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the excellent performance of the another two our algorithms in the un-
derdetermined BSS problem, for separation of artificially created sig-
nals with sufficient level of sparseness.
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Equivalence Between RAM-Based Neural Networks and
Probabilistic Automata

Marcilio C. P. de Souto, Teresa B. Ludermir, andWilson R. de Oliveira

Abstract—In this letter, the computational power of a class of random
access memory (RAM)-based neural networks, called general single-layer
sequential weightless neural networks (GSSWNNs), is analyzed. The theo-
retical results presented, besides helping the understanding of the temporal
behavior of these networks, could also provide useful insights for the devel-
oping of new learning algorithms.

Index Terms—Automata theory, computability, random access
memory (RAM) node, probabilistic automata, RAM-based neural net-
works, weightless neural networks (WNNs).

I. INTRODUCTION

The neuron model used in the great majority of work involving
neural networks is related to variations of the McCulloch–Pitts neuron,
which will be called the weighted neuron. A typical weighted neuron
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can be described by a linear weighted sum of the inputs, followed by
some nonlinear transfer function [1], [2]. In this letter, however, the
neural computing models studied are based on artificial neurons which
often have binary inputs and outputs, and no adjustable weight between
nodes. Neuron functions are stored in lookup tables, which can be
implemented using commercially available random access memories
(RAMs). These systems and the nodes that they are composed of will
be described, respectively, as weightless neural networks (WNNs) and
weightless nodes [1], [2]. They differ from other models, such as the
weighted neural networks, whose training is accomplished by means
of adjustments of weights. In the literature, the terms “RAM-based”
and “N-tuple based” have been used to refer to WNNs.
In this letter, the computability (computational power) of a class of

WNNs, called general single-layer sequential weightless neural net-
works (GSSWNNs), is investigated. Such a class is an important rep-
resentative of the research on temporal pattern processing in (WNNs)
[3]–[8]. As one of the contributions, an algorithm (constructive proof)
to map any probabilistic automaton (PA) into a GSSWNN is presented.
In fact, the proposed method not only allows the construction of any
PA, but also increases the class of functions that can be computed by
such networks. For instance, at a theoretical level, these networks are
not restricted to finite-state languages (regular languages) and can now
deal with some context-free languages. Practical motivations for inves-
tigating probabilistic automata and GSSWNNs are found in their pos-
sible application to, among others things, syntactic pattern recognition,
multimodal search, and learning control [9].

II. DEFINITIONS

A. Probabilistic Automata

Probabilistic automata are a generalization of ordinary deterministic
finite state automata (DFA) for which an input symbol could take the
automaton into any of its states with a certain probability [9].

Definition 2.1: A PA is a 5-tupleAP = (�;Q;H; qI ; F ), where

• � = f�1; �2; . . . ; �j�jg is a finite set of ordered symbols called
the input alphabet;

• Q = fq0; q2; . . . ; qjQjg is a finite set of states;
• H is a mapping of Q� � into the set of n � n stochastic state

transition matrices (where n is the number of states in Q). The
interpretation of H(am); am 2 �, can be stated as follows.
H(am) = [pij(am)], where pij(am) � 0 is the probability of
entering state qj from state qi under input am, and n

j=1
pij =

1, for all i = 1; . . . ; n. The domain ofH can be extended from
� to �� by defining the following:

1) H(�) = In, where � is the empty string and In is an n � n

identity matrix;
2) H(am ; am ; . . . ; am ) =

H(am )H(am ); . . . ; H(am ), where k � 2 and
am 2 �; j = 1; . . . ; k.

