
Int. J. Bio-Inspired Computation, Vol. 1, Nos. 1/2, 2009 93

Copyright © 2009 Inderscience Enterprises Ltd.

On a hybrid weightless neural system

T.B. Ludermir*
Centre of Informatics,
Federal University of Pernambuco,
Av. Luiz Freire s/n, 50670-901, Recife, PE, Brazil
E-mail: tbl@cin.ufpe.br
*Corresponding author

M.C.P. de Souto
Federal University of Rio Grande do Norte,
Campus Universitario, Natal-RN, 59072-970, Brazil
E-mail: marcilio@dimap.ufrn.br

W.R. de Oliveira
Dept. of Statistics and Informatics,
Rural Federal University of Pernambuco,
Rua Dom Manoel de Medeiros s/n, 52171-030, Recife, PE, Brazil
E-mail: wrdo@deinfo.ufrpe.br

Abstract: A hybrid system using weightless neural networks (WNNs) and finite state automata is
described in this paper. With the use of such a system, rules can be inserted and extracted
into/from WNNs. The rule insertion and extraction problems are described with a detailed
discussion of the advantages and disadvantages of the rule insertion and extraction algorithms
proposed. The process of rule insertion and rule extraction in WNNs is often more natural than in
other neural network models.

Keywords: weightless neural networks; WNNs; RAM-based neural networks; rule insertion; rule
extraction; grammatical inference; automata theory; Boolean expression; bio-inspired
computation; hybrid intelligence systems.

Reference to this paper should be made as follows: Ludermir, T.B., de Souto, M.C.P. and
de Oliveira, W.R. (2009) ‘On a hybrid weightless neural system’, Int. J. Bio-Inspired
Computation, Vol. 1, Nos. 1/2, pp.93–104.

Biographical notes: Teresa B. Ludermir received her PhD in Artificial Neural Networks in 1990
from Imperial College, University of London, UK. From 1991 to 1992, she was a Lecturer at
Kings College London. She joined the Federal University of Pernambuco, Brazil in September
1992, where she is currently a Professor and the Head of the Computational Intelligence Group.
She has published over 200 articles in scientific journals and conferences, three books. She is one
of the editors-in-chief of the International Journal of Computation Intelligence and Applications.
Her research interests include weightless NN, hybrid neural systems and applications of NNs.

Marcilio C.P. de Souto received his PhD in Neural Networks in 1999 from Imperial College,
University of London, UK. From 2000 to 2003, he was a Visiting Lecturer at Federal University
of Pernambuco, Brazil. Currently, he is a Lecturer at the Federal University of Rio Grande do
Norte, Brazil. His research interests include weightless neural networks, hybrid intelligent
systems and bioinformatics.

Wilson de Oliveira received his PhD in Neural Computing Theory in 2004 from the Centre of
Informatics (UFPE), Brazil. Since 2000 he is a Lecturer at the Department of Statistics and
Informatics (UFRPE) in Recife, currently on Sabbatical leave at the School of Computer Science
in the University of Birmingham, UK. His interests lie on theory of computing, quantum
computing, neural computing and theoretical physics. He is employing computing theory
methods to quantum gravity and neural quantum computing.

94 T.B. Ludermir et al.

1 Introduction

Human learning consists of a variety of complex processes
that use information acquired through interactions with the
external environment. In fact, there is no one definitive
approach that can explain cognition or solve complex
problems. Rather, there are a number of tools and models
that can be applied under different circumstances. It is the
combination of these different types of information
processing methods that has enabled humans to succeed in
complex, rapidly changing environments. This high
complexity and inherent heterogeneity is still one of the
major challenges of current artificial intelligence (AI)
systems. Due to the need for different problem solving
techniques, the interest in hybrid systems is growing
rapidly, as shown by the increasing number of publications
found in the literature as for example, the International
Journal of Hybrid Intelligent Systems (Diederich, 2008;
Jacobsson, 2005; Duch et al., 2004; Setiono et al., 2002;
Kurfess, 2000; Kasabov, 1996).

Hybrid systems are important when considering the
varied nature of application domains in AI. Many complex
domains have many different component problems, each of
which requiring different types of processing. For example,
artificial neural networks (ANNs) have been successfully
applied to solve low-level cognitive tasks such as
perception, motor control and associative information
retrieval. However, considerably less experience has been
gathered so far in modelling high-level cognitive tasks using
ANNs and on how they represent and reason about the
acquired knowledge. In contrast, the ability to provide users
with higher level explanations of the reasoning process is an
important feature of AI systems. Explanation facilities are
required both for user acceptance of the solutions generated
by the system and for the purpose of understanding whether
the reasoning procedure is sound.

Thus, in order for ANNs to achieve a wider degree of
user acceptance and to enhance their overall utility as
learning and generalisation tools, it is highly desirable, if
not essential, that an explanation capability becomes an
integral part of the functionality of a trained ANN. Based on
this, a hybrid system in which symbolic rules could be
inserted/extracted into/from an ANN model is proposed in
this paper. More specifically, the neural model used will be
the weightless neural networks (WNNs) (Aleksander and
Albrow, 1968; Aleksander and Morton, 1995; Ludermir et
al., 1999). Automata theory (Hopcroft et al., 2006) is going
to be used in the hybrid system to deal with the insertion
and extraction of rules. The basic idea of such a hybrid
system, called the hybrid weightless neural networks, is to
insert a set of symbolic rules into a WNN. Next, the WNN
could be refined by using standard WNN learning
algorithms and a set of training examples. The refined
network can then function as a highly accurate classifier. A
final step for this system is the extraction of refined,
comprehensible rules from the trained WNN. Hence, the
system can be expressed by the following steps:

1 translate the domain theory into a WNN

2 train the network using a learning algorithm and a set of
examples

3 use the trained network to classify future examples

4 extract a refined theory system.

