDj using the adjustable parameterλ. That is,

hj = h(λ,Dj), for j = 1, . . . , B (27)

The fitness of the chromosomeλ, obtained by the
.632 bootstrap function, is given by:

f(λ) = 0.368 · err+ 0.632 · ε0 (28)

The terms of the Eq. (28) are described as follows:
The termerr is the performance of a hypothesis built
from the datasetD measured on the same datasetD.
This measure refers to the training error of the hypoth-
esis. Mathematically, it is given by:

err =
1
p

p∑
i=i

δ(h(xi;λ,D), yi) (29)

The termε0 denotes the average error obtained from
bootstrap datasets not containing the example being
predicted. In other words,ε0 is computed by using
a bootstrap dataset as training set and the remaining
examples as test set. It is given by:

ε0 =
1
p

p∑
i=1

∑
b∈Ci

δ(hb(xi), yi)/Bi (30)

whereCi is the set of indices of the bootstrap dataset
not containing theith sample, andBi is a number of
such bootstrap datasets.

Finally, the derivation of the coefficients of the
Eq. (28) (namely 0.368 and 0.632) is complex, and thus

is not described here (see [2] for details). In [8] there
is an overview of the functions presented in this sec-
tion. The following section shows the experiments per-
formed to optimize these functions using the proposed
GA.

4.4. Experimental studies

The experiments presented in this section compare
four fitness functions: holdout, crossvalidation, boot-
strap, and GCV. The holdout result was taken from Sec-
tion 3.5. The crossvalidation function used ten folds
(i.e., the 10-fold crossvalidation). Finally, the .632
bootstrap used 20 bootstrap datasets.

Note that in each chromosome evaluation using hold-
out only one training is carried out (namely the training
over the holdout set). GCV also performs one training
per evaluation. Whereas the 10-fold-crossvalidation
performs 10 training sessions (owing to 10 folds) in
each evaluation and bootstrap performs 20 training ses-
sions (owing to 20 bootstrap datasets). Obviously,
the crossvalidation and bootstrap consume much CPU-
time. This is a drawback for GAs, once GAs need fast
objective functions in order to reduce its processing
time. A solution to this problem is shown in the next
section.

Because holdout and GCV consume small CPU-
time, they become attractive as fitness functions. The
drawback is that holdout can lead the learning algo-
rithm to overfit the holdout set, once it is always the
same during the execution of the GA. Because GCV is
not suitable for nonlinear models, it follows that GCV
does not give a good estimate of the true error and over-
fits the dataset. Crossvalidation and bootstrap make
a more efficient use of the dataset by re-sampling it
several times. So, in the experiments performed, they
presented, in general, better performance than holdout
as it is confirmed in Fig. 12. However, in terms of com-
plexity, holdout produced networks as small as those
produced by 10-fold-crossvalidation (see Fig. 11).

5. The multiobjective Genetic Algorithm

In the case of optimizing multiple objectives, there
is, in general, no best solution because the solution
may be the best with respect to an objective and the
worst with respect to another. Thus, there is usually a
set of solutions, being not possible to say what is the
best overall solution. Such set of solution is called the
Pareto optimal solution. Formally:

E.G.M. de Lacerda et al. / Model selection via Genetic Algorithms for RBF networks 119

Fig. 11. Comparing the performance of several kinds of fitness in
terms of the number of centers.

Fig. 12. Comparing the performance of several kinds of fitness in
terms of the error on the test set.

Let f1, f2, . . . , fq be the set of objective functions
to be minimized. A chromosome fitness is defined
by a vector where each component is the value of
an objective function. In order to compare chromo-
somes through these vectors, the following definitions
are used [4]:

Definition 1 Let a andb be vectors of objective func-
tion values. A vectorb is said to be dominated by(or
inferior to) a vectora iff a is partially-less-thanb (in
symbolsa <p b), where:

a <p b ⇐⇒ ∀i(ai � bi) ∧ ∃i(ai < bi) (31)

Definition 2 A vectora is said to be non-dominated
(or non-inferior) if there is not any other vector(in the
population) that dominatesa.

Fig. 13. Evaluation procedure with shuffling.

Fig. 14. Comparing the performance of the multiobjective GA in
terms of the number of centers.

The Pareto-optimal set is defined as the set of all
non-dominated vectors of the population. The goal of
this multiobjective optimization is to find the Pareto-
optimal set. Several GAs variants have been proposed
in order to find the Pareto set (see [4,5] for more infor-
mation).

5.1. Model selection

In this work, two inexpensive objective functions are
optimized: holdout and GCV.

