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ANDRÉ C. P. L. F. CARVALHO
ICMC, University of São Paulo, Brazil

andre@icmc.usp.br
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Abstract. Credit analysts generally assess the risk of credit applications based on their previous experience. They
frequently employ quantitative methods to this end. Among the methods used, Artificial Neural Networks have
been particularly successful and have been incorporated into several computational tools. However, the design of
efficient Artificial Neural Networks is largely affected by the definition of adequate values for their free parameters.
This article discusses a new approach to the design of a particular Artificial Neural Networks model, RBF networks,
through Genetic Algorithms. It presents an overall view of the problems involved and the different approaches
employed to optimize Artificial Neural Networks genetically. For such, several methods proposed in the literature
for optimizing RBF networks using Genetic Algorithms are discussed. Finally, the model proposed by the authors
is described and experimental results using this model for a credit risk assessment problem are presented.
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1. Introduction

In recent years, there has been a large increase in
the number of finance institutions that employ anal-
ysis tools based on Artificial Intelligence techniques,
among them, Artificial Neural Networks (ANNs) [1–
6]. There is a wide range of financial applications using
ANNs. This paper addresses the problem of credit risk
assessment, which is essentially a classification prob-
lem involving the evaluation of reliability and prof-
itability of a credit application. To this end, Radial Ba-

sis Function (RBF) [7] networks are investigated as an
alternative for solving credit risk assessment problems.

The performance of RBF networks strongly depends
on their topology and learning parameters. The deter-
mination of these parameters has a considerable effect
on the ANN behavior, as measured by learning time,
accuracy, precision, noise tolerance and generalization
capability. Thus, these parameters must be adequately
set in order to assure an efficient performance.

The optimization of RBF networks has been
achieved through a number of different techniques,
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such as the Orthogonal Least Square (OLS) [8], Re-
source Allocating Network (RAN) [9] and Regulariza-
tion Theory [10]. Evolutionary approaches have been
presented in the literature as a global search method for
the design of RBF networks [11–13]. The need for a
multi-objective approach to train ANNs has also been
discussed in the literature [14]. The multi-objective ap-
proach has been shown to present the best generaliza-
tion performance. The results presented in this paper
indicate that the use of an evolutionary multi-objective
method for RBF networks design may also result in
improved generalization performance. The proposed
approach outperformed other well known approaches
in a set of experiments performed related to the prob-
lem of credit risk assessment using a benchmark
dataset.

This paper is organized as follows: Sections 2 and
3 discuss important issues related to credit risk as-
sessment. RBF networks and their usual training ap-
proaches are briefly described in Section 4. Section
5 analyzes encoding issues and current techniques for
training RBF networks with evolutionary computation.
Section 6 presents the proposed method for optimizing
RBF Networks based on multi-objective optimization.
Finally, the experimental results and conclusions are
presented at the end of the paper.

2. The Credit Risk Assessment Problem

There are a large number of political, economic and
psychological aspects that affect the behavior of the
financial market. These are correlated and interact in
a rather complex way. The majority of these relations
seem to be probabilistic and nonlinear. Thus, it is hard
to express these relations by way of deterministic rules.

Simon, in [15], classifies the financial management
decisions in a continuous interval whose limits range
from the non-structured to the highly structured deci-
sions. Highly structured decisions are those where the
processes necessary for finding an adequate solution
are known beforehand and for which several computa-
tional tools supporting the decisions are readily avail-
able. For non-structured decisions, the only aspects
that come into play are the manager’s intuition and
experience. Specialists may support these managers,
but the final decision involves a substantial number
of subjective elements. Highly non-structured prob-
lems do not adapt easily to conventional computer-
based analysis methods or decision support systems
[16].

Credit risk analysis is one of the main areas of fi-
nancial management and has attracted a large deal of
attention lately [2–5]. Credit risk analysis is essen-
tially a classification problem that involves evaluation
of the reliability and profitability of a credit or loan
application. In most cases concerning credit assess-
ment, bank managers must contend with a variety of
information from a large number of sources. Much of
this information may be incomplete, ambiguous, par-
tially incorrect, or of doubtful relevance. The tradi-
tional approach is dependent on the bank manager’s
experience and follows the procedures and guidelines
defined by their institutions. The following section dis-
cusses the main approaches employed for credit risk
assessment.

3. Main Approaches to Credit Risk Assessment

Credit can be defined as the delivery of a value in ex-
change for the promise that this value will be paid back
in the future. However, there is the risk of this promise
not being fulfilled. The employment of formal con-
tracts is an attempt to guarantee the lender the right
of receiving the debt. However, these contracts do not
ensure that the debt will be paid off, as the debtor may
not have the resources necessary to make the required
payment.

Credit risk assessment is concerned with the eval-
uation of the profitability and guarantee of a credit
application. Credit applications originate either from
companies or consumers. Examples of consumer credit
include student loans, personal loans, credit card con-
cessions and home mortgages. Examples of company
credit include loans, stocks and bonds. The experi-
ments carried out in this article deal with consumer
credit.