Note that any of the steps above can be either omitted or
applied alone. For example, a WNN can be trained through
examples and afterwards rules can be extracted from the
trained network. Step 1 is referred to as rule insertion,
whereas Step 4 is referred to as rule extraction. This hybrid
system has the advantages of hand-built classifiers, such as
expert systems and neural networks.

The remainder of this paper is divided into four sections.
The aim of Section 2 is to present an overview on the neural
computing models studied in this paper, i.e., the WNNs. In
Section 3, two techniques used for knowledge initialisation
built upon ANN techniques are described. The methods
described map problem-specific domain theories,
represented either as weighted regular grammars or as
probabilistic automata, into the classes of MLPN and
pRAM networks (Ludermir et al., 1999). Section 4 shows
two methods for extracting rules from trained WNNs. The
first one deals with the extraction of symbolic grammatical
rules from recurrent WNNs, whereas the second method
produces Boolean expression rules from feed-forward
WNNs. Finally, the last section presents some final remarks.

2 Weightless neural networks: basic definitions

The neuron model used in the great majority of work
involving neural networks is related to variations of the
McCulloch-Pitts neuron (McCulloch and Pitts, 1943), which
will be called the ‘weighted-sum-and-threshold neuron’, or
‘weighted neuron’ for short. A typical weighted neuron can
be described by equations (1) and (2). These specify a linear
weighted sum of the inputs, followed by some non-linear
transfer function.

1

p

j j
j

h W u
=

= ∑ (1)

()
1

1 exp vh−+
y = (2)

where uj are the inputs; Wj are the synaptic weights of the
neuron; h is the ‘activation’ of the neuron, v controls the
shape of the sigmoid function and y is the output. The
weights Wj are the parameters that most training algorithms
adjust. The transfer function above could also be replaced
by other functions (e.g. the threshold function). However,
the use of sigmoid functions is motivated by the need to
have error functions which are differentiable with respect to
the weights so that gradient-descent algorithms, such as the
back propagation algorithm (Rumelhart et al., 1986), could
be used for learning. The neural models composed of
weighted nodes will be called ‘weighted neural networks’.

 On a hybrid weightless neural system 95

In this paper, however, the neural computing models
studied are based on artificial neurons which often have
binary inputs and outputs and ‘no weight’ between nodes.
Neuron functions are stored in look-up tables, which can be
implemented using commercially available random access
memories (RAMs). Learning on these systems generally
consists of changing the contents of look-up table entries,
which results in highly flexible and fast learning algorithms.
These systems and the nodes that they are composed of will
be described respectively as WNNs and weight-less nodes
(Aleksander and Morton, 1995; Ludermir et al., 1999). They
differ from other models, such as the WNNs, whose training
is accomplished by means of adjustments of weights. In the
literature, the terms ‘RAM-based’ and ‘N-tuple based’ have
been used to refer to WNNs (Jorgensen, 1997; Ramanan et
al., 1995; Rohwer and Morciniec, 1996). Formally,

Definition 2.1: A ‘q-RAM neuron’ (Figure 1), where
{1,2,...},q∈ is an artificial neuron with the following

sub-definitions and restrictions:

• {0,1} InI = is ‘the set of inputs for the node’, where nI is
‘the number of input terminals’.

• {0,1} InA = is ‘the set of addresses or locations of the
node’. For each address A∈a , there is a cell C[a],
which stores the contents or learned information (local
memory) in the form of a q-bit. A binary signal I∈i
on the input terminals will access only one of these
locations, that is, the one for which a = i. The location a
accessed is called the ‘activated location’.

• S∈y is ‘the output of the node’, where the set S is
either [0, 1] or {0, 1};

• d S∈ is ‘the teaching terminal’, which provides the
desired response.

• {0,1}w = is ‘the operator-mode terminal’, which
indicates if the neuron is in the learning or recalling
phase.

• g : I → S is ‘the transfer function’, which computes y
from the q-bit stored in the memory location
determined by the input terminal, that is,
y = g(C[a = i]).

Definition 2.2: A ‘WNN or RAM-based neural network’ is a
neural network whose neurons are q-RAM nodes.

In the next section, the simplest type of weightless node,
that is, the RAM node will be presented. For more details
about the models introduced in this section or on other types
of weightless nodes, such as the general RAM (GRAM)
node and the goal-seeking node (GSN), the reader is
referred to Aleksander and Morton (1995), Austin (1998)
and Ludermir et al. (1999).

Figure 1 A q-RAM node

Where:

nI – connectivity (number of inputs)

ij – input terminal to receive input j

C[a] – memory content of address ‘a’

y – output

w – operator-mode terminal

d – input terminal to receive the desired response

g – transfer function.

2.1 The RAM model

Definition 2.3: A ‘RAM neural network’ is a WNN in which
the neurons are 1-RAM nodes. The 1-RAM node is called
the RAM node. The bit, C[a], stored at the activated
memory a = i represents the output of a RAM node, that is,

[].ay =C Thus, g is the identity function. In other words,
the Boolean function performed by the neuron is determined
exactly by the contents of the RAM.

Learning in a RAM node takes place simply by writing
into the corresponding look-up table entries. This learning
process is much simpler than the adjustment of weights. The
RAM node, as defined above, can compute all binary
functions of its input while the weighted-sum-and-threshold
nodes can only compute linearly separable functions. There
is no generalisation in the RAM node itself. Nevertheless,
there is generalisation in networks composed of RAM nodes
(Aleksander and Morton, 1995). Generalisation can be, for
example, introduced by considering the hamming distance
from training patterns or masks.

In a typical RAM neural network, that is, a feed-forward
RAM neural network with a single-layer of nodes, RAM
nodes are taught to respond with a 1 for those patterns in the
training set and only for those patterns. An unseen pattern is
classified in the same class of the training set if all RAM
nodes output 1. This simple architecture divides the set of
all possible patterns into those that are in the generalisation
set and those that are not. If more than two categories are

96 T.B. Ludermir et al.

required, many RAM neural networks are used together,
each network trained to respond to one class of pattern.
These networks are modified so that instead of having a
logic gate to combine the RAM nodes’ outputs, the decision
is left to the ‘maximum response detector’. These modified
RAM neural networks, which are used both in SLAMs and
WISARD (Aleksander et al., 1984), are called
‘discriminators’ (Figure 2).