• qI 2 Q is the initial state in which the machine is found before
the first symbol of the input string is processed;

• F is the set of final states (F � Q).
The language accepted by a PA AP is T (AP ) = f(!; p(!))j! 2

��; p(!) = �0H(!)�F > 0g where: 1) �0 is a n-dimensional row
vector, in which the ith component is equal to one if qi = qI , and 0
otherwise and 2) �F is an n-dimensional column vector, in which the
jth component is equal to 1 if qj 2 F and 0 otherwise.
The language accepted byAP with cut-point(threshold) �, such that

0 � � < 1, is L(AP ; �) = f!j! 2 �� and �0H(!)�F > �g.
Probabilistic automata recognize exactly the class of weighted reg-

ular languages (WRLs) [9]. Such a class of languages includes properly
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all regular languages and also relates to all other language classes in
Chomsky’s hierarchy. More specifically, there exist WRLs which are
not regular languages. For example, [9] presented a weighted regular
grammar that generates a context-free language that is not regular. In
order to simplify the Proof of Theorem 3.1 presented in Section III, and
without loss of generality, the PAs considered in this letter will be con-
strained to have at most two transitions under a certain symbol leaving
a given state [10].

B. GSSWNNs and PAs

The model analyzed in this letter will consist of a variation of
the single-layer sequential WNNs in [3]–[8] in that hidden neurons
(state neurons) and a single output neuron (a feedforward node)
are considered. This version will be called a GSSWNN. Such a
structure, without loss of generality, will be regarded as a language
acceptor. Furthermore, since the purpose is to have the GSSWNNs
simulating the behavior of the PAs, these networks too will be con-
strained to have, at each time step, at most two possible current
states. In order to do so, the set of possible storable values for the
states nodes (hidden nodes) will be restricted to six different values
fp1; . . . ; p6g, where pi 2 [0; 1]; i = 1; . . . ; 6. These values will have
a one-to-one relationship to the following ordered set of binary vectors
f(0); (1); (0; 0); (0; 1); (1; 0); (1; 1)g. With this encoding scheme, a
set of at most two binary vectors is associated with the values stored
in the state neurons, which will represent the actual network current
state(s). Hereafter, this encoding scheme will be referred to as the
output encoding scheme.

Definition 2.2: A GSSWNN is a seven-tuple
N = (X;U; y; f ;p; x0; R) where

• X = f0; 1gn is the state–space of the GSSWNN, which is
represented by a layer of nX hidden weightless neurons (state
neurons).

• U = f0; 1gn defines the set of possible input vectors, with nU
the number of input lines for the network.

• y = [0; 1] is the output of GSSWNN, which represents the tran-
sition probability of the network.

• f : X � U ! fX [ (X � X)g is the transition function,
which computes a set of current states from the previous state
x[t � 1] and the current input u[t]. This functions is imple-
mented as a sequential WNN with only one layer of hidden
units (state nodes). The set of possible storable values for these
nodes is restricted to six different values fp1; . . . ; p6g, where
pi 2 [0; 1]; i = 1; . . . ; 6. Also, each hidden node has a decoder
associated with it. The decoder transforms a real-valued node
output pi 2 [0; 1] into a vector with either one bit or two binary
bits, in accordance with the output encoding scheme.

• p : X�U ! [0; 1] is the transition probability function, which
computes the current transition probability y[t] of the network
from the previous state x[t � 1] and current input u[t]. This
function is implemented as a feedforward network with a single
weightless node.

• x0 is the initial state of the GSSWNNs, that is, the value that
will be used for x[0].

• R � X is the set of accepting states of the network.
In order to deal with the set of previous and current states, two first-in

first-out (FIFO) queues are associated with the GSSWNN. The main
FIFO queue (main FIFO) contains the set of previous states of the net-
work. At each time step, one of the previous states is retrieved from
the queue and fed to the network. The second queue, which will be
called the auxiliary FIFO queue (auxiliary FIFO), stores the set of cur-
rent states of the network, after they have been transformed in binary
vectors.

Since U and y have been defined, respectively, in a binary and con-
tinuous spaces, pRAM nodes with binary inputs and real-valued out-
puts [11] are a straightforward type of weightless node that can be
used to implement GSSWNNs. Hereafter, GSSWNNs in this letter will
be assumed to be implemented with pRAM nodes with binary inputs
and real-valued outputs. The functions f and p could be implemented
by a coupled single-layer of an output neuron and state neurons. It is
assumed that these networks are fully connected. In other words, for
every node j in the network, the input terminals ij of such a node
are completely linked to the elements in the input layer, that is, ij =
(u1; u2; . . . ; un ; x1; x2; . . . ; xn ).

