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Abstract. This work addresses the problem of finding the adjustable parameters of a learning algorithm using Genetic Algorithms.
This problem is also known as the model selection problem. In this paper, some model selection techniques (e.g., crossvalidation
and bootstrap) are used as objective functions of a Genetic Algorithm. The Genetic Algorithm is modified in order to allow the
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1. Introduction tion error [2] (true error for short) over a set of ad-
justable parameters that is known to work well on the
Most Machine Learning technigues focus the prob- training dataset. A common example of this procedure

lem of approximating a target functioh: X — Y is to train a neural network using the backpropagation
by using the information from a sample of exam- learning algorithm [17]. The backpropagation algo-
ples (x;,y;), for: = 1,...,p, wherex € X and rithm sets the weight parameters of the network, but
y; = f(x;). In principle, a learnel (a learning al- is unable to define the number of hidden units (which
gorithm) builds a hypothesis functione H that ap- are the adjustable parameters of the problem). The

proximates the target functighby determining the pa- search carried out by the user in order to find the best
rameter setting of the hypothesis. Most of the time,  adjustable parameter is essentially a trial-and-test op-
however, the hypothesis has a few parameters which timization method, which becomes inefficient if the

the learner itself is unable to determine: the adjustable search space is too large. Hence, the human subjec-

parameters. tive judgment and heuristics to make the trial-and-test
Thus, for a particular learnet, there are two kinds method more efficient are needed. Others common
of parameters in a hypothesis: the parametgfsain- examples of adjustable parameters are the amount of

ing parameters) that are determined automatically by pruning of a decision tree, the degree of a polynomial
L and the parameters (adjustable parameters) that fitto a setof points, and the ridge parameter of the ridge
are not determined bg. 6 = ruU X andr N A = 0. regression.

The adjustable parameters are typically determined by ~ The problem of estimating the true error of hypoth-
human subjective judgment based on previous experi- esis using different adjustable parameters in order to
ence, rule of thumbs or heuristics provided by authors choose the (approximate) best one is known as model

and practitioners of the learning algorithm. selection [8]. The purpose of this work is to present
In other words, the adjustable parameters are deter- Genetic Algorithms (GAs) as an alternative to the trial-
mined by minimizing an estimative of theue predic- and-test optimization method for model selection.
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More formally, the optimization problem to be
solved by GA can be described as follows:

A hypothesish : X — Y (whereX x ) = £ is the
example space) is built by the learn&from a choice
of the value of the adjustable parametend a training
dataseD. Itisassumed thatthe learneris deterministic.
That is, for a particular choice of andD, the learner
always builds the same hypothesis. Thus, hypothiesis
can be represented A8\, D). The notatiorh(x; A, D)
represents the prediction af A\, D) for the data point
X.

The true error measures how well a hypothesis
h(\, D) predicts the response value of a future example.
The true error may be defined as

e(A) = E{0(y, h(x; A, D))) @
whered(z,y) is a loss function. The expectation in
Eq. (1) refers to repeated sampling of examples ran-
domly drawn from the example spa€ewith the same
probability that was used to select the examples from
training dataseD. Regression problems usually em-
ploy the quadratic loss functiof(z,y) = (z — y)2.
Classification problems usually make use of the
loss function: §(x,y) 1if = y, otherwise
d(z,y) = 0. By using thed/1 loss function, the func-
tion e(\) represents the probability of correctly classi-
fied examples.

The problem of choosing the adjustable parameter
(i.e., model selection problem) can be defined as:

Find A that minimizese(\) 2

The true erroe()) is unknown, once the only avail-
able information on the target functionis contained into
the dataseD. Because of this, a number of methods for
estimating the true error have been proposed [2]. The
most commonly used methods for true error estimation
are:

— Holdout;
— Crossvalidation;
— Bootstrap.