In order to reduce the risk of unpaid debts, a techni-
cal analysis is generally carried out before the credit
is approved. This process is known as credit risk
analysis or assessment. Assessment considers several
factors that may contribute to non-payment of the
debt, such as bankruptcy, dishonesty, economic crisis,
etc.

Credit risk assessment in the form of credit cards,
direct credit to the consumer and debt cards is usu-
ally carried out either empirically or through a credit
scoring system. Traditional credit scoring systems are
based on discriminate or logistical regression analy-
sis [2, 17]. Thus, the methods that are employed in
credit risk evaluation may be roughly divided into two
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separate approaches:

– Methods based on previous experience (subjective
methods);

– Methods based on numerical estimators (quantitative
methods).

The use of previous experience by the credit ana-
lyst is the oldest and the most widely used method of
credit risk assessment. It is a valuable method, espe-
cially when the issues involved are rather subjective.
With this approach, a diverse and dynamic range of
knowledge is taken into account. Thus, before making
his/her decision, the analyst may consider, for example,
the customer’s employer, the customer’s potential in
his/her work, the job market related to the customer, the
customer’s social habits, where the customer lives, the
customer’s education, signs indicating the customer’s
honesty, the size of the customer’s family, an analysis
of the current national economic situation, etc.

However, this previous experience is not easily ac-
quired . Only time and exposure to relevant situations
may provide it. Moreover, it is common to have situ-
ations where different analysts reach different conclu-
sions for the same application.

Quantitative methods, such as credit scoring, are
largely used in order to determine if a credit should
be granted. This is clearly a Pattern Recognition
problem.

In principle, any Pattern Recognition technique can
be used for credit assessment. Previous works have
employed techniques like Statistics [2,18,19], Knowl-
edge Based Systems [17], Expert Systems [5], Artifi-
cial Neural Networks [16, 20], etc. Hybrid Intelligent
Systems, where two or more approaches are combined,
have also been investigated [4, 21–23].

In this paper, the authors propose the use of RBF
networks designed by Genetic Algorithms for credit
risk assessment. The following section presents a brief
introduction to RBF networks.

4. Radial Basis Function Network

Consider the set of sampled data � = {(xi , ti )}p
i=1,

where p is the number of samples, xi ∈ �n is the in-
put vector and ti ∈ � is the target output. The function
approximation learning problem consists in finding a
function f̂ (x) that fits the data from �. The estimated
function f̂ (x) is expected not only to minimize the er-
ror (ti − f (xi ))2, but also to generalize when presented
with previously unseen data (x j , t j ), not found in �. In

Figure 1. Schematic view of a RBF network.

order to provide f̂ (x) with this generalization capacity,
several methods have been proposed in the literature,
as previously mentioned. This paper proposes the use
of RBF networks designed by an evolutionary multi-
objective method.

In the formulation of RBF networks, the function
f̂ (x) is expressed as a linear combination of functions,
as shown in Eq. (1):

f̂ (x) =
m∑

i=1

wi hi (x) (1)

where hi (x) is the function associated with the hidden
layer node i , also named basis function, and the param-
eter wi is the weight between the hidden node output
hi (x) and the network output node (see Fig. 1).

Different radial functions can be employed for the
hidden nodes. Among them, the Gaussian function,
presented in Eq. (2), is the most common.

hi (x) = exp
−‖x − ci‖2

2σ 2
i

(2)

where ‖ · ‖ is the Euclidean distance norm, ci =
(ci1, ci2, . . . , cin)T is the vector center and σi its radius
(also called width).

The training of RBF networks occurs in two steps.
The first step includes the selection of appropriate cen-
ters and radii for the hidden functions, which is a non-
linear problem. The second step involves the adjust-
ment of the output weights wi of the output layer, which
is a linear problem. Unsupervised learning algorithms
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can be applied to the first step, whereas linear algebra
solutions can be applied to the second. Simultaneous
supervised learning of centers and output weights can
also be carried out and involves non-linear optimiza-
tion methods. In any case, the learning algorithm should
be aimed at obtaining a balance between the bias and
variance [24] of the model, which is expected to avoid
under-fitting and over-fitting.

Simple learning algorithms make ci = xαi , for i =
1, . . . , m, where αi ∈ {1, . . . , p} is randomly cho-
sen. Nevertheless, this approach is prone to generate
large networks, overfitting, and numerical problems
(mainly when the dataset is noisy) [10]. A more effi-
cient approach employs clustering techniques, such as
K -means [25] or Self-Organizing Feature Maps [26].
Another approach is to partition the input space into re-
gions using a decision-tree and fix the centers at strate-
gic positions within these regions [27].

In [28], the authors propose an iterative clustering al-
gorithm for RBF networks that takes into account clus-
ter membership. By using this approach, the authors
were able to improve the classification performance of
RBF networks.

An algorithm to generate RBF-like networks is pre-
sented in [29]. Based on linear programming, this al-
gorithm creates a variety of overlapping Gaussians to
act as global and local feature detectors. This network
was evaluated on several classification datasets and, for
most of them, presented better performance than con-
ventional RBF networks. Like the approach proposed
here, this new algorithm significantly reduced the num-
ber of hidden nodes.

