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1 Introduction 

Human learning consists of a variety of complex processes 
that use information acquired through interactions with the 
external environment. In fact, there is no one definitive 
approach that can explain cognition or solve complex 
problems. Rather, there are a number of tools and models 
that can be applied under different circumstances. It is the 
combination of these different types of information 
processing methods that has enabled humans to succeed in 
complex, rapidly changing environments. This high 
complexity and inherent heterogeneity is still one of the 
major challenges of current artificial intelligence (AI) 
systems. Due to the need for different problem solving 
techniques, the interest in hybrid systems is growing 
rapidly, as shown by the increasing number of publications 
found in the literature as for example, the International 
Journal of Hybrid Intelligent Systems (Diederich, 2008; 
Jacobsson, 2005; Duch et al., 2004; Setiono et al., 2002; 
Kurfess, 2000; Kasabov, 1996). 

Hybrid systems are important when considering the 
varied nature of application domains in AI. Many complex 
domains have many different component problems, each of 
which requiring different types of processing. For example, 
artificial neural networks (ANNs) have been successfully 
applied to solve low-level cognitive tasks such as 
perception, motor control and associative information 
retrieval. However, considerably less experience has been 
gathered so far in modelling high-level cognitive tasks using 
ANNs and on how they represent and reason about the 
acquired knowledge. In contrast, the ability to provide users 
with higher level explanations of the reasoning process is an 
important feature of AI systems. Explanation facilities are 
required both for user acceptance of the solutions generated 
by the system and for the purpose of understanding whether 
the reasoning procedure is sound. 

Thus, in order for ANNs to achieve a wider degree of 
user acceptance and to enhance their overall utility as 
learning and generalisation tools, it is highly desirable, if 
not essential, that an explanation capability becomes an 
integral part of the functionality of a trained ANN. Based on 
this, a hybrid system in which symbolic rules could be 
inserted/extracted into/from an ANN model is proposed in 
this paper. More specifically, the neural model used will be 
the weightless neural networks (WNNs) (Aleksander and 
Albrow, 1968; Aleksander and Morton, 1995; Ludermir et 
al., 1999). Automata theory (Hopcroft et al., 2006) is going 
to be used in the hybrid system to deal with the insertion 
and extraction of rules. The basic idea of such a hybrid 
system, called the hybrid weightless neural networks, is to 
insert a set of symbolic rules into a WNN. Next, the WNN 
could be refined by using standard WNN learning 
algorithms and a set of training examples. The refined 
network can then function as a highly accurate classifier. A 
final step for this system is the extraction of refined, 
comprehensible rules from the trained WNN. Hence, the 
system can be expressed by the following steps: 

 

1 translate the domain theory into a WNN 

2 train the network using a learning algorithm and a set of 
examples 

3 use the trained network to classify future examples 

4 extract a refined theory system. 

Note that any of the steps above can be either omitted or 
applied alone. For example, a WNN can be trained through 
examples and afterwards rules can be extracted from the 
trained network. Step 1 is referred to as rule insertion, 
whereas Step 4 is referred to as rule extraction. This hybrid 
system has the advantages of hand-built classifiers, such as 
expert systems and neural networks. 

The remainder of this paper is divided into four sections. 
The aim of Section 2 is to present an overview on the neural 
computing models studied in this paper, i.e., the WNNs. In 
Section 3, two techniques used for knowledge initialisation 
built upon ANN techniques are described. The methods 
described map problem-specific domain theories, 
represented either as weighted regular grammars or as 
probabilistic automata, into the classes of MLPN and 
pRAM networks (Ludermir et al., 1999). Section 4 shows 
two methods for extracting rules from trained WNNs. The 
first one deals with the extraction of symbolic grammatical 
rules from recurrent WNNs, whereas the second method 
produces Boolean expression rules from feed-forward 
WNNs. Finally, the last section presents some final remarks. 