Consider that(\, D) is an estimation ofé(\) using
the information from the datas&t by means of those
methods. The problem of optimizating the adjustable
parameter can be reformulated as:

Find A that minimizes(\, D) 3)

The best estimations of the true error are usually
obtained by the crossvalidation and bootstrap meth-
ods, which transform this optimization problem into
a difficult problem. Crossvalidation and bootstrap are
computer procedures, but may be interpreted as simple
functions from the optimization view point. As objec-
tive functions, they have the following drawbacks:
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— These functions are not easy to be handled alge-
braically, and hence derivatives are not easy to
calculate.

— These functions are also multimodals (i.e., there
are several values ofthat minimizes the function
locally).

— For a given point\, to obtain the response of the
crossvalidation and bootstrap functions, a large
amount of CPU time may be needed, making their
minimization hard for any optimization technique
(including GAs).

Because of the complex nature of this optimization
problem, GAs are a natural candidate for solving it.
Unlike other optimization techniques, GAs provide a
suitable framework for the model selection problem,
due to its peculiar search mechanism able to handle
many hypotheses simultaneously. This search mecha-
nism enables GAs to use (and to create) new heuristics
(as shown later), to cope with noise estimation of the
true error and to be used for multiobjective optimiza-
tion.

This work addresses GAs search mechanism, instead
of other more studied aspects, like encoding and genetic
operators (mainly for Neural Networks [21]). This
paper is organized as follows. A simple GA method
with occam elitism for model selection is described
in Section 2. Section 3 shows an example of a Ma-
chine Learning model (that will be used throughout
the paper), its genetic representation and experimen-
tal studies. Crossvalidation, bootstrap and other ob-
jective functions are presented in Section 4, together
with some experimental results. Section 5 evaluates a
multiobjective GA employing two heuristics (growing
and shuffling) that aim to improve the quality of the ge-
netic hypothesis. Finally, Section 6 presents the main
conclusions.

2. A simple GA method for model selection

The application of GAs for model selection involves
the optimization of the adjustable parameters. It is
worth noting that the adjustable parameters of a hy-
pothesis do not only depend on the features of the hy-
pothesis, but also on the learner. Different learners can
produce different adjustable parameters for the same
hypothesis.

To avoid proliferating notation, the symbal will
represent both the chromosome and the adjustable pa-
rameters it encodes. Throughout the text, the dataset
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represents the set of all the examples avaliable for the
problem at hand.

A typical GA for model selection has the following
characteristics:

1. The chromosome encodes only the adjustable pa-
rameters.

2. A learnerL is embedded in the procedure that
evaluate the chromosome.

3. A method for estimating the true error.

A simple GA for model selection is illustrated in
Fig. 1. The procedurevaluate() in Fig. 1 computes
the fitness function, that is, the estimation of the true er-
ror e for each chromossome by using traditional meth-
ods for model selection, such as holdout, crossvalida-
tion and bootstrap. In the next section, the holdout
function is presented.

2.1. The holdout fitness function

One of the most used methods for model selection,
the holdout method [10], as can be seen in Fig. 2,
divides a dataseD into two parts: the training set
D;, on which the hypothesis is built, and the holdout
set Dy, (also known as validation set), on which its
performance is measured. Thus,

Dp =D\ Dy ()

Let (), D;) be the hypothesis built from the dataset
D; using the adjustable parameferThe fithess of the
chromosoma is given by:

=51 X ALy @

h
(X,y)€Dx

In order to improve the simple GA from the Fig. 1,
the use of the occam elitism is proposed.

2.2. The occam elitism
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main program

“Let P(t) = {A1,...,An}

be the population at generation t.”

t«0
initialize(P(t))
evaluate(P(t))

while the stopping criterion is not satisfied do

t—t+1

P(t) « select(P(t — 1))
P(t) « crossover(P(t))
P(t) + mutation(P(t))
evaluate (P(t))

end while

procedure evaluate(P)

for each ); in the population P do
Estimate the true error €(\;, D)
Set fitness f; of \; equal to €(\;, D)

end for

Fig. 1. A Genetic Algorithm for Model Selection.

training set holdout set

Dy Dp

D

Fig. 2. The data set partition by the holdout method.