The widths are usually defined by computationally
inexpensive heuristics. Moody and Darken, in [30],
suggest that a single value σ for all basis functions
offers good results. Moody and Darken used σ =
〈‖ci −c j‖〉, where c j is the nearest center from ci and 〈·〉
indicates the average of all such pairs. Other methods
use a different value σi for each basis function. In [31],
the width σi is defined as σi = a‖ci − c j‖, where a is
an overlap factor and ci and c j are defined in [30].

They also present an interesting solution for the se-
lection of the widths of the Gaussian kernel function.

In the supervised learning step, the training of a RBF
network with fixed centers and widths can be inter-
preted as a linear regression using the training set:

t = Hw + e (3)

where t = [t1, t2, . . . , tp]T, is the target output vec-
tor, H is the design matrix, which is a ma-

trix whose j th column is given by the vector
[h j (x1), h j (x2), . . . , h j (xp)]T, w = [w1, w2, . . . ,

wm]T is the output layer weight vector and e is the error
vector. The vector w is determined by minimizing the
sum-of-squared-errors (SSE):

SSE = eTe (4)

with respect to the weights. The solution to this mini-
mization problem can be obtained by solving the well-
known linear system:

(HTH)w = HTt (5)

In order to avoid possible numerical problems (ill-
conditioning) in solving (5), the use of the Singular
Value Decomposition (SVD) has been recommended
[32]. SVD computes the pseudo-inverse matrix H+.
Thus, w = H+t, where H+ = (HTH)−1HT.

Regularization is a technique frequently used to
avoid overfitting in ANNs. Penalty or regularization
functions are added to the SSE in order to control the
smoothness properties of the network. A particular type
of regularization is called weight decay (or ridge regres-
sion). This procedure minimizes the cost function:

C = SSE + λwTw (6)

where λ is the regularization parameter, which con-
trols the smoothness of the network. The solution to
this least-mean-square problem is obtained solving the
linear system:

(HTH + λI)w = HTt (7)

where I is the identity matrix.
SVD is not necessary to solve the system (7), since

regularization itself avoids numerical problems. Thus,
faster algorithms, such as Cholesky or LU decomposi-
tion [32], capable of solving linear systems can be used
instead of SVD. This faster approach is very useful for
the design of RBF networks using Genetic Algorithms,
since it reduces the overall processing time for the net-
works evaluation, once computational time in regard
to evaluating RBF networks is critical to the overall
performance.

5. Evolutionary Optimization of RBFs

After briefly describing Genetic Algorithms, this sec-
tion discusses the redundancy encoding problem in the
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evolutionary optimization of RBF. Previous relevant
works on this issue are presented.

5.1. Genetic Algorithms

Genetic Algorithms (GAs) [33,34] have been success-
fully employed in search and optimization problems
by simulating natural evolution. The traditional GA is
based on three biologically-inspired operators, namely:

– Selection;
– Mutation;
– Crossover.

GAs apply these operators to a population of indi-
viduals, or chromosomes. When employed in a opti-
mization problem, each chromosome represents a pos-
sible solution. A chromosome can be seen as a state
(or a point) in the search space. The selection opera-
tor directs the population to regions with better chro-
mosomes (solutions). Mutation and crossover opera-
tors direct the population to explore unknown regions
within the search space. Eventually, the population con-
verges to the best solution.

The selection operator employs a fitness function to
evaluate the chromosomes from the population, estab-
lishing the fitness for each chromosome according to a
user-defined criterion (e.g. the performance of a RBF
network for a given validation set).

When evolutionary optimization is applied to RBF
networks, each chromosome can be seen as a state in
the space of possible RBF networks. The GA starts
the process with a population of chromosome encod-
ing networks, usually randomly generated. During the
selection phase, networks are selected with probability
proportional to the their fitness (the selection operator
mimics the natural selection of biological organisms
by selecting the fittest individuals from a population).
Next, the selected networks are submitted to a repro-
duction stage, where the crossover and mutation oper-
ators are applied, producing new chromosomes. As a
result, a new generation is obtained, which is expected
to have chromosomes of higher fitness. Several genera-
tions may be needed before a suitable solution is found.

5.2. Genetic Encoding

The choice of the appropriate encoding for the chro-
mosomes is a central issue for the optimization of RBF
networks through GAs. The encoding defines the class

Figure 2. Infeasibility and illegality.

of neural architectures that can be evolved. Moreover,
the genetic operators are defined based on the type of
encoding chosen. These factors contribute, either di-
rectly or indirectly, to the efficiency (with respect to
processing time and the fitness values obtained) of the
genetic optimization [35].

Traditional encodings use binary strings. However,
in order to provide a representation that is more suit-
able to the characteristics of the problem being solved,
a large range of encodings have been proposed [36].
Encodings have varied from real strings (used mostly
in numerical optimization) and integer permutation
encodings (used in some combinatorial optimization
problems) to general data structures, often used in en-
gineering problems.