C. Probabilistic Recognition Algorithm

The special recognition algorithm introduced in this section,
which will be called the probabilistic recognition algorithm, makes
a GSSWNN function as a PA [10]. In order to deal with the set of
previous and current states and to be able to follow all distinct paths,
the probabilistic recognition algorithm uses the two FIFO queues
associated with the GSSWNNs. Also, without loss of generality, it is
assumed that all strings submitted to the network will have an initial
symbol " and final symbol  . The symbol " tells the algorithm that a
new string is being submitted to the network. The " symbol will also
be used when an �-transition must be accomplished. Similarly,  tells
the algorithm that the end of the sentence has been reached.
Based on the previous assumptions, the probabilistic recognition al-

gorithm works as follows.

Step 1) When the network is fed with the first symbol from a sen-
tence !0, the auxiliary FIFO will be set to store the initial
state x0 of the network, and the main FIFO will be empty.

Step 2) If the end of the string has not been reached, the state(s)
in the auxiliary FIFO is transferred to main FIFO and the
next symbol in the string is read.

Step 3) This symbol together with the first state in the main FIFO
are used to compute the current state(s) of the network.
Such state(s) are decoded.

a) If the current states are labeled as rejected states,
recognition stops and the string is said to be rejected
by the network.

b) If any of the current states is labeled as containing
�-transitions, a recursive subroutine is called. The aim
of such a subroutine is to follow all the �-transitions
associated with a given current state. Moreover, the
current symbol being fed to network is temporally re-
placed by the additional symbol "—recall that in terms
of automata an �-transition means a transition under
the empty symbol �. The result of following the �-tran-
sitions are stored in the auxiliary FIFO.

c) If none of the previous conditions is true, then simply
store the set of current states in the auxiliary FIFO.

Step 3) continues while the main FIFO is not empty. In
other words, the current symbol will be kept in the input
line while the main FIFO is not empty. This means that,
for each current symbol, there might be a finite number of
intermediate steps before the next symbol is fed.

Step 4) When the main FIFO is empty, the process restarts from
Step 2). Hence, with this algorithm, the network can go
on all distinctive paths that a string !0 can follow and keep
track of the probability computed for the states used by the
network.

There are different ways to calculate and store these probabilities
[10]. For instance, since there can be only two different transitions at
each time, a binary tree (probability tree) can be built to store the states
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used by the network and their respective transition probabilities. At the
end of the process, when the last symbol is fed, if both 1) the states at
which the network ultimately arrives contains at least one of the net-
work accepting (final) states and 2) the sum of the probabilities com-
puted for these states is greater than the threshold (cut-point �), the
sentence is accepted by the network. In order to process a sentence,
in the worst case, such an algorithm will make l � n accesses to the
memory locations in the network, where l is the length of the sentence
and n the number of network valid states (i.e., those states which are
not garbage states).

Theorem 2.1: [10] From the set of all languages, any language L
which is recognized by a GSSWNN with the probabilistic recognition
algorithm can be recognized by a PA.

The previous theorem implies that any GSSWNN, when used with
the probabilistic recognition algorithm, has its computability restricted
to the class of PAs. Thus, in this context, whatever problem aGSSWNN
is given, such a problem can described in terms of a PA (WRL accep-
tors).

III. SYNTHESIS OF PAs IN GSSWNNs

GSSWNNs are designed from PAs in a series of steps. The first is to
assign unique binary tuples to each input symbol and state (the state-as-
signment problem). Second, tables for the transition function of the PA
and its version with the current states codified, respectively, are pro-
duced. If a PA has �-transitions, without loss of generality, a symbol "
is added to the input alphabet of this PA. Then, such a symbol is em-
ployed as the input symbol in the entries of the transition table that
represent �-transitions. Third, the contents of the nodes in the network
are configured such that they can perform the transition function of the
PA. Fourth and finally, the network is used with the recognition algo-
rithm proposed in the previous section. This can be formally defined as
follows.

Theorem 3.1: Let AP = (�; Q;H; qI ; F ) be a PA with cut-point
�. Then there exists a GSSWNN that implementsAP .

Proof: AP is reduced to a GSSWNN N = (X;U; y; f ;p;x0)
as follows.