Occam’s razor is a principle attributed to the 14th
century philosopher William of Occam. The principle
states thaténtities should not be multiplied unneces-
sarily”. With this “razor”, Occam cut out all super-
fluous, redundant explanations. Scientists have rein-
tepreted the Occam’s razor. A useful statement of the
principle for scientists is,when you have two compet-
ing theories which make exactly the same predictions,
the one that is simpler is the betfeMachine learning
scientists [13] have stated that principle asefer the
simplest hypothesis that fits the datdror this work,
the following statement is used:

Occam’srazor given two hypothesis with the same
estimation of true error, the one that is simpler is the
better because it is likely to have lower true error.

The traditional elitism is a well known strategy in
GAs which works by never replacing the best chro-
mosome in a population with inferior solutions. That
is,

Elitism: the best chromosome is kept from genera-
tion to generation.

The occam elitism is based on the assumption that
the x best hypotheses in the population are equivalent
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input layer hidden layer

output layer

Fig. 3. RBF Network.

in terms of estimation of true error (at least under some
statistical confident limit). Hence,
Occam elitism the simplest hypothesis among the
x best chromosomes is kept from generation to gen-
eration.

In order to illustrate the performance achieved by
the proposed GA for model selection, this method is
employed to find the adjustable parameters of a ma-
chine learning model: Radial Basis Function (RBF)
networks.

3. RBF networks design using Genetic Algorithms

RBF networks have their origin in the solution of the
multivariate interpolation problem [16]. A hypothesis
h : R™ — R is represented by a RBF network [14]
(Fig. 3) as a linear combination of the basis function as
follows:

h(x) =wo + Y wizi([x - cil|) 7
=1
where|| - || is the Euclidean norm. The complete set

of parameters of a typical RBF network is shown in
Table 1.

A radial basis function is a nonlinear function that
monotonically decreases (or increases)xamoves
away from its vector centar;. Usual basis functions
are:

1. The thin-plate-spline function:

2(v) = v?logw (8)
2. The Gaussian function:

2(v) = exp(—v?/o?) 9)
3. The multiquadratic function:

2(v) = (v + o?)1/? (10)
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4. The inverse multiquadratic function:

1

z(v) = (V2 + o2)1/2 (11)

The parameter widtlr is a scaling factor for the
radius||x — c;]|.

The widths are usually defined by computation-
ally inexpensive heuristics [18]. Moody and Darken,
in [14], suggest that a single valaefor all basis func-
tions gives good results. They used= (||c; — c,||),
wherec; is the nearest center & and(-) indicates
the average over all such pairs. Others methods use a
different valuers; for each basis function. In [18], each
width o; is defined as:

(12)

wherec is an overlap factor and; andc; are defined
as before.

In general, the weights are training parameters,
whereas the other parameters are either adjustable or
training parameter depending on the learner used. Once
centers and widths have been fixed, the RBF network
may be interpreted as a case of multivariate linear re-
gression:

o; = alle; — ¢,

y=2Zw+e¢ (13)

wherey = [yl,yg,...,yp]T, Z denotes the design
matrix with thej th column equal to:

[z (%1 = ¢;ll), zi (%2 — <), - - -
T
zi(llxp — 5]

w = [wy,wa, ... ,wm]T ande is the vector of errors.
The vectorw is determined minimizing the sum of
squared errorSSE = ¢Te. The solution to this least
squares problem can be obtained by solving the well-
known linear system:

(sz) w=2Zly (14)

3.1. The proposed Genetic Algorithm

This work optimizes the RBF network using the GA
proposed by [11]. In this GA, the RBF network pa-
rameters are divided in adjustablg) (parameters and
training (r) parameters, as follows:

A= {m7cl7---7c'rn7a}

T={w}

wherem is the number of basis functions, is the
overlap factor from Eq. (12) that define how large the
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Table 1

Parameters set of

a RBF network

Number of basis functions m

Basis functions

z1(+)y. -+, 2zm(-). Wherez;(-) is the function performed by the hidden layer nade

is the vector center of the basis functigs-).