2 Weightless neural networks: basic definitions 

The neuron model used in the great majority of work 
involving neural networks is related to variations of the 
McCulloch-Pitts neuron (McCulloch and Pitts, 1943), which 
will be called the ‘weighted-sum-and-threshold neuron’, or 
‘weighted neuron’ for short. A typical weighted neuron can 
be described by equations (1) and (2). These specify a linear 
weighted sum of the inputs, followed by some non-linear 
transfer function. 
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where uj are the inputs; Wj are the synaptic weights of the 
neuron; h is the ‘activation’ of the neuron, v controls the 
shape of the sigmoid function and y is the output. The 
weights Wj are the parameters that most training algorithms 
adjust. The transfer function above could also be replaced 
by other functions (e.g. the threshold function). However, 
the use of sigmoid functions is motivated by the need to 
have error functions which are differentiable with respect to 
the weights so that gradient-descent algorithms, such as the 
back propagation algorithm (Rumelhart et al., 1986), could 
be used for learning. The neural models composed of 
weighted nodes will be called ‘weighted neural networks’. 
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In this paper, however, the neural computing models 
studied are based on artificial neurons which often have 
binary inputs and outputs and ‘no weight’ between nodes. 
Neuron functions are stored in look-up tables, which can be 
implemented using commercially available random access 
memories (RAMs). Learning on these systems generally 
consists of changing the contents of look-up table entries, 
which results in highly flexible and fast learning algorithms. 
These systems and the nodes that they are composed of will 
be described respectively as WNNs and weight-less nodes 
(Aleksander and Morton, 1995; Ludermir et al., 1999). They 
differ from other models, such as the WNNs, whose training 
is accomplished by means of adjustments of weights. In the 
literature, the terms ‘RAM-based’ and ‘N-tuple based’ have 
been used to refer to WNNs (Jorgensen, 1997; Ramanan et 
al., 1995; Rohwer and Morciniec, 1996). Formally, 

Definition 2.1: A ‘q-RAM neuron’ (Figure 1), where 
{1,2,...},q∈  is an artificial neuron with the following  

sub-definitions and restrictions: 

• {0,1} InI = is ‘the set of inputs for the node’, where nI is 
‘the number of input terminals’. 

• {0,1} InA =  is ‘the set of addresses or locations of the 
node’. For each address A∈a , there is a cell C[a], 
which stores the contents or learned information (local 
memory) in the form of a q-bit. A binary signal I∈i  
on the input terminals will access only one of these 
locations, that is, the one for which a = i. The location a 
accessed is called the ‘activated location’. 

• S∈y  is ‘the output of the node’, where the set S is 
either [0, 1] or {0, 1}; 

• d S∈  is ‘the teaching terminal’, which provides the 
desired response. 

• {0,1}w =  is ‘the operator-mode terminal’, which 
indicates if the neuron is in the learning or recalling 
phase. 

• g : I → S is ‘the transfer function’, which computes y 
from the q-bit stored in the memory location 
determined by the input terminal, that is,  
y = g(C[a = i]). 

Definition 2.2: A ‘WNN or RAM-based neural network’ is a 
neural network whose neurons are q-RAM nodes. 

In the next section, the simplest type of weightless node, 
that is, the RAM node will be presented. For more details 
about the models introduced in this section or on other types 
of weightless nodes, such as the general RAM (GRAM) 
node and the goal-seeking node (GSN), the reader is 
referred to Aleksander and Morton (1995), Austin (1998) 
and Ludermir et al. (1999). 

 

 

Figure 1 A q-RAM node 

 

Where: 

nI – connectivity (number of inputs) 

ij – input terminal to receive input j 

C[a] – memory content of address ‘a’ 

y – output 

w – operator-mode terminal 

d – input terminal to receive the desired response 

g – transfer function. 

2.1 The RAM model 

Definition 2.3: A ‘RAM neural network’ is a WNN in which 
the neurons are 1-RAM nodes. The 1-RAM node is called 
the RAM node. The bit, C[a], stored at the activated 
memory a = i represents the output of a RAM node, that is, 

[ ].ay =C  Thus, g is the identity function. In other words, 
the Boolean function performed by the neuron is determined 
exactly by the contents of the RAM. 