To evaluate a chromosome, GAs map a point from
the genotype space to the phenotype space. From this
mapping, several important issues related to genetic
encodings may rise. Here, it is useful to distinguish
two important concepts concerning the genotype-
phenotype mapping: infeasibility and illegality (see
Fig. 2).

A phenotype is infeasible if it lies outside the feasi-
ble region of the optimization problem. A genotype is
illegal if it cannot be mapped to the phenotype space.
Note that infeasibility originates from the nature of the
constrained optimization problems, whereas illegality
originates from the nature of problem-specific encod-
ings. Therefore, infeasibility and illegality are unre-
lated concepts. In order to better explain this, two ex-
amples of illegality are given:

Example 1. Consider the Traveling Salesman Prob-
lem, TSP: the seller visits N cities (e.g., cities A, B, C,
D, and E), returning to the first city. Each city is vis-
ited only once. In this example, two possible tours are
(BACDE) and (EBDAC). The application of a 2-point
crossover [34] to these tours results in:
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Figure 3. Reparing an illegal network.

Tour 1 (BACDE)
Tour 2 (EBDAC)
Offspring (BADAE) ⇒ illegal tour

Clearly, this offspring is illegal because its tour is
invalid, since the city A is visited twice. Repair tech-
niques are usually employed to convert an illegal chro-
mosome to a legal one. For example, the well-know
PMX crossover [34] often used in the TSP is essen-
tially a 2-point crossover combined with a repair pro-
cedure to fix the illegal chromosome produced by the
crossover operation.

Example 2. Some encondings used for ANN opti-
mization [37] can produce invalid networks. For ex-
ample, the ANN from Fig. 3 has one hidden unit with
no input connections. Thus, the chromosome that pro-
duced this network is illegal. A repair procedure would
delete the invalid unit.

Some properties have been proposed in order to eval-
uate a given encoding [36]:

1. Nonredundancy. The mapping between encodings
and solutions must be one-to-one. If the n-to-one
mapping occurs, the GA wastes search time be-
cause one or more individuals may be duplicated
in the genotype space. Hence, the one-to-one map-
ping (nonredundancy) is a desirable property for an
encoding. The section to follow shows this property
for RBF networks.

2. Legality. Any instance of an encoding must corre-
spond to a solution.

3. Completeness. Any solution has a corresponding en-
coding. This property guarantees that any point of
the search space is accessible to the GA search.

4. Casuality. Small variations in the genotype space
due to mutation must imply small variations in the
phenotype space.

This focuses on whether the neighborhood of a
chromosome (in the genotype space) is also pre-
served in the corresponding phenotype space [38].

Similar properties have been proposed by [35] in the
context of Multilayer Perceptron Neural Networks.

5.3. Redundancy and Illegality in RBF
Network Encodings

The encoding of RBF networks may suffer from a
problem known as redundancy [39]. In the literature
on the genetic optimization of ANNs, redundancy is
also called by different names: functional equivalence
problem [40], competing conventions problem [41] and
permutation problem [42]. Redundancy occurs if the
mapping from chromosomes (genotype space) to RBF
Networks (phenotype space) is not one-to-one (i.e., it
is n-to-one).

Two chromosomes are redundant if their associated
RBF networks perform the same input-output mapping.
An example of redundant encoding is shown next. Con-
sider the chromosome:

P = (p1, p2, . . . , pm) (8)

where pi encodes parameters (e.g., centers and widths)
associated with the basis function hi . By using this en-
coding, the RBF networks on the left and right sides of
Fig. 4 could be encoded by the chromosomes (a, b, c)

Figure 4. Redundant RBF networks.
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Figure 5. Overlapping Gaussian functions.

and (c, a, b), respectively. Although these networks can
perform the same input-output mapping (since they
have the same units), they have distinct chromosomes.
This significantly increases the search space.

According to [42], the traditional crossover opera-
tor is not appropriate for avoiding redundant encoding,
since it may generate offsprings with duplicated ba-
sis functions (illegality), as Fig. 5 illustrates. Although
two identical basis functions in the same chromosome
is unlikely, it is possible to have two similar basis func-
tions, as can be seen in Fig. 5 [42]. In this figure, the
basis functions a and C are not identical, but they are
very similar because they play similar roles in the net-
work (as they have overlapping Gaussian functions).
Such problems make the design of the crossover op-
erator very difficult and may significantly increase the
search time.

5.4. Selecting Centers from Patterns

Billings and Zheng address the combinatorial aspect of
RBF network optimization [11]. In their work, a GA se-
lects a subset of the input patterns to become the center
vectors. Each chromosome is a string of variable length
and represents a subset of the training patterns. For ex-
ample, the chromosome (100, 7, 411, 286) represents
a RBF network with four centers placed in the patterns
labeled 100, 7, 411 and 286. The genetic operators are
equal to those employed to solve the so-called subset
selection problem [43]. To evaluate the performance
of their approach, the authors calculated the chromo-
somes fitness using the Akaike’s Information Criterion
(AIC) [44] for the training and validation sets with a
Multi-objective GA (a similar approach is shown in
Sections 6 and 7). This simple representation signifi-
cantly reduced the number of centers used in traditional
approaches.