As before, the datasetD is divided into two parts:
the training setDt, on which the hypothesis is built, and
the holdout setDh. The first fitness of the chromosome
λ is given by holdout function:

f1(λ) =
1

|Dh|
∑

(x,y)∈Dh

δ(h(x;λ,Dt), y) (32)

The second fitness of the chromosomeλ is given by
GCV function over the datasetDt:

120 E.G.M. de Lacerda et al. / Model selection via Genetic Algorithms for RBF networks

Fig. 15. Comparing the performance of the multiobjective GA in
terms of the error on the test set.

f2(λ) =
pt SSEt

(pt −m)2
(33)

whereSSEt denotes the sum of squared errors on the
datasetDt, m is the number of weights (free parame-
ters) andpt is the number of examples inDt.

The occam elitism was adapted for the multiobjective
GA as follows: all the simplest hypotheses of the Pareto
set are kept from generation to generation. In the last
generation, a criterion is needed to select an unique
hypothesis. The following criterion was adopted: pick
up the simplest hypothesis of the Pareto set. If there is
more than one such hypothesis, then use the median of
them.

Note that the holdout set is kept constant during
all generations. Hence, the holdout function still may
overfit the holdout set. In order to avoid the holdout to
be set kept constant, the shuffling schema is proposed.

5.2. Shuffling

In order to improve the quality of the genetic hy-
potheses, the population evaluation procedure is modi-
fied by shuffling the dataset just before the fitness eval-
uation. Consider thatshuffle() is a computer proce-
dure that shuffles the datasetD producing the shuf-
fled datasetD∗. The modified evaluation procedure is
shown in Fig. 13. It replaces the corresponding proce-
dure from Fig. 1.

The shuffling’s underling principle is to avoid the
holdout set to be kept constant, and therefore avoid
overfitting. Nevertheless, the shuffling transforms the
holdout into a noise function. GAs, however, are ro-

bust to deal with noise functions [6]. In case of elitism,
the chromosome that is kept from generation to gener-
ation should be revaluated in each generation in order
to verify whether its good performance is not due to
stochastic errors. Other heuristic investigated, grow-
ing, is presented in next section.

5.3. Growing

Stanley and Miikkulainen [19] observed that com-
plexity in nature is developed over time, rather than
introduced in the beginning. Based on this observa-
tion, they proposed evolving hypotheses starting with
minimal hypotheses. This means to set the initial pop-
ulation with minimal networks (e.g., one basis func-
tion) instead of random (and probably large) hypothe-
ses. New hypotheses are introduced incrementally as
mutations occur. Only those hypotheses that are found
to be useful survive through generations.

An experimental justification for the use of grow-
ing is as follows: In all experiments performed so far,
the number of basis function was limited to 15 basis
functions (see the number of regions parameter from
Table 1, which also indicates the maximum number of
basis function). This low limit was used because if GAs
start with a higher limit (e.g., 35 basis functions), they
may arrive to poor results and large hypothesis. This
occurs due to the large hypothesis of the initial pop-
ulation that tends to dominate the population, causing
a phenomena known as premature convergence. Such
large hypotheses are suboptimal solutions, named su-
perindividuals. The use of the growing approach seems
to solve this problem, once it avoids the production
of large hypotheses (superindividuals) in early stages
of the evolution. Growing was successfully used for
genetic design of RBF networks in [1]. Experiments
involving the multiobjective GA and the heuristics dis-
cussed are presented in the next section.

5.4. Experimental studies

In the experiments carried out, the holdout function
did not perform well because large hypotheses tend to
overfit the holdout set. The same happened with the
GCV method. However, the optimization of both hold-
out and GCV seems to be a promising idea, as suggest
the results shown in Figs 14 and 15. The shuffling and
growing heuristics incorporated into a GA improved its
performance in both error on test set and complexity.
The results obtained suggest that Multiobjective GA

E.G.M. de Lacerda et al. / Model selection via Genetic Algorithms for RBF networks 121

with shuffling and growing is comparable to crossvali-
dation and bootstrap.

A possible explanation for this good result is that
GCV penalizes large hypotheses (once its denominator
diminishes in large hypotheses). As a consequence,
GCV contributes to avoid the overfitting of the hold-
out. In spite of making the holdout function a noise
function, the use of shuffling also contributes to avoid
holdout overfitting (once the holdout set is not fixed).
However, in some experiments involving optimization
with an unique objective function, shuffling did not lead
to good results (these results are not reported here).
Growing adds basis functions incrementally, making
the selection of centers more rigorous (once complexity
is only added if necessary) and natural. The combined
effect of all theses methods seems be useful for model
selection.

6. Conclusion

Experiments showed that the use of the holdout
method as objective function is not an effective method
and that crossvalidation and boostrap are, in general,
the best objective functions for model selection using
GAs. Nevertheless, they consume much CPU-time.
GAs need fast objective functions to have a reason-
able processing time, so the use of crossvalidation and
boostrap may not be suitable for GAs.

Experiments also showed that by means of modifica-
tions in the traditional GA, it is possible to make a GA
(with holdout) an efficient model selection algorithm
without the need to use crossvalidation and boostrap.
Four modifications in the traditional GA were carried
out which generated better hypotheses than those hy-
potheses generated by holdoutusing the traditional GA.
The modifications are:

– Use of the occam elitism to keep the simplest hy-
pothesis (among the best ones) from generation to
generation. Experiments showed that the occam
elitism diminishes the complexity of the hypothe-
ses and their true error.