Centers c; for1,...,m. Wherec; = [¢j1, ¢j2, ..., Cjn]
Widths o1,...,0m. Whereo; is the width of basis function;.
Weights W = [wi,..., W]

T. Wherew; is the weight connecting thgh hidden unit to the output unit.

widths are, andt;'s are the centers. The weighis
are training parameters, once they are obtained by the
learnerC (embedded in the procedure that evaluates the
chromosome) using Eq. (14).

The encoding is one of the key aspects to be consid-
ered when using GAs. The adjustable parameters are
coded into a tuple given by:

P:(a7p17p25"-;pK) (15)

whereq is the overlap factorK is the number of re-
gions (these are regions of the input space which will
be discussed in Section 3.2), apg encodes a hidden
unit, which is expressed by the following tuple:

p;j = (bj,¢j1,¢j2, -5 Cjn) (16)

This tuple represents a basis function whose cen-
terc; = [cj1,...,¢in] IS inside the regiomR; (i.e.,
c; € R;). The parameteb; is a boolean flag: ib
= TRUE thenp; is valid, otherwisep; is discarded
during the decoding. In spite of having fixed length
(the number of coded hidden units is always equal to
K), the chromosome can produce network topologies
with variable sizes because some basis functions will
be discarded (depending on whetlteris TRUE or
not).

3.2. Partitioning the input space

The partition of the input space creates a sefof
rectangular region$R1, ..., Rk}, which are placed
in the areas where there is a high density of training
input examples, as showed in Fig. 4. The width of the
regionR; along each coordinate direction is determined
by the corresponding components of the veclgrs-

[lﬂ, Ce. ,lin]T andu; = [Uﬂ, Ce. ,Uzn]T That s,

Ri={xeR":lji <zi <w,...,
17)
Z’in g Tn < uin}

In other words, the componeritg andw;; are the
lower and upper limits, respectively, of the regifin
along a coordinate direction.

The vectord; andu; are obtained from the clusters
of training input examples generated by themeans

T— -3 oo . o Training pattern
e | * o Possible center
! 1 1o o
: o 1 | 1
1 * le____34
(A Ry
By o-———-—--
| o !
] ]
| oe0
| .
] ]
[P - |
R;

Input space

Fig. 4. Partioning the input space by means of clusters of examples.

clustering algorithm. Conside$; a cluster of input
examples. The vectots andu; (which determine the
regionR;) are obtained from the clustéy; as follows:

i, = in (18)
Ui — MAX T (19)
XeS;
forall k = 1,...,n. By using this procedure, the

region?; embraces all examples of the clusggr
3.3. Decoding the chromosomes

To evaluate the fitness of the chromosomes, they need
to be decoded. Consider the following chromosome
to be decoded’P = (a,p1,po2,-..,Pk). The pa-
rametersy, ¢;1, ¢j2, - . . , ¢jn, Were encoded as floating-
point values and normalized in the inter{@/1]. The
decoding is caried out as follows:

C;‘k = l7‘j7k + Cjk(u,,%k — l,-j7k) (20)

0; = s0; (21)
fork =1,...,n. The coefficients = 5 is a scaling
factor.

3.4. Genetic operators

The proposed GA uses a modified crossover opera-
tor, here named cluster crossover, and a set of mutation
operators.
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for j =1 to K then — Addition and delete operators add and delete ran-
qj = p1j or pz; with equal probability. domly chosen basis functions.

endfor

Next section shows experiments using this GA. It
Fig. 5. Cluster crossover. also compares the traditional elitism with the occam
elitism operator.