Maillard and Gueriot [45] modified the model pre-
viously described [11] by allowing the centers to as-
sume other points besides the training input vectors.
They also investigated the use of several types of basis
functions in the same network. According to the au-

thors, networks with different basis functions presented
a smaller number of hidden nodes and achieved lower
error rates than those using only Gaussian functions.

5.5. Crossing Hypervolumes

Carse and Fogarty [12] proposed a method able to ge-
netically optimize centers by crossing hypervolumes
of the input space. In this work, each chromosome is
represented by a list of tuples (p1, . . . , pm). Each tuple
is given by:

p j = (c1 j , σ1 j , c2 j , σ2 j , . . . , cmj , σmj ). (9)

The tuple p j encodes the parameters of the following
basis function:

h j (x) =
n∏

k=1

exp

(
− (xk − c jk)2

σ 2
jk

)
(10)

which may have a different width for each component
of the center vector. This representation is similar to
the redundant representation shown in Section 5.3. The
authors overcame this problem by using a modified
2-point crossover that exchanges hypervolumes of the
input space instead of chunks of the chromosome struc-
ture. This hypervolume is determined by two crosspoint
vectors a, b ∈ �n , whose elements are given by:

a j = min
j

+ (max
j

− min
j

)r1 (11)

b j = a j + (max
j

− min
j

)r1/n
2 (12)

where r1 and r2 are randomly selected from the
range [0, 1] with uniform probability density and
[min j , max j ] is the allowed range for the component
x j of the input vector x. By presenting experiments
in which the performance of the modified 2-point
crossover is better than that of the conventional 2-point
crossover, the work indicates that the redundancy prob-
lem affects the GA performance.

5.6. Handling Redundancy in RBF Networks

This section shows another approach to deal with the re-
dundancy problem. Neruda, in [40], formally expresses
the functional equivalence (redundancy) between chro-
mosomes as:
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Definition 1. Let pi = (wi , σi , c1, c2, . . . , cn).
Two chromosomes P = (p1, p2, . . . , pm) and
P′ = (p′

1, p′
2, . . . , p′

m) are functionally equivalent
if and only if there is a permutation π of the
set (1, . . . , m), such that pi = p′

π (i), for each i ∈
{1, . . . , m}.

Neruda suggests a unique representation, named
canonical parameterization, for a class of function-
ally equivalent chromosomes. He uses a lexicographic
ordering for the tuples pi , which works as follows:

Consider the (n + 2)-tuples p and q. One can say
that p precedes q (p ≺ q) if there is an index k ∈
{1, . . . , n + 2} such that p j = q j , for j < k and
pk < qk . The chromosome P = (p1, p2, . . . , pm) is
a canonical parameterization if:

p1 ≺ p2 ≺ · · · ≺ pm (13)

The GA proposed here requires chromosomes of
canonical parameterization. Its genetic operators were
adapted to preserve this property. Mutation is applied
to elements of a randomly chosen tuple pi generating
a new tuple p′

i , which is restricted to the limits:

pi−1 ≺ p′
i ≺ pi+1 (14)

The application of a 1-point crossover on the parents
P = (p1, . . . , pm) and Q = (q1, . . . , qm), with a cut
point in the position i , produces the offspring:

(p1, . . . , pi , qi+1, . . . , qm)

which is valid only if pi ≺ qi+1; otherwise, another cut
point must be chosen.

5.7. Other Models

Whitehead and Choate [46] developed a genetic ap-
proach that evolves space-filling curves to set the cen-
ter vectors. The underlying idea involves the mapping
of the centers from a n-dimensional region of the in-
put space (defined by such space-filling curves) to a
1-dimensional space in which the chromosomes are en-
coded. This approach reduces the number of degrees of
freedom in the genetic encoding. In another article, the
same authors evolved the centers and widths of the ra-
dial basis functions through a cooperative-competitive
GA [47]. With this method, each individual encodes

one single hidden unit. The whole population repre-
sents a unique RBF network. The individuals compete
and cooperate amongst themselves in order to improve
the overall performance of the network represented by
the population.

Chen et al. [13], trained RBF networks with a combi-
nation of GAs and the ROLS algorithm (Recursive Or-
thogonal Least Squares). First, a GA evolves the widths
and a regularization parameter of the ROLS algorithm.
Next, the ROLS algorithm defines the number and po-
sitions of the center vectors.

6. The Proposed Approach

This section presents the evolutionary approach pro-
posed by the authors. It describes the encoding, the ge-
netic operators and the objective functions employed.

6.1. Encoding

According to Section 5.2, the encoding is one of the
key aspects to be considered when using GAs. In this
work, the chromosome is a variable length list of tuples
given by:

P = (
p1, p2, . . . , pmP

)
(15)

where mP is the number of hidden units coded in the
chromosome P. Each tuple p j , 1 ≤ j ≤ mP, encodes
a hidden unit and is given by:

p j = (r j , σ j , c j1, c j2, . . . , c jn) (16)

which represents the j th basis function with width σ j

and center c j = [c j1, . . . , c jn]T. The integer identifier
r j indicates that the center c j resides within the region
Rr j of the input space (this region is discussed next).