Figure 2 A discriminator

A simple learning algorithm for RAM networks is
summarised below:

RAM learning algorithm

1 Present an input pattern to the input terminals.

2 Select the RAM nodes that should learn (α nodes are
going to learn, where α is a parameter – learning rate –
set before training) and present the desired output to the
vector d.

3 Set to 1 the operate-mode terminals, w , of the nodes
that are going to learn.

4 Repeat by going back to Step 1 for all the N training
patterns.

5 The algorithm halts when the error of the solution is
acceptable (this parameter is also set before training).
Otherwise, repeat the whole procedure by going back to
Step 1.

An important aspect about RAM networks is that although
there is no ambiguous information concerning RAM
locations which contain 1, the same does not hold for those
that are left in the 0 state. An unknown vector accessing an
entry that has 0 could mean either

1 that such vector is a counter-example of the
corresponding class

2 that no information was provided during training for
that class feature corresponding to the entry accessed.

It is not easy to define which one is true. Another
discriminator holding a value 1 at the same location
indicates a counter-example. In the second case, the vector
could be an example of the class, but since no information
was given, the RAM will output 0 instead of 1. To
overcome this problem, Kan and Aleksander (1987)
developed the word-addressable logic node called
probabilistic logic node (PLN), which will be described in
the next section.

2.2 The PLN model

A PLN differs from a RAM node in that a 2-bit number
(rather than a single bit) is now stored at the addressed
memory location. The content of this location is turned into
the probability of firing (i.e., generating 1) at the overall
output of the node. In other words, a PLN consists of a
RAM node augmented with a probabilistic output generator
(Kan and Aleksander, 1987). Thus, like in a RAM node, the
nI binary inputs to a PLN form an address to one of the 2nI
addressable locations a .A∈ Simple RAM nodes then
output the stored value directly. In contrast, in a PLN, the
content at this address is passed through a transfer function
which converts it into a binary node output. Such a content
could be either 0’s, 1’s, or u’s. The undefined state u
implies on the node flipping its output between 0 and 1 with
equal probability. The use of a third logic value, u
(undefined), makes possible the use of an ‘unknown’ state
in the operation of WNNs architectures. This value is stored
in all the memory contents before the learning phase,
indicating the ignorance of the network before it was
trained. Formally,

Definition 2.4: A ‘PLN neural network’ is a WNN in which
the neurons are 2-RAM nodes (PLNs). The output of the
PLN is given by:

0 if [] 0
1 if [] 1
random(0, 1) if []

C
C
C u

=⎧
⎪ =⎨
⎪ =⎩

a
a
a

y = (3)

where C[a] is the content in the address position associated
with the input pattern i (i.e. a = i) and random (0,1) is a
random function that generates zeros and ones with the
same probability.

Training PLN neural networks becomes a process of
replacing u’s with 0’s and 1’s so that the network
consistently produces the correct output pattern in response
to training pattern inputs. At the beginning of training, all
stored values in all nodes are set to u and thus the net’s
behaviour is completely unbiased. A generic gradient
descendent learning algorithm, proposed by Myers and
Aleksander (1989), uses several presentations of the training

 On a hybrid weightless neural system 97

set to teach PLN neural networks by using a reward and a
punish phase.

A simple learning algorithm for multi-layer PLN
networks is summarised as follows:

PLN learning algorithm

1 Set the contents of all the memory locations to u.

2 Present an input pattern to the input terminals together
with the desired response to the output terminals.

3 The contents of the memory locations are propagated
forward through the layers of the network until they
reach the output node.

4 The response of the network is compared with the
desired output.

a if they are similar, then the contents of the
addressed memories will assume their current
values (i.e. the addressed memories will be
rewarded), or

b if they are different, then the network is allowed
to run again until:
• The output matches the desired response,

then reward.

• The output mismatches the desired response
β times (β is a parameter which should be set
before training). In this case, the addressed
memories are punished by reverting their
contents back to the u state.

5 Repeat by going back to Step 2 for all the N training
patterns.

6 The algorithm halts when consistent success (the
correct output produced N times consistently) indicates
that all patterns have been learned.

The use of three-logic values and PLN neural networks
represented a breakthrough in the WNN research. Other
WNNs models were soon created incorporating these
ideas, such as the MPLN and pRAM node. These nodes,
which are similar in many ways, were simultaneously and
independently developed in Myers and Aleksander (1988,
1989) and Gorse and Taylor (1988, 1991) respectively.

2.3 The MPLN model

The development of the PLN led to the definition of the
m-state PLN or MPLN (Myers and Aleksander, 1988,
1989). The main difference between the MPLN and the
PLN is that the first allows a wider, but still discrete, range
of probabilities to be stored at each memory content unit.
One result of extending the PLN to MPLN is that the node
locations may now store output probabilities which are
more finely graded than in the PLN.

An MPLN, for instance, could output 1 with 15%
probability under a certain input. Based on this, learning can
allow incremental changes in stored values. This way, one

reset does not erase much information – erroneous
information is discarded only after a series of errors.
Similarly, new information is only acquired after a series of
experiences indicates its validity. The reinforcement
learning procedure for PLNs was extended to take this into
account and was applied to model delay learning in
invertebrates (Myers, 1992).

Definition 2.5: An ‘MPLN neural networks’ is a WNN
where the node are q-RAM nodes, for q > 2, where the
activation function g , : I →g {0,1}, is a probabilistic
function.