for j =1 to K then

if (b1 = 1) and (by; = 1) then 3.5. Experimental studies
q; = BlendCrossover( Py, P2 )

else In the experiments performed, the proposed GA was
q; = p1j or p2; with equal probability. applied to a benchmark dataset: a Hermite polynomial
endif approximation [12,15] (see Fig. 7), which is defined
endfor by
Fig. 6. Cluster crossover combined with blend crossover. flz)=1101—-z — 2302) exp (_%2) (22)
‘T T The datasets used in the experiment were gener-
2o 7 ated under the same conditions adopted in [15]. Each
. 2 7] dataset has 40 examples randomly chosen in the range
S 15F . [—4, +4] with added gaussian noise. The following
1k - noise variances were used: 0.0001, 0.0003, 0.001,
05 i 0.003,0.01,0.03, and 0.1. For each noise variance, the
0 A GA program was executed, at least, 50 times (where
-4 -3 -2 -1 0 1 2 3 4 each execution used a different random dataset) and
z the results were averagedThe GA program used the
Fig. 7. Hermite polynomial. parameters shown in Table 2. The holdout method

generated the holdout dataset with 50% of the origi-
The cluster crossover is described as follows. Let nal dataset. The performance of the hypotheses was
P, = (p11,-..,p1x) andPy = (po1,...,p2x) be measured using the Root-Mean-Square Error (RMSE

the parents, wherey; = (bij, Cj1, Chj2, - - - 5 Chijn)- =p~!'v/SSE) over a test set with 200 uniformly spaced
Let Q = (qi,...,qx) be their child. The cluster  noiseless examples in the range] +4]. The occam

crossover is shown in Fig. 5. Note that the cluster elitism was used with: = 5. Thus, the smallest net-

crossover itself does not change the value of the cen- work among the five best chromosomes was kept from
ters. To change these values, the cluster crossover is generation to generation.

combined with the blend crossover [3] (a well-known  According to the results presented in the Fig. 8,
crossover for real-coded GAs) as shown in Fig. 6, in - which shows the number of centers as a function of
which the subroutin@lendCrossover() refers to the  y5ise level, the occam elitism produced notably smaller
blend crossover. _ ~ networks than the traditional elitism. Moreover, GA
The cluster crossover operator works like the tradi- iy, occam elitism also produced a lower true error, as

t'onﬁl uniform c_rossov?]r.. rl1ts main dlftferelncgrs that it shows the Fig. 9. These results suggest that the occam
exchanges regions (which represents clustérsjn- elitism may be an effective method. Because of this,

stead of structural chunk; of chromosomes (as per- all the following experiments in this work will use the
formed by the standard uniform crossover). The clus- " :
occam elitism (withs = 5).

ter crossover is a method for the exchange of hyper-
volumes on the phenotype space, whereas the stan-
dard uniform crossover operators are performed on the

1GA may produce outliers (spurious networks with large errors)
genotype space. due to premature convergence. The average value is strongly influ-
The following mutation operators were used: enced (become biased towards) by the outliers. As a result a 5%
. . trimmed mean was used instead of the mean. The 5% trimmed mean

— Uniform mutation: replaces centers and the over- (egyits in the elimination of both the top 5% and the bottom 5% of the

lap factor with uniform random numbers; ranked samples. The mean is calculated for the remaining samples.
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Table 2
GA parameters
Population 500
Generations 500
Number of regions 15
Crossover rate 0.60
Mutation rate 0.05
Addition rate 0.3
Deletion rate 0.3
Basis function Gaussian
14 occam elitism ——
traditional elitism ---—+---
12 —
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10~* 1073 1072 107!
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Fig. 8. Comparing the performance of occam and traditional elitism
in terms of the number of basis functions.

4. Others fitness functions for model selection

This section presents methods widely used in ma-
chine learning for model selection (to select a hypoth-
esis (a model) among several candidate hypotheses).