Learning in a RAM node takes place simply by writing 
into the corresponding look-up table entries. This learning 
process is much simpler than the adjustment of weights. The 
RAM node, as defined above, can compute all binary 
functions of its input while the weighted-sum-and-threshold 
nodes can only compute linearly separable functions. There 
is no generalisation in the RAM node itself. Nevertheless, 
there is generalisation in networks composed of RAM nodes 
(Aleksander and Morton, 1995). Generalisation can be, for 
example, introduced by considering the hamming distance 
from training patterns or masks. 

In a typical RAM neural network, that is, a feed-forward 
RAM neural network with a single-layer of nodes, RAM 
nodes are taught to respond with a 1 for those patterns in the 
training set and only for those patterns. An unseen pattern is 
classified in the same class of the training set if all RAM 
nodes output 1. This simple architecture divides the set of 
all possible patterns into those that are in the generalisation 
set and those that are not. If more than two categories are 
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required, many RAM neural networks are used together, 
each network trained to respond to one class of pattern. 
These networks are modified so that instead of having a 
logic gate to combine the RAM nodes’ outputs, the decision 
is left to the ‘maximum response detector’. These modified 
RAM neural networks, which are used both in SLAMs and 
WISARD (Aleksander et al., 1984), are called 
‘discriminators’ (Figure 2). 

Figure 2 A discriminator 

 

A simple learning algorithm for RAM networks is 
summarised below: 

RAM learning algorithm 

1 Present an input pattern to the input terminals. 

2 Select the RAM nodes that should learn (α nodes are 
going to learn, where α is a parameter – learning rate – 
set before training) and present the desired output to the 
vector d. 

3 Set to 1 the operate-mode terminals, w , of the nodes 
that are going to learn. 

4 Repeat by going back to Step 1 for all the N training 
patterns. 

5 The algorithm halts when the error of the solution is 
acceptable (this parameter is also set before training). 
Otherwise, repeat the whole procedure by going back to 
Step 1. 

An important aspect about RAM networks is that although 
there is no ambiguous information concerning RAM 
locations which contain 1, the same does not hold for those 
that are left in the 0 state. An unknown vector accessing an 
entry that has 0 could mean either 

1 that such vector is a counter-example of the 
corresponding class 

2 that no information was provided during training for 
that class feature corresponding to the entry accessed. 

It is not easy to define which one is true. Another 
discriminator holding a value 1 at the same location 
indicates a counter-example. In the second case, the vector 
could be an example of the class, but since no information 
was given, the RAM will output 0 instead of 1. To 
overcome this problem, Kan and Aleksander (1987) 
developed the word-addressable logic node called 
probabilistic logic node (PLN), which will be described in 
the next section. 

2.2 The PLN model 

A PLN differs from a RAM node in that a 2-bit number 
(rather than a single bit) is now stored at the addressed 
memory location. The content of this location is turned into 
the probability of firing (i.e., generating 1) at the overall 
output of the node. In other words, a PLN consists of a 
RAM node augmented with a probabilistic output generator 
(Kan and Aleksander, 1987). Thus, like in a RAM node, the 
nI binary inputs to a PLN form an address to one of the 2nI 
addressable locations a .A∈  Simple RAM nodes then 
output the stored value directly. In contrast, in a PLN, the 
content at this address is passed through a transfer function 
which converts it into a binary node output. Such a content 
could be either 0’s, 1’s, or u’s. The undefined state u 
implies on the node flipping its output between 0 and 1 with 
equal probability. The use of a third logic value, u 
(undefined), makes possible the use of an ‘unknown’ state 
in the operation of WNNs architectures. This value is stored 
in all the memory contents before the learning phase, 
indicating the ignorance of the network before it was 
trained. Formally, 

Definition 2.4: A ‘PLN neural network’ is a WNN in which 
the neurons are 2-RAM nodes (PLNs). The output of the 
PLN is given by: 

0                      if [ ] 0 
1                       if [ ] 1
random(0, 1)    if [ ]

C
C
C u

=⎧
⎪ =⎨
⎪ =⎩

a
a
a

y =  (3) 

where C[a] is the content in the address position associated 
with the input pattern i (i.e. a = i) and random (0,1) is a 
random function that generates zeros and ones with the 
same probability. 