3 Rule insertion in WNN

There are basically two approaches to achieving
problem-specific expertise in a computer: hand-built
classifiers (e.g. expert systems) and empirical learning (e.g.
ANNs). Hand-built classifiers correspond to teaching by
giving a person a domain theory without an extensive set of
examples. Conversely, empirical learning corresponds to
giving a person lots of examples without any explanation on
why the examples are members of a particular class.

Hybrid learning methods use theoretical knowledge of a
domain and a set of classified examples to develop a
method for accurately classifying examples not seen during
training. The challenge of hybrid learning systems is to use
the information provided by one source of information to
offset information missing from the other source. By so
doing, a hybrid learning system should learn more
effectively than systems that use only one of the information
sources.

In this section, two techniques used for knowledge
initialisation built upon ANN techniques are presented. The
methods described map problem-specific domain theories,
represented either as weighted regular grammars or as
probabilistic automata, into neural networks. That is, an
existing set of rules is converted into a neural network,
which then can be trained (in the context of this research
with WNN training algorithms) with sample data. The goal
is the utilisation of existing knowledge and the adaptation of
sets of rule to actual data. The availability of prior
information can also be used to improve the training process
of neural networks. Since the starting configuration of the
network is not randomly chosen, but often reflects important
aspects of the learning task, the time to train the network
may be substantially reduced, or the resulting network may
offer better generalisation capabilities.

3.1 From weighted regular grammars to multi-layer
MLPN networks

In Ludermir (1992), an algorithm is presented that allows
the insertion of rules, given in terms of weighted regular
grammars, into MLPN networks.

Theorem 3.1: (Ludermir, 1992) Let Gw be a weighted
regular grammar, then there exists an MPLN neural network
that recognises L(Gw) with some cut-point λ .

98 T.B. Ludermir et al.

The way in which the grammar is transformed into the
neural network is such that all its properties are preserved.
Thus, the grammar can be inferred back from the WNN
generated. The networks are constructed using four basic
kinds of nodes: ‘p-and’, ‘p-or’, ‘complement’ and ‘delay’
nodes. The algorithm is based on the complexity of the
production rules. More specifically, the procedure is divided
into three cases. The first case deals with production rules of
the form 1 ()S →w p where w is a word in the language, S1
is a non-terminal symbol of the grammar and p is the
probability associated with this production rule. The second
case deals with production rules of the form ()iS S→ jw p
and the last case deals with production rules of the form

1 1 2 2() | ()i iS S S S→ →j kw p w p where | denotes the
possibility of Si being replaced with 1 1()Sjw p or 2 2()Skw p .
Each of these cases is divided into sub-cases. Furthermore,
for every sub-case, the circuit that implements such a case is
designed using the four types of nodes previously
mentioned. As regular grammars and RAM nodes are
special cases of weighted regular grammars and MPLNs,
respectively, the algorithms in Ludermir (1992) work for
them as well.

A drawback with the previous procedure is the fact that
the MPLN neural networks generated are not well suited to
learning. They possess irregular topologies in that:

1 they could have several layers (blocks) with different
number of nodes

2 each node within the same layer could have a different
fan-in

3 each layer could have feedback connections coming
from nodes within the same layer as well as from nodes
in any other layer. Nevertheless, as will be shown in the
next section, de Souto et al. (1998) proposed an
algorithm to transform rules given as probabilistic
automata (weighted regular language recognisers) into
a given class of single-layer sequential WNNs.

3.2 From probabilistic automata to single-layer
recurrent WNN

An important representative of the research on temporal
pattern processing in WNNs is the class sequential
weightless neural networks (SSWNNs) (de Souto et al.,
2005). In de Souto et al. (1998, 2000, 2005), the
computability of a class of SSWNNs, called general
single-layer sequential weightless neural networks
(GSSWNNs), was studied. These networks were assumed to
be implemented either with pRAM nodes (Gorse and
Taylor, 1988) or MPLNs. Indeed, one of the proofs
presented provides an algorithm to map any probabilistic
automaton into a GSSWNN:

Theorem 3.2: (de Souto et al., 1998) Let
(, , , ,)Ip Q H q F= ∑A be a probabilistic automaton with

cut-point λ . Then there exists a GSSWNN that implements
AP.

With respect to proof of the previous theorem, a
probabilistic automaton AP is reduced to a GSSWNN as
follows:

1 A mapping { }0,1 Un→∑ , where 2log | | ,Un = ∑⎡ ⎤⎢ ⎥ is
defined. Such a mapping transforms each possible input
symbol Σk ∈σ into a different input vector uk for the
network.

2 A mapping 0,1 ,XnQ → { } where 2log | | ,Xn Q= ⎡ ⎤⎢ ⎥ is
defined. Thus, each state iq Q∈ is assigned to a vector
xi for the network, such that if ,i jq q≠ then i j≠x x

3 The network initial state x0 is defined as the vector
standing for ,Iq Q∈ that is, the automaton initial state.

4 The set R of network accepting states will consist of
vectors xi representing the states ,Iq F∈ that is, the
automaton set of final states.

In summary, the algorithm above generates a GSSWNN
which has its number of nodes logarithmic in the number of
automaton states and each node has a number of memory
locations linear in the number of such states. Once the
network is generated, it can be used with the recognition
algorithm presented in de Souto et al. (1998), which makes
such a network behave like a probabilistic automaton.

3.3 Discussion

The two methods presented in the previous sections not only
allow the construction of any weighted regular
language/probabilistic automaton into MPLN/pRAM
networks, but also increases the class of functions that can
be computed by such networks. For instance, these
networks can now deal with some context-free languages
(Ludermir, 1992; de Souto et al., 1998).

Also, these methods could be used to create the structure
of the network and its initial probabilities from a partially
known weighted regular grammar/probabilistic automaton.
Then, such a network can be submitted to some kind of
learning algorithm. For instance, its training could involve:

• only changes in the probabilities stored in the nodes

• changes in any memory position of the node

• changes in the value of the threshold (cut-point).