4.1. Thek-fold-crossvalidation fitness function

This method [20,10] divides the datadetEq. (4))
in k subsets (also naméalds): Dy, D,,...,Dg. The
folds have equal size and are mutually exclusive. Thus,
the method produceis hypothesishy, . .., hix, where
each hypothesis is built from the dataget, D; (see
Fig. 10) using the adjustable parameteas follows:

hj =h(\,D\D;), for=j=1,....k (23)
The performance obtained by each hypothégiss
measured on the datas®y. The fitness of\ is equal

to the average of the performances oftheypotheses.
The fitness of the chromosomds given by:

k
=5 X )

=1 (X,y)€D;

(24)

If k& = |D|, the k-fold-crossvalidation is known as
leave-one-out.
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Fig. 9. Comparing the performance of occam and traditional elitism
in terms of the error on the test set.

DQ Dg D4 D5 >bu11d hl

Dy
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\
D3 D4 D5 1}blllld h2

D,

[D.]D, D4|’D5|>build hs

D
Dy

D, | D2 | Ds
D, | Dy | D3| Dy

;] }build ha

AY
Y build s
J

D]

Fig. 10. Thek-fold-crossvalidation method with = 5.
4.2. The Generalized Cross-Validation fitness function

The Generalized Cross-Validation (GCV) is a for-
mula derived from the leave-one-out crossvalidation
under the assumption that the model is linear. Thus,
GCV is often used for linear models. RBF networks
are nonlinear models, but, in practice, GCV has been
used in model selection for RBF networks [9,15]. Be-
cause GCV is computationally inexpensive, it becomes
attractive to be used with GAs.

The chromosome is trained with the whole dataset
D. The fitness of the chromosomés given by GCV
Equation:

pSSE

f(A) =GCV = o]

(25)
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where SSE denotes the sum of squared errors on theis not described here (see [2] for details). In [8] there

dataseD, m is the number of weights (free parameters)
andp is the number of examples .

If the RBF network learning uses ridge regression
(regularization) [9] to compute the weights, the GCV is
modified in order to include the ridge parametdr]:

(1/p)I(I = A)y|?
[(1/p)trace(I — A)]?

f(A) =GCV = (26)
whereA = Z(Z'Z — 01)"'ZTy.
4.3. The .632 Bootstrap fitness function

The .632 Bootstrap method is a member of the
bootstrap family introduced by Efron [2]. All boot-

is an overview of the functions presented in this sec-
tion. The following section shows the experiments per-
formed to optimize these functions using the proposed
GA.

4.4. Experimental studies

The experiments presented in this section compare
four fitness functions: holdout, crossvalidation, boot-
strap, and GCV. The holdout result was taken from Sec-
tion 3.5. The crossvalidation function used ten folds
(i.e., the 10-fold crossvalidation). Finally, the .632
bootstrap used 20 bootstrap datasets.

Note thatin each chromosome evaluation using hold-

strap based estimates are computed by using a setoutonly one training is carried out (namely the trai_ni_ng
of bootstrap datasets. A bootstrap dataset is created OVer the holdout set). GCV also performs one training

by samplingp = |D| examples (with replacement)
from D. This method create® bootstrap datasets:
D1,Ds,...,Dp. Note that the datasets are not mu-
tually exclusive. This method producéshypotheses

hi(N),...,hp()\), where each one is built from the
datase®D; using the adjustable parameterThat is,
hj:h()\,pj), fijZl,...,B (27)

The fithess of the chromosome obtained by the
.632 bootstrap function, is given by:

f(X) =0.368 - €T+ 0.632- € (28)

The terms of the Eq. (28) are described as follows:
The termerr is the performance of a hypothesis built
from the dataseD measured on the same dataBet
This measure refers to the training error of the hypoth-
esis. Mathematically, it is given by:

err=

Z 5(h(xi; A, D), ;) (29)

D=

The terme denotes the average error obtained from
bootstrap datasets not containing the example being
predicted. In other words;, is computed by using
a bootstrap dataset as training set and the remaining
examples as test set. Itis given by:

=30 3 dlho(x0), 1)/ B

=1 beC;

(30)

where(; is the set of indices of the bootstrap dataset
not containing theth sample, and3; is a number of
such bootstrap datasets.