6.2. Partitioning the Input Space

The partition of the input space creates a set of K re-
gions {R1, . . . , RK }, which are placed in the areas with
the largest density of training patterns, as shown in
Fig. 6. Each region Ri is obtained from the cluster Si

generated by the K -means algorithm. A region Ri has
the shape of a hypercube1 whose length li of its edge
is given by:

li = 2 max
x j ∈Si

‖mi − x j‖ (17)
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Figure 6. Regions of the input space.

where mi is the mean of the data points in the set Si :
mi = |Si |−1 ∑

x∈Si
x. Thus, the region Ri embraces all

points of the cluster Si , as shown Fig. 6.

6.3. Decoding

Consider the following chromosome to be de-
coded: P = (p1, p2, . . . , pm) where p j = (r j , σ j , c j1,

c j2, . . . , c jn). The parameter r j ∈ [1, K ] is encoded
as a integer. The parameters σ j , c j1, c j2, . . . , c jn from
p j are encoded as floating-point values and normal-
ized in the interval ∈ [0, 1]. The following decoding is
employed:

c′
jk = mr j ,k + li (c jk − 0.5), for k = 1, . . . , n. (18)

σ ′
j = ασ j (19)

where mr j ,k is the kth component of the cluster mean
mr j from the region Rr j and the coefficient α is a scal-
ing factor (in this work α is equal to the half of the
maximum distance separating pairs of training input
patterns).

6.4. Operators

The use of the traditional crossover operator may pro-
duce duplicated genes in a single chromosome. For ex-
ample, consider a case in which the centers are in the
1-dimensional space. In this simple case, the chromo-
somes are formed by a variable list of 3-tuples (region,
width, center). Figure 7 shows the traditional crossover
producing an offspring with duplicated genes. In order
to avoid this illegality problem, a cluster crossover op-
erator, illustrated by Fig. 8, is proposed.

The main steps of the cluster crossover operator is
described in Fig. 9. It works like the traditional uni-

Figure 7. Traditional crossover generates duplicated genes.

Figure 8. The cluster crossover operator.

Figure 9. The cluster crossover algorithm.

form crossover, but crosses regions Ri instead of struc-
tural chunks of chromosomes (usually performed by
the standard uniform crossover). The cluster crossover
is intended to perform the crossing in the phenotype
space, whereas the standard uniform crossover operator
is performed in the genotype space. It is similar in spirit
to Carse and Fogarty’s crossover (see Section 5.5).

The following mutation operators are used: (1) The
uniform mutation replaces widths, centers and region
identifiers with a uniform random number. (2) The
creep mutation adds Gaussian noise to the value of
widths and centers. The added noise is small, so creep
mutation plays the role of a local search. (3) The ad-
dition and delete operators add and delete randomly
selected hidden units.
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6.5. Choosing the Objective Function

After decoding a chromosome, the weights associated
to the nodes in the output layer are determined by a
pseudo-inverse matrix. Once the weights are defined,
the chromosome is evaluated. Since the main goal is to
optimize the topology, such evaluation should not only
consider the network performance, but also establish a
balance between performance and complexity.

The value of the objective function could be de-
fined by using cross-validation. However, this method
is computationally intensive. For RBF networks with
fixed centers and widths, there are other computation-
ally more efficient criteria. A good option for evaluating
the objective function is the Generalized Crossvalida-
tion (GCV) [48]. When used to evaluate the perfor-
mance of RBF networks, the GCV can be defined as:

f = GCV = p SSE

(p − m)2
(20)

where SSE denotes the sum of squared errors on the
training set, m is the number of free parameters (i.e.
number of weights) and p is the number of the training
patterns. Equation (20) has some modifications if the
RBF network is trained with regularization (see [49]
for details).

In previous studies, the objective function employed
has been based on training set error rates. As this may
result in overfitting, the experiments reported in this
article employ generalized cross-validation (GCV) for
both the training and validation sets. As a result, two
objective functions are optimized:

f1 = p1 SSE1

(p1 − m)2
(21)

f2 = p2 SSE2

(p2 − m)2
(22)

where p1 and p2 are the number of patterns from the
training and validation sets, respectively, and m is the
number of free parameters. SSE1 and SSE2 are the sum
of squared errors for the training and validation sets,
respectively.

The method employed by the authors to deal with
the multi-objective optimization problem using GAs is
described in the next section.

7. The Multi-Objective Genetic Algorithm

Let f1, f2, . . . , fq be the set of objective functions
to be minimized. Instead of a single objective func-
tion, each chromosome is now evaluated by a multi-
objective function. The fitness of a chromosome is de-
fined by a vector where each component is the value
of an objective function. In order to compare chromo-
somes based on these vectors, the following definitions
are employed [50]:

Definition 2. Let a and b be vectors of objective func-
tion values. A vector b is said to be dominated by (or in-
ferior to) a vector a if a is partially-less-than b (a <p b),
where:

a <p b ⇐⇒ ∀ i(ai ≤ bi ) ∧ ∃i(ai < bi ) (23)

Definition 3. A vector a is said to be non-dominated
(or non-inferior) if there is no other vector (in the pop-
ulation) that dominates a.