Training PLN neural networks becomes a process of 
replacing u’s with 0’s and 1’s so that the network 
consistently produces the correct output pattern in response 
to training pattern inputs. At the beginning of training, all 
stored values in all nodes are set to u and thus the net’s 
behaviour is completely unbiased. A generic gradient 
descendent learning algorithm, proposed by Myers and 
Aleksander (1989), uses several presentations of the training 
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set to teach PLN neural networks by using a reward and a 
punish phase. 

A simple learning algorithm for multi-layer PLN 
networks is summarised as follows: 

PLN learning algorithm 

1 Set the contents of all the memory locations to u. 

2 Present an input pattern to the input terminals together 
with the desired response to the output terminals. 

3 The contents of the memory locations are propagated 
forward through the layers of the network until they 
reach the output node. 

4 The response of the network is compared with the 
desired output. 

a if they are similar, then the contents of the 
addressed memories will assume their current 
values (i.e. the addressed memories will be 
rewarded), or 

b if they are different, then the network is allowed 
to run again until: 
• The output matches the desired response, 

then reward. 

• The output mismatches the desired response 
β times (β is a parameter which should be set 
before training). In this case, the addressed 
memories are punished by reverting their 
contents back to the u state. 

5 Repeat by going back to Step 2 for all the N training 
patterns. 

6 The algorithm halts when consistent success (the 
correct output produced N times consistently) indicates 
that all patterns have been learned. 

The use of three-logic values and PLN neural networks 
represented a breakthrough in the WNN research. Other 
WNNs models were soon created incorporating these  
ideas, such as the MPLN and pRAM node. These nodes, 
which are similar in many ways, were simultaneously and 
independently developed in Myers and Aleksander (1988, 
1989) and Gorse and Taylor (1988, 1991) respectively. 

2.3 The MPLN model 

The development of the PLN led to the definition of the  
m-state PLN or MPLN (Myers and Aleksander, 1988, 
1989). The main difference between the MPLN and the 
PLN is that the first allows a wider, but still discrete, range 
of probabilities to be stored at each memory content unit. 
One result of extending the PLN to MPLN is that the node 
locations may now store output probabilities which are 
more finely graded than in the PLN. 

An MPLN, for instance, could output 1 with 15% 
probability under a certain input. Based on this, learning can 
allow incremental changes in stored values. This way, one 

reset does not erase much information – erroneous 
information is discarded only after a series of errors. 
Similarly, new information is only acquired after a series of 
experiences indicates its validity. The reinforcement 
learning procedure for PLNs was extended to take this into 
account and was applied to model delay learning in 
invertebrates (Myers, 1992). 

Definition 2.5: An ‘MPLN neural networks’ is a WNN 
where the node are q-RAM nodes, for q > 2, where the 
activation function g , : I →g {0,1},  is a probabilistic 
function. 

3 Rule insertion in WNN 

There are basically two approaches to achieving  
problem-specific expertise in a computer: hand-built 
classifiers (e.g. expert systems) and empirical learning (e.g. 
ANNs). Hand-built classifiers correspond to teaching by 
giving a person a domain theory without an extensive set of 
examples. Conversely, empirical learning corresponds to 
giving a person lots of examples without any explanation on 
why the examples are members of a particular class. 

Hybrid learning methods use theoretical knowledge of a 
domain and a set of classified examples to develop a 
method for accurately classifying examples not seen during 
training. The challenge of hybrid learning systems is to use 
the information provided by one source of information to 
offset information missing from the other source. By so 
doing, a hybrid learning system should learn more 
effectively than systems that use only one of the information 
sources. 