1) A mapping � ! f0; 1gn , where nU = dlog
2
j�je, is defined.

Such a mapping transforms each possible input symbol �k 2 �
into a different vector uk 2 U .

2) AmappingQ! f0; 1gn , wherenX = dlog
2
jQje, is defined.

Thus, each state qi 2 Q is a assigned a vector xi 2 X such that
if qi 6= qj , then xi 6= xj .

3) The network initial state x0 is defined as the vector standing for
qI 2 Q.

4) The set R of network accepting states will consist of vectors
xi 2 X representing the states qi 2 F .

From Step 1) and Step 2), it follows that N has to have (nX + 1)
nodes with (nU + nX) input lines. Next, in order to implement the
transition function H of the automaton, functions fi(i = 1; . . . ; nX)
have to be assigned to each node in the hidden layer. This can be done
by setting the contents of these nodes so that they output the current
states for all pairs of input symbol and state. Likewise, function p,
which computes the probabilities assigned to transitions which lead the
network to its current states, can be implemented by setting the contents
of the output node (i.e., the feedforward node).

This can be done as follows. Represent the transition function H

by a lookup table, [(current input previous state), current state(s) prob-
abilities]. Since a pRAM node can also be seen as a lookup table, it
is straightforward to regard the pairs (current input,previous state) as
forming addresses to both the nodes in the hidden layer and the node
in the output layer. In contrast, each entry current state(s) and prob-
abilities, respectively, defines what each hidden node and the output

node have to output for each pair. Without loss of generality, in each
entry current state(s), the set of current states is assumed to be in lexi-
cographic order. In addition, by using the output encoding scheme de-
fined in Section II-B, each of these entries can be transformed into a
single vector of continuous values. Moreover, it is assumed that there
is a one-to-one relationship between the coordinates of the current state
vector and the hidden nodes.
After this step, the vectors coding the current states could be directly

stored in the contents of the hidden nodes. Now, recall that for a given
state and input symbol, the set of possible current states in the lookup
table representing the automaton transitions were encoded in lexico-
graphic order. Also, there will exist at most two transitions leaving a
given state under a given symbol. Thus, with regard to the probabilities
assigned to the these transitions, it is only necessary to store the one
concerning the first current state. The omitted one is the complement.
Finally, the locations of the state neurons that represent �-transition

will have a specific label assigned to them. Likewise, those locations
which were not employed to represent the set of “valid states” (non-
garbage states) inQ could be labeled as garbage (rejected) states. These
labels will be important for the following reason. During the recogni-
tion process, if the current state is labeled as containing �-transitions,
the recognition algorithm will have to take a finite number of interme-
diate steps until the next symbol can be read. In case the current state is
labeled as rejected state, the algorithmwill stop the recognition process
and reject the current string. Thus, the network will not be trapped in
undefined configurations.
In summary, the algorithm in the previous proof generates a

GSSWNN which has its number of nodes logarithmic in the number
of automaton states, and each node has a number of memory locations
linear in the number of such states. Once the network is generated,
it can be used with the new recognition algorithm presented in the
previous section, which makes such a network behave like a PA.

Remark 3.1: Theorems 2.1 and 3.1 imply that GSSWNNs and PAs
are equivalent in terms of computational power (e.g., they recognize
the class of WRLs). Thus, these two theorems together show the com-
putability power of GSSWNNs.

IV. DISCUSSION

Probabilistic automata with cut-point set to 0 are very similar to
hiddenMarkovmodels (HMMs). Themain difference is that in the case
of PAs, the sum of the probabilities of every sentence in the language
is required to be equal to 1, whereas in HMMs, the requirement is that
the sum of the probabilities for all sentences of length L be equal to
1 [12]. In terms of learning, one can also compare the task of learning
HMMs to that of learning PAs with GSSWNNs. For instance, given
a fixed topology of a HMM, there are well known algorithm for esti-
mating the transition probabilities (e.g., forward-backward algorithm)
and finding the most probable sequence of hidden states given a se-
quence (e.g., Viterbi algorithm) [12]. With respect to GSSWNNs, an
algorithm to estimate the transition probabilities can be very simple.
Given a pattern !, if ! belongs to the language being learned, then re-
ward the network (increase the probabilities of the transitions that the
network has undergone when fed with !), otherwise punish the net-
work (decrease the probabilities of the transitions that the network has
undergone when fed with !). The recognition algorithm used with the
GSSWNN is similar to Viterbi algorithm for HMM.
However, one fundamental problem in the application of HMMs