The set of all non-dominated vectors of the popula-
tion is called the Pareto-optimal set (also known as the
Pareto frontier). In such cases, the goal of the multi-
objective optimization is to find the Pareto-optimal set.

7.1. Ranking

An appropriate selection pressure is necessary for suc-
cessful evolution of fit individuals [34]. Ranking meth-
ods have been applied to control the level of selection
pressure [77]. Using the concept of non-domination, it
is possible to rank the population. Pareto ranking meth-
ods to rank the population are proposed in [34,50]. Ac-
cording to [50], an individual P that is dominated by n
individuals in the current population has its rank given
by:

rank(P) = 1 + n. (24)

All nondominated individuals are assigned rank 1. Fig-
ure 10 shows an example where rank 4 is absent.
A multi-objective optimization approach for training
ANNs was recently described in [14].
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Figure 10. Pareto ranking method.

7.2. Fitness Assignment

Let P1, . . . , PN be the individuals from a population
sorted in ascending order of rank, where N is the pop-
ulation size. The fitness of each individual is given by:

fitness(Pk) = s − 2(k − 1)(s − 1)

N − 1
(25)

where s ∈ {1, 2} is a user-defined parameter called
selection pressure (best/median fitness ratio). Exper-
iments have shown that s equal to either 1.1 or 1.2
provides good results. In order to ensure that individu-
als with the same rank have the same fitness, they are
averaged by:

fitness(Pk) = 〈fitness(Pi )〉k (26)

where 〈·〉k denotes the average of all individuals
with rank equal to rank(Pk). Parents are sampled for
crossover and mutation using the Stochastic Universal
Sampling (SUS) technique [51].

8. Experiments

This section investigates the performance achieved
by the proposed approach in a credit risk assessment
dataset. For such, the performance of evolutionary de-
signed RBF networks is compared to that achieved by
RBF networks (trained in other techniques), other ANN
models and Support Vector Machines (SVMs).

The credit risk assessment dataset used in the ex-
periments was obtained from the Proben1 repository
[52]. This dataset is a conversion of a credit assess-
ment dataset from the UCI Machine Learning Reposi-

Table 1. GA parameters.

Parameter Choice

Population 100

Generations 200

Crossover rate 0.8

Mutation rate 0.01

Creep rate 0.05

Creep Std Deviation 0.01

Addition rate 0.05

Subtraction rate 0.05

Act. function Gaussian

Maximum number of hidden units 20

tory [53]. The Proben1 repository has a set of datasets
and guidelines to perform experiments with ANNs.
The experiments carried out in this article followed
the Proben1 recommendations.

This credit assessment dataset represents credit card
applications and consists of 690 examples with 51 in-
puts and 2 outputs each. The input values have con-
tinuous and discrete attributes, along with missing at-
tributes in 5% of the samples. The meaning of the in-
dividual attributes is unexplained for reasons of con-
fidentiality. The two output values determine approval
(44.5% of the samples) or non-approval (55.5% of the
samples) of credit. The dataset was randomly separated
three times into three subsets for training (50% of the
examples), validation (25% of examples) and test (25%
of examples). The experiments were conducted three
times for each evaluated model, shuffling the data se-
lected for the subsets.

In the experiments, the GAs were run with the pa-
rameters illustrated in Table 1 (the maximum number
of hidden units parameter is used to reduce processing).
Experiments were also carried out with RBF networks
trained with different clustering algorithms. The clus-
tering algorithms used were the batch K -means [54],
the on-line K -means [25], the iterative optimization,
IO, algorithm [55], a clustering algorithm based on
depth-first search, DF [56], two clustering algorithms
combining IO and DF, called DFIO and IODF [57] and
the optimal adaptive K -means algorithm [58]. Table 2
shows the average and standard deviation of the per-
centage of wrongly classified patterns, PWCP, obtained
for the test set.

The results obtained suggest that the evolutionary
approach proposed by the authors is more accurate
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Table 2. Credit assessment
by RBF networks.

Clustering PWCP (%)

Batch 16.67 ± 3.87

DF 16.28 ± 2.54

IO 17.83 ± 3.96

DFIO 16.67 ± 4.28

IODF 17.25 ± 4.44

On-line 16.86 ± 4.39

Optimal 15.89 ± 4.66

GA 13.95 ± 3.53

Table 3. Credit assessment by other models.

Model PWCP (%)

MLP-Backprop 17.05 ± 1.77

Cascade correlation 18.02 ± 3.03

Tower 14.73 ± 3.20

Pyramid 16.86 ± 2.10

SVM 16.67 ± 2.63

than the other clustering techniques for the dataset em-
ployed. Furthermore, it is worth mentioning that the
proposed approach generated the smallest number of
basis functions, 15, yielding more parsimonious net-
works.