The languages recognised by a neural network when only
the threshold is changed are related to each other. The larger
the value of the threshold, the fewer the elements of the
language that will be recognised by the network. That is,

1 2 ... nL L L⊃ ⊃ ⊃ when 1 2 ... n< <λ < λ λ . If the threshold
is small, there will be more restrictions in the path followed
in the network: every time a new symbol, Xi, is submitted to
the network, the value of the probability of the pattern

(X)p will decrease or will not change, but it will never
increase.

 On a hybrid weightless neural system 99

When changes occur only in the probabilities stored in
the nodes, the training algorithm can be very simple. Given
a pattern X , if X L∈ , then reward the network (increase
the probabilities of the transitions that the network has
undergone when fed with X), otherwise punish the network
(decrease the probabilities of the transitions that the network
has undergone when fed with X).

As these WNNs, generated by the previous procedures,
are similar to probabilistic automata (Ludermir, 1992; de
Souto et al., 1998), one should take into account their
behaviour in a noisy environment. For instance, a slight
perturbation in the probability of the state transition of a
probabilistic automaton could lead the automaton to
recognise a different language (Rabin, 1963). In fact, there
are some sufficient conditions for stability in probabilistic
automata, as well as there are cases in which stability is not
possible.

The general problem of stability is still unsolved, which
means that if the changes generated by the training
algorithm in the state transition of the network are small
there is no guarantee that the training will change the
language recognised by the network. Thus, if changes are
allowed in the contents of the nodes, a completely different
structure might arise. However, practical shortcomings of
these results need to be investigated further.

4 The rule extraction problem

In this section, the rule extraction problem is described with
a detailed discussion of the advantages and disadvantages of
the rule extraction algorithms proposed. The approaches of
rule extraction are described followed by the two methods
proposed by the authors. At the end of the section, a
comparative study of the algorithms is presented.

Given a trained ANN and the examples used in the
training process, produce a concise and precious symbolic
description of the ANN. This is the formulation of the rule
extraction problem originally made in Craven and Shavlik
(1994).

In essence, the task of extracting rules from a trained
ANN is one of interpreting in a comprehensive fashion the
collective effect of: the network architecture, an activation
function associated with each unit of the ANN and a set of
numerical values stored/associated in/with each unit.

A correlated problem to that of rule extraction from a
trained ANN is that of using the ANN for the refinement of
existing rules within symbolic knowledge bases. The idea is
to program the network with a knowledge base (a prior
knowledge) and train the network to produce a set of better
rules (a posteriori knowledge).

The main benefits of ANN rule extraction, as mentioned
in Andrews et al. (1995) are:

• Provision of a user explanation capability – while
provision of an explanation capability is a significant
innovation in the ongoing development of ANNs, of
equal importance is the quality of the explanation
given. For example, experience has shown that an

explanation based on a rule traced from a poorly
organised rule-base with perhaps hundreds of premises
per rule is not regarded as being transparent. ANNs has
no declarative knowledge structures and hence, is
limited in providing an explanation component.

• Extension of ANN systems to safety-critical problem
domains – the internal states of the system to be both
accessible and able to be interpreted unambiguously.
Satisfaction of such requirements would make a
significant contribution to the task of identifying and, if
possible, excluding those ANN-based solutions that
have the potential to give erroneous results without any
accompanying indication as to when and why a result is
sub-optimal.

• Software verification and debugging of ANN
components in software systems – if ANNs are to be
integrated within larger software systems that need to
be verified, then this requirement clearly must be met
by the ANN as well.

• Improving the generalisation of ANN solutions – by
being able to express the knowledge embedded within
the trained ANN as a set of symbolic rules, the rule
extraction process may provide an experienced system
user with the capability to anticipate or predict a set of
circumstances under which generalisation failure can
occur.

• Data exploration and the induction of scientific theories
– ANNs has proven to be extremely powerful tool for
discovering previously unknown dependencies and
relationships in data sets. As Craven and Shavlik
(1994) observe, a (learning) system may discover
salient features in the input date whose importance was
not previously recognised. But even if a trained ANN
has learned interesting and possibly non-linear
relationships, these relationships are encoded
incomprehensibly as weight vectors within the trained
ANN and hence cannot easily serve the generation of
scientific theories.

• Knowledge acquisition for symbolic AI systems – the
most difficult, time consuming and expensive task in
building an expert system is constructing and
debugging its knowledge base. The notion of using
trained ANNs to assist in the knowledge acquisition
task has existed for some time. An extension of these
ideas is to use trained ANNs as a vehicle for
synthesising the knowledge that is crucial for the
success of knowledge-based systems. Alternatively,
domain knowledge that is acquired by a knowledge
engineering process may be used to constrain the size
of the space searched during the learning phase and
hence contribute to improving the learning
performance.

100 T.B. Ludermir et al.

4.1 Approaches to rule extraction

One approach to testing rules for a multi-layer network is to
treat the network as a collection of perceptrons and to
extract rules for each hidden and output unit separately
(Maclin and Shavlik, 1993). In this approach, the rules for
each unit are expressed in terms of the units that feed into it.
An advantage of this approach is that it produces
‘intermediate terms’ which may result in simpler
descriptions. A disadvantage of this method, however, is
that it requires that the hidden units of the networks be
approximated by threshold units and, thus, the extracted
rules may not provide an accurate representation of the
network. This approach is referred to as ‘decompositional’
or ‘local’. The distinguishing characteristic of the
decompositional approach is that the focus is on extracting
rules at the level of individual (hidden and output) units
within the trained ANN. Examples of algorithms in this
class are SUBSET (Towell and Shavlik, 1993), M of N
(Towell and Shavlik, 1993) and Rulex (Andrews et al.,
1995). Other works can be found in Andrews et al. (1995),
Towell and Shavlik (1993), Craven and Shavlik (1994),
Thrun (1991) and Jacobsson (2005).

