is not significantly affected by the relative position of the two FSS
layers.

The above position of the receiving antenna indicates that the
measurements were made in the far field where the experimental
results are the combination of aperture and FSS transmission. To
investigate the effect of the aperture, the receiving antenna was
placed closer to the FSS window at distances of 67 and 16 mm.
The results, shown in Fig. 3, are not significantly altered by
changing the receiver’s position. Fig. 4 demonstrates the high
optical transparency of the double layer ITO FSS window.

T =

Fig. 4 Double layer ITO FSS window on top of Radiocommunications

Agency logo

Conclusion: An optically transparent FSS structure based on
highly conductive ITO is presented here for the first time. Com-
parative studies with a copper FSS structure showed that the per-
formance of the ITO double layer FSS is very satisfactory and
close to our 30dB target. The current aim is to increase further
the conductivity of the ITO. In general it is expected that any
increase in the conductivity of the ITO would result in a concomi-
tant decrease in its optical transparency. There are indications,
based on in-house laboratory experiments and published litera-
ture, that the conductivity can be improved further without
severely affecting the high optical transparency {2 — 4].
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Classification of vintages of wine by artificial
nose using time delay neural networks

A. Yamazaki, T.B. Ludermir and M.C.P. de Souto

A pattern recognition system for an artificial nose is presented. It
is composed of artificial neural networks with time delay taps on
their inputs. For the classification of vintages of wine, it achieves
better results (mean classification error of 4.32%) than those
obtained by networks without delay taps (42.79%).

Introduction: The two main components of an artificial nose are
the sensor and the pattern recognition systems. Each odorant sub-
stance presented to the sensor system generates a pattern of resist-
ance values that characterises the odour. This pattern is often first
preprocessed and then given to the pattern recognition system,
which in its turn classifies the odorant stimulus [1]. Sensor systems
have often been built with polypyrrole-based gas sensors. Some
advantages of using such a kind of sensor are [2]: (i) rapid adsorp-
tion kinetics at the environment temperature; (i) low power con-
sumption, as no heating element is required; (iii) resistance to
poisoning; and (iv) the possibility of building sensors tailored to
particular classes of chemical compounds. Artificial neural net-
works (ANNs) have been widely applied as pattern recognition
systems in artificial noses [1]. Implementing the pattern recogni-
tion system with ANNs has advantages such as [3]: (i) the ability
to handle nonlinear signals from the sensor array; (ii) adaptability;
(iii) fault and noise tolerance; and (iv) inherent parallelism, result-
ing in high speed operation. The type of neural network most
commonly used for odour classification in artificial noses has been
the multi-layer perceptron (MLP), together with the backpropaga-
tion learning algorithm [4). Such networks are usually constrained
to deal only with static patterns. In contrast, in this Letter we pro-
pose an odour recognition system for artificial noses, which takes
into account the temporal properties of the sensor signals. This is
accomplished by using ANNs with time delay taps on their inputs.

Problem and data description: The aim is to classify odours from
three different vintages (years 1995, 1996 and 1997) of the same
wine (Almadém, Brazil). A prototype of an artificial nose was
used to acquire the data. This prototype is composed of six dis-
tinct polypyrrole-based gas sensors, built by electrochemical depo-
sition of polypyrrole using different types of dopants. Three
disjointed data acquisitions were performed for every vintage of
wine, by recording the resistance value of each sensor at every half
second during a five minute interval. Therefore, this experiment
yielded three data sets with equal numbers of patterns: 1800 pat-
terns (600 from each vintage). A pattern is a vector of six elements
representing the values of the resistances recorded by the sensor
array. The patterns in every set of vintage have been ordered
according to the sequence in which they were obtained. Thus,
there is a curve (resistance against time) associated with each sen-
SOT.

Experiments: In this Letter, a pattern recognition system for an
artificial nose is proposed. The system comprises a time delay neu-
ral network (TDNN) [5], which allows for the handling of the
temporal features in the signals generated by the sensors.

The data for training and testing the network were divided as
follows: the first data acquisition was assigned to the training set,
the second to the validation set, and the last was reserved to test
the network. This partitioning has been chosen so that the tempo-
ral behaviour of the patterns within each set could be kept, allow-
ing the presentation of these patterns in the same order as they
originally occurred. The patterns were normalised to the range [-1,
+1], for all network processing units implemented by hyperbolic
tangent activation functions. All networks analysed were TDNNs
with only a single hidden layer, but with different numbers of tap
delay lines and hidden nodes. The first group of TDNNs had six
units in the input layer: one for each sensor — in fact this group of
topologies had no delays, for the classification is based on only
the current input. Conversely, the second group of TDNNs had
twelve units in the input layer: six units representing the pattern
currently presented and the other six units for the pattern shown
at the previous time step. For both groups of topologies, the net-
work output was represented by a 1-of-m code — one unit for each
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vintage of wine (i.e. three output nodes). All networks contained
all possible feedforward connections between adjacent layers, hav-
ing no connection between non-adjacent layers. For each group of
TDNNs, six different topologies (2, 4, 8, 12, 16 and 20 hidden
units) were trained. The training algorithm is a version of the Lev-
enberg-Marquardt method [6]. For each topology, 10 runs were
performed with different random weight initialisations, and the
maximum number of epochs allowed was 100. Training was
stopped if: (i) the GLs criterion defined in Probenl [7] was satis-
fied twice (to avoid stopping training because of initial oscillations
in the validation error); or (ii) the training progress criterion given
was met, with Ps(7) < 0.1 [7); or (iii) a maximum number of 100
epochs was achieved.