In order to provide a better picture of the potential
of the proposed approach, the authors investigated the
performance achieved with other models for the same
dataset. The authors ran experiments with the same
dataset using Multi Layer Perceptron (MLP) networks
trained by the backpropagation algorithm [59], three
constructive learning algorithms Cascade Correlation
[60], Tower and Pyramid [61], all using early stopping,
and SVMs [62]. In all simulations using SVMs, RBF
kernels with a variance equal to 1 and an upper limit
for the Lagrange Multipliers equal to 500 were used.
Table 3 presents the PWCP for the test set obtained by
these models.

The authors applied the t-test [63] to analyze the
statistical significance of the results obtained. The re-
sults achieved by the Genetic approach are better than
those obtained by the other approaches with 95% of
confidence.

These results obtained demonstrate the potential of
the proposal approach. The genetically designed RBF

networks presented the lowest average of wrong classi-
fications and had among the lowest standard deviations.
Besides, in comparison with the other approaches in-
vestigated for the training of RBF networks, the pro-
posed approach selected a smaller number of hidden
nodes.

One of the positive aspects of the proposed algorithm
is the change of focus from RBF to GA parameters
tuning. It was observed in the experiments that it was
easier to set the GA parameters than the RBF network
parameters. There are two reasons for this, which are
discussed next.

Conventional methods for RBF optimization have
many user-defined parameters that are not known a pri-
ori and whose values are often problem specific. Thus,
for a particular problem, a wide variety of values must
be tried to find a global optimal (or approximated op-
timal) solution. This trial-and-error search for finding
optimal parameter settings is common in ANN litera-
ture and is one of the limitations to its widespread use.
As opposed to conventional methods, the GAs param-
eters often are predefined based on past research [64].
For example, the crossover rate (0.8) and the mutation
rate (0.01) were taken from the traditional GA algo-
rithm [34].

A second reason why it is easier to set the GAs pa-
rameters is the robustness of the search performed by
GAs. The basic mechanism of a GA is so robust that,
within fairly wide margins, the GA parameters are not
critical [65]. For example, a small change in the pa-
rameter settings of the conventional methods can com-
pletely change the RBF network functionality, whereas
changes on GA parameters usually do not cause large
variations in the GA search results.

Next, results obtained by other authors for the same
dataset are presented. Although the authors used dif-
ferent partitions, making comparison difficult, it is in-
teresting to see the different performances obtained.

In [17], the authors report that average wrong classi-
fication error rates of 21.6% and 19.6% were obtained
using a discriminate analysis-based method [66] and
the ID3 algorithm [67], respectively.

In [68], two versions of the C4.5 algorithm [69] and
three different versions for the traditional and extended
Foil algorithm [70] achieved the results presented in
Table 4.

The authors also carried out experiments using
other datasets. In particular, the authors evaluated their
method using the chaotic time series Mackey-Glass
[71], a heart disease dataset from the UCI Machine
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Table 4. Credit assessment
by C4.5 and Foil.

Algorithm PWCP (%)

C4.5 rules 15.5

C4.5 trees 15.1

Foil trad.1 17.8

Foil trad.2 17.4

Foil trad.3 17.0

Foil exd.1 18.0

Foil exd.2 16.4

Foil exd.3 16.4

Learning repository [53] and data that model the Her-
mite polynomial. The performances achieved by the
RBF networks trained with GAs for these datasets were
also shown to be superior to those achieved by other
methods for the training of RBF networks.

9. Conclusion

With a growing number of customers, the credit in-
dustry needs more sophisticated methods for assessing
credit risks. ANNs have provided efficient solutions to
this problem. However, their performance depends on
the adequate setting of the network parameters.

In this article, RBF networks designed by GAs were
investigated for credit risk assessment. The perfor-
mance obtained through this approach was compared to
those obtained by other clustering techniques for RBF
training and additional machine learning techniques,
such as Support Vector Machines and other ANN mod-
els. The results obtained suggest the superiority of the
proposed genetic approach. Among the RBF training
methods, the genetically designed RBF networks pre-
sented the lowest average classification error and the
smallest average number of hidden nodes. Moreover,
while the other techniques had their parameters defined
by an extensive trial and error process, the parameters
of the proposed approach were designed automatically
by GAs.

It must be pointed out that the use of GAs leads
to a longer processing time when compared with the
other techniques. However, the time required to de-
sign ANNs can be divided into conception time and
processing time. By automatically defining the main
network parameters, the evolutionary design largely re-
duces conception time.

Further improvement can be achieved by looking for
alternatives for reducing the optimization time (e.g. re-
placing SVD by another method, such as Cholesky or
LU decomposition [32]) and including other parame-
ters in the chromosomes (such as different radial basis
functions). Another option is the employment of alter-
native objective functions.
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Note

1. Alternatively, the shape might be an ellipsoid since it avoids the
hypercube corners overlap. For simplicity, the hypercube shape
was adopted in this work.
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