The other approach is called ‘global method’. This
approach describes the behaviour of hidden and output units
in function of the input units alone. The extracted
knowledge can only provide a crude approximation of the
network because these methods treat the trained ANN as a
black box. The main algorithms in this approach are the
validity interval analysis (VIA) (Thrun, 1991) and the
Trepan (Craven and Shavlik, 1996).

Most rule extraction methods for ANN suffer from both
a lack of generality and lack of stability. Some methods are
limited in their applicability because they impose
restrictions on the network architecture (Thrun, 1991;
Craven and Shavlik, 1994) or because they require hidden
units to use sigmoidal transfer functions (Maclin and
Shavlik, 1993).

4.2 Extracting rules from WNNs

In the next sections, two methods for extracting rules from
trained WNNs are presented. The first one deals with the
extraction of symbolic grammatical rules from recurrent
WNNs, whereas the second method produces Boolean
expression rules from feed-forward WNNs.

4.2.1 Extracting symbolic grammatical rules from
WNNs

Next, a generic description for extracting rules from trained
recurrent WNNs is given. It is shown that for any MPLN
network, it is possible to generate a set of symbolic rules
that describes the set of patterns that the network
recognises. This result is expressed as the following
theorem:

Theorem 4.1: If a set of patterns L is recognised by an
MPLN neural network, then this set can be generated by a
weighted regular grammar Gw.

Proof: Let N be the MPLN network that recognises only the
set of patterns L and let GW = (VN, VT , PW, q0) be the
grammar that generates only and all patterns of L. Suppose
there is an initial state q0 of N from which the feed of all
patterns of L will start and suppose further that q0 is not a
final state. Then, there is a production rule ()i jS aS p→

whenever the feed of the symbol a to the network in state Si
causes the network to enter state Sj with probability p and
also ()iS a p→ whenever the feeding of the symbol a to
the network in state Si takes the network to a final state with
probability p.

In the same way, there is a set of production rules such
that ()i jS S p→w , whenever the feed of the patterns w to

the network in state Si causes the network to enter state Sj
with probability p. If w is accepted by N then, Si is q0 and
Sj is a final state. Hence L(N) = L(GW).

Now let q0 be in the set of final states, then the empty
word, ∈, is in L. Note that the grammar defined above is

– .L L= ∈ GW can be modified by adding a new start
symbol S with productions 0 1()S q p→ and 2()S p→∈ .

4.2.2 Extracting rules from feed-forward WNNs

An algorithm to extract rules from feed-forward WNNs, in
terms of Boolean expressions, is given below:

Rule extraction algorithm

1 For each RAM node in the network do:
a find all 1’s positions in the memory locations
b generate the expressions for all memory

contents with 1’s.
c build an OR function with all expressions

generated in Step (b) above.

2 Apply the method of Veitch-Karnaugh for expression
simplification to the expression generated by 1.

This algorithm works for any kind of feed-forward WNN.
As a result of the application of the algorithm to a trained
WNN, a set of simple rules is obtained. It is also possible to
insert this set of rules back into a WNN.

In what follows, two examples of rule extraction are
given. The first example uses a standard example of WNN
found in the literature (Beale and Jackson, 1991) while the
second is a classical real world classification problem, the
Winsconsin breast cancer database (Merz and Murphy,
1996).

The first example is the network of Figure 3. The
training set for this network is shown in Figure 4. The RAM
nodes are taught to respond with 1 for those patterns in the
training set and only those patterns. Thus, any pattern that
makes all three nodes to output 1s would be classified in the
same way as the training set – in this case, the
generalisation set (the extra patterns recognised by the
network) is shown in Figure 5.

 On a hybrid weightless neural system 101

Figure 3 RAM network with three nodes

Figure 4 Training set

Figure 5 The generalisation set: extra patterns that the network
recognises

Consider the input pattern as a matrix where the elements of
the first line are a11, a12 and a13; the elements of the second
line are a21, a22 and a23; and the elements of the third line
are a31, a32 and a33. The rule generated by Step 1 of the
algorithm is:

(((not a11) and a12 and (not a13)) or (a11 and a12 and (not
a13))) and

(((not a21 and a22 and (not a23)) or ((not a21) and a22 and a23))
and

(((not a31) and a32 and (not a33) or ((not a31) and a32 and a33))

The (minimal) rule generated by Step 2 of the algorithm is:

(a12 and (not a13)) and

((not a21) and a22) and

((not a31) and a32)

The ands in bold face in the rules above is because of the
and gate, which connects the RAM nodes in the network of

Figure 3. In general, the minimal rule has less than half the
size of the rule generated by Step 1.

In order to assess the performance of the method
proposed in this section in a real world pattern classification
problem, the breast cancer database from the UCI repository
will be used (Merz and Murphy, 1996). This database,
consisting of 699 cases – 458 presenting benign cancer and
241 of the malign type, represent here the knowledge of the
specialist of domain and will be used to test and train the
RAM network. All these cases reflect the results from
clinical diagnosis obtained from the Hospital of Wisconsin
University (Madison-USA), between January 1989 and
November 1991. Each register of this database corresponds
to a case of breast cancer and has 11 attributes. The first
attribute corresponds to the identification number of the
case, the next nine attributes refer to the symptoms
(attribute of microscope analyses made in the tumours
removed from the patients which is denoted by x1 to x9 in
this paper), necessary to reach a classification and the last
attribute is the class or type of cancer associated to the
symptoms mentioned in the nine preceding attributes. For
16 registers, one attribute is missing, so they have been
removed from the dataset used in this work. The remaining
683 have been subdivided into training (372 patterns) and
test set (311 patterns). For the nine attributes of the
symptoms, the values are integer number in the range 1 to
10. The integer numbers are converted in binary numbers to
be used as the input of the RAM networks. The input
pattern is represented as a matrix nine by four, the lines are
the nine input features of the problem. As in the previous
example, Figure 3, a feed-forward RAM network with a
single-layer of adjustable nodes is used where each line of
the input matrix is the input of one RAM node. The outputs
of the nine RAM nodes are combined by an and gate. The
rule below, extracted from the trained network with this
problem, is expressed with integer numbers (instead of
binary numbers) to better expressiveness, so each line i of
the matrix is denoted by xi.