– Optimize two inexpensive objective functions
(namely holdout and GCV) simultaneously seems
to be better than optimize each one individually.

– Shuffle the dataset just before computing the fit-
ness function may avoid the overfittingof the hold-
out method.

– Use of the growing mechanism to start the initial
population with minimal hypotheses and add com-

plexity incrementally. Growing avoids the bias to-
wards large hypotheses in the initial population.
Growing makes the evolving of complexity a more
rigorous and natural process.

All of theses modifications are computationally in-
expensive and, if combined, they may produce results
equivalent to both crossvalidation and bootstrap, which
require a large amount of computer processing. Thus,
GAs may provide a suitable framework for the model
selection problem, but this potential still needs be fur-
ther explored.

Acknowledgment

The authors would like to thank FAPESP, CAPES,
and CNPq for their support.

References

[1] A. Barreto and H. Barbosa, Growing compact RBF networks
using a genetic algorithm, in:VII Brazilian Symposium on
Neural Networks, 2002.

[2] B. Efrom and R.J. Tibshirani,An Introduction to the Bootstrap,
Chapman and Hall, 1993.

[3] L.J.Eshelman and D.J. Shaffer, Real-coded genetic algorithms
and interval-schemata, in:Foundations of Genetic Algorithms
3, D.L. Whitley, ed., San Mateo, CA: Morgan Kaufman, 1992,
pp. 187–203.

[4] C.M. Fonseca and P.J. Fleming, Genetic algorithms for multi-
objective optimization: formulation, discussion and general-
ization, inProceedings of the 5th International Conference on
Genetic Algorithms, Morgan Kaufmann Publishers, Inc., San
Mateo, 1993, pp. 416–423.

[5] M. Gen and R. Cheng,Genetic algorithms and engineering
optimization, Wiley, 2000.

[6] D.E. Goldberg,Genetic algorithms in search, optimization,
and machine learning, Addison-Wesley, 1989.

[7] G.H. Golub, M. Heath and G. Wahba, Generalised cross-
validation as a method for choosing a good ridge parameter,
Technometrics21(2) (1979), 215–223.

[8] T. Hastie, R. Tibshirani and J. Friedman,The elements of
statistical learning: data mining, inference, and prediction,
Springer, 2002.

[9] S. Haykin,Neural Networks: A Comprehensive Foundation,
second edition, Prentice Hall, 1999.

[10] R. Kohavi, A study of cross-validation and bootstrap for ac-
curacy estimation and model selection, inInternational Joint
Conference on Artificial Intelligence(IJCAI), 1995, pp. 1137–
1145.

[11] E. Lacerda, A. Carvalho and T. Ludermir, Evolutionary op-
timization of rbf networks,International Journal of Neural
Systems11(3) (2001), 287–294.

[12] D.J.C. MacKay, Bayesian interpolation,Neural Computation
4(3) (1992), 415–447.

[13] T.M. Mitchell, Machine Learning, McGraw-Hill, 1997.

122 E.G.M. de Lacerda et al. / Model selection via Genetic Algorithms for RBF networks

[14] J. Moody and C.J. Darken, Fast learning in networks of locally-
tuned processing units,Neural Computation1(2) (1989), 281–
294.

[15] M.J.L. Orr, Regularisation in the selection of radial basis func-
tion centers,Neural Computation7(3) (1995), 606–623.

[16] M. Powell, The theory of radial basis function approximation
in 1990, in: Advances in Numerical Analysis,(Vol. 3), W.
Light, ed., Clarendon, Oxford, 1992, pp. 105–210.

[17] D.E. Rumelhart, G.E. Hilton and R.J. Williams, Learning in-
ternal representations by error propagation, in:Parallel Dis-
tributed Processing: Explorations in the Microstructure of
Cognition, Volume 1: Foundations, D.E. Rumelhart, J.L. Mc-
Clelland and the PDP Research Group, eds, Mit Press, Cam-
bridge, MA, 1986, pp. 318–362.

[18] A. Saha and J.D. Keller, Algorithms for better representation
and faster learning in radial basis function networks, in:Ad-
vances in Neural Information Processing Systems, (Vol. 2),
D.S. Touretzki, ed., 1990, pp. 482–489.

[19] K.O. Stanley and R. Miikkulainen, Evolving neural networks
through augmenting topologies. Technical Report TR-AI-01-
290, The University of Texas at Austin – Department of Com-
puter Sciences, 2001.

[20] M. Stone, Crossvalidatory choice and assessment of statistical
predictions,Journal of the Royal Statistical SocietyB2 (1974),
111–147.

[21] X. Yao, Evolving artificial neural networks,PIEEE: Proceed-
ings of the IEEE87 (1999).