Finally, the derivation of the coefficients of the
Eq. (28) (hamely 0.368 and 0.632) is complex, and thus

per evaluation. Whereas the 10-fold-crossvalidation
performs 10 training sessions (owing to 10 folds) in
each evaluation and bootstrap performs 20 training ses-
sions (owing to 20 bootstrap datasets). Obviously,
the crossvalidation and bootstrap consume much CPU-
time. This is a drawback for GAs, once GAs need fast
objective functions in order to reduce its processing
time. A solution to this problem is shown in the next
section.

Because holdout and GCV consume small CPU-
time, they become attractive as fitness functions. The
drawback is that holdout can lead the learning algo-
rithm to overfit the holdout set, once it is always the
same during the execution of the GA. Because GCV is
not suitable for nonlinear models, it follows that GCV
does not give a good estimate of the true error and over-
fits the dataset. Crossvalidation and bootstrap make
a more efficient use of the dataset by re-sampling it
several times. So, in the experiments performed, they
presented, in general, better performance than holdout
asitis confirmedin Fig. 12. However, in terms of com-
plexity, holdout produced networks as small as those
produced by 10-fold-crossvalidation (see Fig. 11).

5. The multiobjective Genetic Algorithm

In the case of optimizing multiple objectives, there
is, in general, no best solution because the solution
may be the best with respect to an objective and the
worst with respect to another. Thus, there is usually a
set of solutions, being not possible to say what is the
best overall solution. Such set of solution is called the
Pareto optimal solution. Formally:
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Fig. 11. Comparing the performance of several kinds of fitness in
terms of the number of centers.
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Fig. 12. Comparing the performance of several kinds of fitness in
terms of the error on the test set.

Let f1, f2, ..., fq be the set of objective functions
to be minimized. A chromosome fitness is defined
by a vector where each component is the value of
an objective function. In order to compare chromo-
somes through these vectors, the following definitions
are used [4]:

Definition 1 Leta andb be vectors of objective func-
tion values. A vectob is said to be dominated Kpr
inferior to) a vectora iff a is partially-less-tharb (in
symbolsa <, b), where:

Definition 2 A vectora is said to be non-dominated
(or non-inferion) if there is not any other vectdin the
populatior) that dominates.
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procedure EvaluateWithShuffling(P)

for each ) in the population P do
Set D* equal to shuffle(D)
Estimate the true error e(\, D*)
Set the fitness f of A equal to €(\, D*)

end for

Fi

g. 13. Evaluation procedure with shuffling.
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Fig. 14. Comparing the performance of the multiobjective GA in
terms of the number of centers.

The Pareto-optimal set is defined as the set of all
non-dominated vectors of the population. The goal of
this multiobjective optimization is to find the Pareto-
optimal set. Several GAs variants have been proposed
in order to find the Pareto set (see [4,5] for more infor-
mation).

5.1. Model selection

In this work, two inexpensive objective functions are
optimized: holdout and GCV.

As before, the datasé? is divided into two parts:
the training seD;, on which the hypothesisiis built, and
the holdout seb;,. The first fithess of the chromosome
A is given by holdout function:

1
AN = Br] (x,%;m S(h(x: A\ Dy),y)  (32)

The second fitness of the chromosoinis given by
GCV function over the datasé;:
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Fig. 15. Comparing the performance of the multiobjective GA in
terms of the error on the test set.

f2(0) = (33)

Dt SSEt
(pe —m)?
whereSSE; denotes the sum of squared errors on the
datasetD;, m is the number of weights (free parame-
ters) andp, is the number of examples ;.

The occam elitism was adapted for the multiobjective
GA asfollows: allthe simplest hypotheses of the Pareto
set are kept from generation to generation. In the last
generation, a criterion is needed to select an unique
hypothesis. The following criterion was adopted: pick
up the simplest hypothesis of the Pareto set. If there is
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bust to deal with noise functions [6]. In case of elitism,
the chromosome that is kept from generation to gener-
ation should be revaluated in each generation in order
to verify whether its good performance is not due to
stochastic errors. Other heuristic investigated, grow-
ing, is presented in next section.