The rule generated by the algorithm is:

x1 <= 8 and x4 <= 7 and x5 <= 5 and x6 <= 2 and x7 <= 9 and

x8 <= 8 and x9 <= 3 or

x1 <= 8 and x3 <= 2 and x4 <= 7 and x5 <= 5 and x6 <= 3 and

x8 <= 8 or

x3 = 1 and x4 <= 9 and x8 <= 8 or

x1 <= 8 and x4 <= 7 and x5 <= 5 and x6 <= 4 and x7 <= 2 and

x8 <= 8 and x9 <= 3

The direct application of this rule in the test set gives an
error of 14 patterns misclassified, a generalisation error of
about 2%.

In a previous work, a rule extraction mechanism were
used to extract IF/THEN rules, from an MLP trained
network with back propagation using the breast cancer

102 T.B. Ludermir et al.

database. The generalisation error obtained was 17, 10%
with a more complicated set of rules (Campos et al., 2004).

4.3 Comparative study

A classification scheme for rule extraction techniques is
proposed in Andrews et al. (1995). The method of
classification is in terms of:

1 the expressive power of the extracted rules:
a the output as a set of rules expressed using

conventional logic
b rules using the concept of membership functions

(fuzzy logic)
c rules represented in first-order logic form, i.e.,

rules with quantifiers and variables

2 the translucency of the view taken within the rule
extraction technique of the underlying ANN unit – the
relationship between the extracted rules and the internal
architecture:

a decompositional – at the level of individual
units

b pedagogical – treats the trained ANN as a ‘black
box’

c eclectic – which combines elements of the two
basic categories above

3 the extent to which the underlying ANN incorporates
specialised training regimes provides some measure of
the portability of the rule extraction technique across
various ANN architectures

4 the quality of the extracted rules:
a accuracy – if it can correctly classify previously

unseen examples
b fidelity – if it can mimic the behaviour of the

ANN from which it was extracted by capturing
all the information embodied in the ANN

c consistency – if, under differing training
sessions, the ANN generates rule sets which
produce the same classifications as unseen
examples

d comprehensibility – is measured by the size of
the rule set (in terms of the number of rules) and
the number of antecedents per rule

5 the algorithmic complexity of the rule extraction
technique – the algorithms to be as efficient as possible.

The first method described in this paper is as follows:

1 has high expressive power

2 uses a decompositional technique, that is, the rule
extraction is made at the level of individuals nodes

3 is valid for every type of WNN

4 extract rules of high quality, which means that:

a accuracy – it can correctly classify previously
unseen examples

b fidelity – it mimics the behaviour of the ANN
from which it was extracted by capturing all the
information embodied in the ANN

c consistency – the method does not have this
property because the training algorithms used
do not have it

d comprehensibility – the size of rule is not large

5 the complexity of the algorithm is low.

The second method described in this paper is as follows:

1 has the output expressed as a set of rules using
conventional symbolic logic

2 treat the trained ANN as a black-box

3 is valid for all every type of WNN

4 extract rules of high quality, which means:
a accuracy – it can correctly classify previously

unseen examples
b fidelity – it mimics the behaviour of the ANN

from which it was extracted by capturing all the
information embodied in the ANN

c consistency – the method does not have this
property because the training algorithms used
do not have it

d comprehensibility – the size of rule is very
small

5 the complexity of the algorithm is low.

With both methods, rules hold regardless of the values that
unmentioned variables take on. The rules are maximally
general in the sense that if any of the conditions are
removed, then the rules are no longer valid.

The overall process must preserve genuine
knowledge/rules and must correct prior incorrect
information rules.

Clearly, an assessment of the quality of the rules
produced by a given rule extraction technique is potentially
of significant value to a prospective user.

5 Conclusions

This paper describes a hybrid system for WNNs. This is a
hybrid system that uses both domain knowledge and
labelled examples. For rule insertion, the system uses
weighted regular grammars and probabilistic automata.
After the rule insertion phase, the systems can use a WNN
learning algorithm to improve performance. These two steps
used together could lead to a classifier with better
generalisation and efficiency (in terms of the number of
training examples required) than systems that make use of
only training examples. After the first step, the network
topology and node contents are set in such a way that the
network initially reproduces the set of inserted rules. The

 On a hybrid weightless neural system 103

network is then trained using a set of labelled examples and
standard WNN algorithms. A hybrid system like this has the
advantages of both hand-built classifiers and neural
networks.

Acknowledgements

The authors would like to thank CNPq, FACEPE and
CAPES (Brazilian research agencies) for their financial
support.

References
Aleksander, I. and Albrow, R.C. (1968) ‘Adaptive logic circuits’,

Computer Journal, Vol. 11, p.65.
Aleksander, I. and Morton, H. (1995) An Introduction to Neural

Computing, 2nd ed., Intl Thomson Computer Pr, London,
UK.

Aleksander, I., Thomas, W.V. and Bowden, P.A. (1984)
‘WISARD: a radical step forward in image recognition’,
Sensor Review, Vol. 4, No. 3, pp.120–124.

Andrews, R., Diederich, J. and Tickle, A. (1995) ‘A survey and
critique of techniques for extracting rules from trained
artificial neural networks’, Knowledge Based Systems, Vol. 8,
pp.373–389.

Austin, J. (1998) ‘RAM-based neural networks: a short history’, in
Austin, J. (Ed.): RAM-based Neural Networks, World
Scientific, UK.

Beale, R. and Jackson, T. (1991) Neural Computing: An
Introduction, Adam Hilger, Bristol.

Campos, P.G., Oliveira, E.M.J. and Ludermir, T.B. (2004) ‘Mlp
networks for classification and prediction with rule extraction
mechanism’, in IJCNN, pp.1387–1392.