Table 1: Mean and standard deviation for the results of the first
system (with 6 input units) for each topology

Trainin Validation Classification|
Hidden & ‘eat Test error ssica Epochs

error error error
nodes

Mean |S. dev.] Mean [S. dev.| Mean [S. dev.| Mean [S. dev.|Mean]S. dev.
2 |237.82(180.23|307.60] 99.89 [254.27/149.52)0.4474/|0.1981] 13 12
4 ]250.26( 88.82 |289.05|137.26|283.05| 75.79 |0.5904/0.2179| 12 9
8 188.29 80.55 (259.71|124.20(230.08| 63.95 |0.4333|0.0929| 16 11
12 [151.70{ 74.16 |242.48|118.34|214.94| 48.06 [0.5053(0.1776] 17 8
16 ] 66.19 | 64.56 [141.14| 85.37 [131.19] 53.44 0.3219]0.1750| 11 4
20 | 45.69 | 48.99 [106.69| 61.29 |118.63| 34.73 {0.2692/0.1001| 19 13

Results: The error measures analysed were the percentage mean
squared error [7] (for training, validation and test sets) and the
classification error (for the test set only). The latter is equal to the
number of incorrectly classified examples divided by the total
number of patterns. The results for the first system (TDNNs with
six input units and no tapped delay lines) are shown in Table 1.
For each topology, the mean and standard deviation of the results
obtained for the set of ten runs are presented. As can be seen, val-
ues for the test set classification errors were high: for instance, the
mean classification error for all topologies is 42.79%. For the 2-
hidden-node topology, the smallest classification error in the set of
ten runs was about 13.61%. For the 4-hidden-node topology, this
value was about 27.50%, and for the topologies with 8, 12, 16 and
20 hidden nodes, this error was about 22.61%, 31.01%, 11.01%
and 8.61%, respectively.

Table 2: Mean and standard deviation for the results of the second
system (with 12 input units) for each topology

. Training Validation Test error Classification Epochs
Hidden error €rror error P
nodes

Mean {S. dev.| Mean |S. dev.| Mean [S. dev.| Mean [S. dev.[Mean|S. dev.
2 14.15 | 43.23 |158.54| 18.05 [ 20.61 | 38.28 |0.0336]0.1053| 8 4
4 0.38 | 0.14 |154.55] 9.74 | 2.99 | 5.32 ]0.0002]0.0005
8 0.23 | 0.08 [157.46] 14.84 | 2.64 | 2.01 {0.0000(0.0000
12 0.19 | 0.03 [158.77{10.99 | 3.47 | 3.31 [0.0000}0.0000
16 |26.69 | 60.01 {176.45| 43.06 | 24.54 | 53.32 [0.0642(0.1608

© 20 |53.34(85.87|192.90] 56.16 | 64.27 | 81.43 |0.1611]0.2495| 26 39

N O 0

The results for the second system (TDNNs with 12 input units —
one tapped delay line) are shown in Table 2. As can be seen, the
use of time delays for temporal processing improved classification
performance. For this approach, the mean classification error is
4.32%. For example, the 2-hidden-node topology had only two
runs with non-zero test set classification error. For the 4-hidden-
node topology, only one run obtained a non-zero classification
error. The topologies with 8 and 12 hidden nodes attained 0%
classification error on the test set. For the 16-hidden-node topol-
ogy, only two runs achieved non-zero classification errors. The
largest topology, with 20 hidden units, had four runs with non-
zero classification errors on the test set. These results have already
been compared to those obtained by MLP networks [8], which
showed worse performance than the proposed system for the same
data.

Conclusion. In this Letter, results for a pattern recognition system
in an artificial nose have been presented. Such a system is imple-
mented by using TDNNs [5], which allows temporal processing.

ELECTRONICS LETTERS 22nd November 2001

For the case of classification of vintages of wine, the system pro-
posed was shown to achieve better results than those obtained by
using networks without time delay taps. While the mean classifica-
tion error of the former was 4.32%, this error for the latter was
42.79%. Thus, it has been shown that temporal processing (i.e.
taking into account the changes in the sensor signals during data
acquisition) improves odour classification. Possible future work
includes the investigation of other neural network approaches for
the odour recognition problem and the optimisation and hardware
implementation of the proposed networks.
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800 Gbit/s (80 x 10.664 Gbit/s) WDM
transmission over 5200 km of fibre
employing 100 km dispersion-managed
spans

Benyuan Zhu, S.N. Knudsen, L.E. Nelson,
D.W. Peckham, M.&. Pedersen and S. Stulz

80 x 10.664 Gbit/s wavelength division multiplexed transmission
over 5200km of fibre with 100km amplified spans and 50 GHz
channel spacing is demonstrated. Error-free operation of all 80
channels is achieved by using dispersion-managed fibre spans,
distributed Raman amplification, and forward error correction.

Introduction: Increasing demand for high capacity data pipes con-
necting the world’s largest cities implies that transmission dis-
tances of the order of 2000 to 5000km without electronic
regeneration will be required to cross continents with no interme-
diate traffic drop [1, 2]. Ultra-long haul terrestrial DWDM trans-
mission requires novel concepts to allow optimal trade-off between
the major limiting factors such as chromatic dispersion, accumula-
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