5.3. Growing

Stanley and Miikkulainen [19] observed that com-
plexity in nature is developed over time, rather than
introduced in the beginning. Based on this observa-
tion, they proposed evolving hypotheses starting with
minimal hypotheses. This means to set the initial pop-
ulation with minimal networks (e.g., one basis func-
tion) instead of random (and probably large) hypothe-
ses. New hypotheses are introduced incrementally as
mutations occur. Only those hypotheses that are found
to be useful survive through generations.

An experimental justification for the use of grow-
ing is as follows: In all experiments performed so far,
the number of basis function was limited to 15 basis
functions (see the number of regions parameter from
Table 1, which also indicates the maximum number of
basis function). This low limit was used because if GAs
start with a higher limit (e.g., 35 basis functions), they
may arrive to poor results and large hypothesis. This
occurs due to the large hypothesis of the initial pop-
ulation that tends to dominate the population, causing

more than one such hypothesis, then use the median of @ phenomena known as premature convergence. Such

them.

Note that the holdout set is kept constant during
all generations. Hence, the holdout function still may
overfit the holdout set. In order to avoid the holdout to

be set kept constant, the shuffling schema is proposed.

5.2. Shuffling

In order to improve the quality of the genetic hy-
potheses, the population evaluation procedure is modi-
fied by shuffling the dataset just before the fitness eval-
uation. Consider thathuffle() is a computer proce-
dure that shuffles the dataskt producing the shuf-
fled dataseD*. The modified evaluation procedure is
shown in Fig. 13. It replaces the corresponding proce-
dure from Fig. 1.

The shuffling’s underling principle is to avoid the
holdout set to be kept constant, and therefore avoid
overfitting. Nevertheless, the shuffling transforms the
holdout into a noise function. GAs, however, are ro-

large hypotheses are suboptimal solutions, named su-
perindividuals. The use of the growing approach seems
to solve this problem, once it avoids the production
of large hypotheses (superindividuals) in early stages
of the evolution. Growing was successfully used for
genetic design of RBF networks in [1]. Experiments
involving the multiobjective GA and the heuristics dis-
cussed are presented in the next section.

5.4. Experimental studies

In the experiments carried out, the holdout function
did not perform well because large hypotheses tend to
overfit the holdout set. The same happened with the
GCV method. However, the optimization of both hold-
out and GCV seems to be a promising idea, as suggest
the results shown in Figs 14 and 15. The shuffling and
growing heuristics incorporated into a GA improved its
performance in both error on test set and complexity.
The results obtained suggest that Multiobjective GA
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with shuffling and growing is comparable to crossvali- plexity incrementally. Growing avoids the bias to-
dation and bootstrap. wards large hypotheses in the initial population.
A possible explanation for this good result is that Growing makes the evolving of complexity a more

GCV penalizes large hypotheses (once its denominator rigorous and natural process.
diminishes in large hypotheses). As a consequence,
GCV contributes to avoid the overfitting of the hold-
out. In spite of making the holdout function a noise
function, the use of shuffling also contributes to avoid
holdout overfitting (once the holdout set is not fixed).
However, in some experiments involving optimization
with an unique objective function, shuffling did not lead
to good results (these results are not reported here).
Growing adds basis functions incrementally, making
the selection of centers more rigorous (once complexity
is only added if necessary) and natural. The combined Acknowledgment
effect of all theses methods seems be useful for model
selection. The authors would like to thank FAPESP, CAPES,
and CNPq for their support.

All of theses modifications are computationally in-
expensive and, if combined, they may produce results
equivalentto both crossvalidation and bootstrap, which
require a large amount of computer processing. Thus,
GAs may provide a suitable framework for the model
selection problem, but this potential still needs be fur-
ther explored.
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