is finding the HMM underlying topology, especially when there is
no strong evidence toward a specific choice from the application
domain (e.g., when doing black box modeling) [13]. In the context of
GSSWNNs, learning the underlying topology of a PA (grammatical
inference problem) from sentences is also a complex task: the existing
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learning algorithms are based on reinforcement learning procedures,
in which a reinforcement signal is required at each time step [4],
[11], [14]. However, for formal language inference problems the
classification of each sentence in the training set is available only after
the whole sentence has been fed, not for each individual symbol fed.
Thus, the current reinforcement procedures for RAM-based networks
cannot be used. An alternative to overcome this problem is to train
GSSWNNs with metaheuristics such as genetic algorithm and tabu
search [15]–[17]. For example, [15] presented a method for inferring
stochastic regular language using evolutionary computing. Whereas,
[16] showed a method to train RAM-based networks by using genetic
algorithms, tabu search and simulated annealing. Thus, the combina-
tion of both methods could give some useful insight in the developing
of novel learning algorithms able to train GSSSWNs to learn PAs (or
general time series).

Another question worth discussing is how to represent and operate
on the probabilities associated with the GSSWNNs. Inmost computers,
real numbers are represented by floating-point numbers. Thus, the “in-
finite” set of real numbers are represented by the “finite” set of floating-
point numbers. This is a great drawback for scientific computation [18],
as well as for those WRLs that need high precision along the path
of computation. Interval methods and high-accuracy arithmetic have
been successfully used to solve the problems facing scientific compu-
tation—there are already extensions of usual computer languages that
perform interval computations [19], [20]. In fact, based on a proba-
bility interval method, in [21] a Java program to transform any PA
into a GSSWNNs (including the probabilistic recognition algorithm)
was presented. Another approach that could be used to minimize the
roundoff errors is, like in HMMs [12], to apply the log to all transition
probabilities and cut-point, and then use sums instead of multiplication
to calculate the sentence probability along the path of computation.

However, even using interval probabilities methods or log transfor-
mation, the implemented system might have its computational power
decreased because of its inability to deal with infinite precision. As
shown in [9], only the class of PAs with isolated cut-point are robust
to be implemented. Isolated cut-point means that that some “small”
change in the cut-point will not lead the automaton to recognize an-
other language. The class of languages accepted by PAs with isolated
cut-point is the same as that of DFAs, that is, the class of regular lan-
guages [9]. Thus, although from a theoretical point of view the class of
PAs are equivalent to that of GSSWNNs, from a practical perspective
GSSWNNs implemented in software or hardware will be able to cor-
rectly represent only the class of PAswith isolated cut-point. Thismight
seem a negative result, but if such a result is put into a broader context,
one can see that such networks are very powerful when compared to
the class of recurrent weighted neural networks with analog activation
functions (e.g., the sigmoid function)—analog weighted neural net-
works [22]. For example, as their state–space is discrete, a GSSWNNs
can be constructed—using the algorithm presented in this letter—from
a PAwith isolated-cut point (or a DFA) in such a way that resulting net-
work will be able to recognizing correctly strings of arbitrary length.
On the other hand, the analog weighted neural networks tend to clas-
sify correctly only short strings. When they are fed with longer strings,
the clusters observed for the values of the hidden state vector (network
state) start to blur and finally merge, leading to incorrect state represen-
tations [23]. Furthermore, Maass and Sontag [22] have proved that any
analog neural network whose computational units are subject to un-
bounded Gaussian noise or other common noise distributions cannot
recognize arbitrary regular languages. In fact, these networks will be
able to recognize only definite regular languages, which is a small sub-
class of the regular languages. That is, in the case of hardware or soft-
ware implementation, the GSSWNNs are strictly more powerful than
the analog weighted neural networks.
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