Craven, M. and Shavlik, J. (1994) ‘Using sampling and queries to
extract rules from trained neural networks’, in Proceedings of
the Eleventh International Conference of Machine Learning,
San Francisco, pp.152–169.

Craven, M.W. and Shavlik, J.W. (1996) ‘Extracting tree-structured
representations of trained networks’, Advances in Neural
Information Processing Systems, Vol. 8, p.2430.

de Souto, M.C.P., Ludermir, T.B. and Campos, M.A. (2000)
‘Encoding of probabilistic automata in RAM-based
networks’, in Proc. of the International Joint Conference on
Neural Networks, IEEE, pp.439–444.

de Souto, M.C.P., Ludermir, T.B. and de Oliveira, W.R. (1998)
‘Synthesis of probabilistic automata in pRAM neural
networks’, in Niklasson, L., Boden, M. and Ziemke, T. (Eds.):
Proc. of the International Conference on Artificial Neural
Networks (ICANN98), Vol. 2 of Perspectives in Neural
Computing, pp.603–608, Springer-Verlag, Skovde, Sweden.

de Souto, M.C.P., Ludermir, T.B. and de Oliveira, W.R. (2005)
‘Equivalence between ram-based neural networks and
probabilistic automata’, IEEE Trans. Neural Networks,
pp.996–999.

Diederich, J. (2008) Rule Extraction from Support Vector
Machines, Springer, USA.

Duch, W., Setiono, R. and Zurada, J. (2004) ‘Computational
intelligence methods for rule-based data understanding’,
Proceedings of the IEEE, Vol. 92, pp.771–805.

Gorse, D. and Taylor, J.G. (1988) ‘On the equivalence and
properties of noisy neural networks and probabilistic RAM
nets’, Physics Letters A, Vol. 131, No. 6, pp.326–332.

Gorse, D. and Taylor, J.G. (1991) ‘A continuous input RAM-based
stochastic neural model’, Neural Networks, Vol. 4,
pp.657–665.

Hopcroft, J., Motwani, R. and Ullman, J. (2006) Introduction to
Automata Theory, Languages, and Computation, 3rd ed.,
Addison Wesley, USA.

Jacobsson, H. (2005) ‘Rule extraction from recurrent neural
networks: a taxonomy and review’, Neural Computation,
Vol. 17, pp.1223–1263.

Jorgensen, T.M. (1997) ‘Classification of handwritten digits using
a RAM neural net architecture’, International Journal of
Neural Systems, Vol. 8, No. 1, pp.17–25.

Kan, W.K. and Aleksander, I. (1987) ‘A probabilistic logic neuron
network for associative learning’, in Proc. of the IEEE
International Conference on Neural Networks, San Diego,
California, Vol. 2, pp.541–548.

Kasabov, N.K. (1996) Foundations of Neural Networks, Fuzzy
Systems, and Knowledge Engineering, MIT Press, USA.

Kurfess, F.J. (2000) ‘Neural networks and structured knowledge:
rule extraction and applications’, Applied Intelligence,
Vol. 12, pp.7–13.

Ludermir, T.B. (1992) ‘Computability of logical neural networks’,
Journal of Intelligent Systems, Vol. 2, pp.261–289.

Ludermir, T.B., de Carvalho, A., Braga, A.P. and de Souto, M.C.P.
(1999) ‘Weightless neural models: a review of current and
past works’, Neural Computing Surveys, Vol. 2, pp.41–61.

Maclin, R. and Shavlik, J.W. (1993) ‘Using knowledge-based
neural networks to improve algorithms: refining the
Chou-Fasman algorithm for protein folding’, Machine
Learning, Vol. 11, pp.195–215.

McCulloch, W.S. and Pitts, W. (1943) ‘A logical calculus of the
ideas immanent in nervous activity’, Bulletin of Mathematical
Biophysics, Vol. 5, pp.115–137.

Merz, C.J. and Murphy, P.M. (1996) ‘UCI repository of machine
learning databases’, technical report, University of California,
Irvine, CA.

Myers, C. (1992) Delay Learning in Artificial Neural Networks’,
Chapman & Hall.

Myers, C. and Aleksander, I. (1988) ‘Learning algorithms for
probabilistic logic nodes’, in Abstracts of I Annual INNS
Meeting, Boston, p.205.

Myers, C. and Aleksander, I. (1989) ‘Output functions for
probabilistic logic nodes’, in Proc. IEE International
Conference on Artificial Neural Networks, UK, pp.310–314.

Rabin, M.O. (1963) ‘Probabilistic automata’, Information and
Control, Vol. 6, pp.230–245.

Ramanan, S., Petersen, R.S., Clarkson, T.G. and Taylor, J.G.
(1995) ‘pRAM nets for detection of small targets in sequence
of infrared images’, Neural Networks, Vol. 8, Nos. 7–8,
pp.1227–1237.

Rohwer, R. and Morciniec, M. (1996) ‘A theoretical and
experimental account of n-tuple classifier performance’,
Neural Computation, Vol. 8, No. 3, pp.629–642.

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986)
‘Learning internal representations by error propagation’, in
Rumelhart, D.E., McClelland, J.L. and the PDP Research
Group (Eds.): Parallel Distributed Processing, MIT Press,
Cambridge, MA, Vol. 1, pp.318–362.

104 T.B. Ludermir et al.

Setiono, R., Leow, W. and Zurada, J. (2002) ‘Extraction of rules
from artificial neural networks for nonlinear regression’,
IEEE Transactions on Neural Networks, Vol. 13, No. 3,
pp.564–577.

Thrun, S. (1991) ‘The monk’s problems: a performance
comparison of different learning algorithms’, Cmu-cs-91-197,
Carnegie Mellon University, USA.

Towell, G.G. and Shavlik, J.W. (1993) The extraction of refined
rules from knowledge-based neural networks’, Machine
Learning, Vol. 13, No. 1, pp.71–101.