In this section, two techniques used for knowledge 
initialisation built upon ANN techniques are presented. The 
methods described map problem-specific domain theories, 
represented either as weighted regular grammars or as 
probabilistic automata, into neural networks. That is, an 
existing set of rules is converted into a neural network, 
which then can be trained (in the context of this research 
with WNN training algorithms) with sample data. The goal 
is the utilisation of existing knowledge and the adaptation of 
sets of rule to actual data. The availability of prior 
information can also be used to improve the training process 
of neural networks. Since the starting configuration of the 
network is not randomly chosen, but often reflects important 
aspects of the learning task, the time to train the network 
may be substantially reduced, or the resulting network may 
offer better generalisation capabilities. 

3.1 From weighted regular grammars to multi-layer 
MLPN networks 

In Ludermir (1992), an algorithm is presented that allows 
the insertion of rules, given in terms of weighted regular 
grammars, into MLPN networks. 

Theorem 3.1: (Ludermir, 1992) Let Gw be a weighted 
regular grammar, then there exists an MPLN neural network 
that recognises L(Gw) with some cut-point λ . 
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The way in which the grammar is transformed into the 
neural network is such that all its properties are preserved. 
Thus, the grammar can be inferred back from the WNN 
generated. The networks are constructed using four basic 
kinds of nodes: ‘p-and’, ‘p-or’, ‘complement’ and ‘delay’ 
nodes. The algorithm is based on the complexity of the 
production rules. More specifically, the procedure is divided 
into three cases. The first case deals with production rules of 
the form 1 ( )S →w p  where w  is a word in the language, S1 
is a non-terminal symbol of the grammar and p is the 
probability associated with this production rule. The second 
case deals with production rules of the form ( )iS S→ jw p  
and the last case deals with production rules of the form 

1 1 2 2( ) | ( )i iS S S S→ →j kw p w p  where | denotes the 
possibility of Si being replaced with 1 1( )Sjw p  or 2 2( )Skw p . 
Each of these cases is divided into sub-cases. Furthermore, 
for every sub-case, the circuit that implements such a case is 
designed using the four types of nodes previously 
mentioned. As regular grammars and RAM nodes are 
special cases of weighted regular grammars and MPLNs, 
respectively, the algorithms in Ludermir (1992) work for 
them as well. 

A drawback with the previous procedure is the fact that 
the MPLN neural networks generated are not well suited to 
learning. They possess irregular topologies in that: 

1 they could have several layers (blocks) with different 
number of nodes 

2 each node within the same layer could have a different 
fan-in 

3 each layer could have feedback connections coming 
from nodes within the same layer as well as from nodes 
in any other layer. Nevertheless, as will be shown in the 
next section, de Souto et al. (1998) proposed an 
algorithm to transform rules given as probabilistic 
automata (weighted regular language recognisers) into 
a given class of single-layer sequential WNNs. 

3.2 From probabilistic automata to single-layer 
recurrent WNN 

An important representative of the research on temporal 
pattern processing in WNNs is the class sequential 
weightless neural networks (SSWNNs) (de Souto et al., 
2005). In de Souto et al. (1998, 2000, 2005), the 
computability of a class of SSWNNs, called general  
single-layer sequential weightless neural networks 
(GSSWNNs), was studied. These networks were assumed to 
be implemented either with pRAM nodes (Gorse and 
Taylor, 1988) or MPLNs. Indeed, one of the proofs 
presented provides an algorithm to map any probabilistic 
automaton into a GSSWNN: 

Theorem 3.2: (de Souto et al., 1998) Let 
( , , , , )Ip Q H q F= ∑A  be a probabilistic automaton with  

cut-point λ . Then there exists a GSSWNN that implements 
AP. 

With respect to proof of the previous theorem, a 
probabilistic automaton AP is reduced to a GSSWNN as 
follows: 

1 A mapping { }0,1 Un→∑ , where 2log | | ,Un = ∑⎡ ⎤⎢ ⎥  is 
defined. Such a mapping transforms each possible input 
symbol Σk ∈σ  into a different input vector uk for the 
network. 

2 A mapping 0,1 ,XnQ → { }  where 2log | | ,Xn Q= ⎡ ⎤⎢ ⎥  is 
defined. Thus, each state iq Q∈  is assigned to a vector 
xi for the network, such that if ,i jq q≠  then i j≠x x  

3 The network initial state x0 is defined as the vector 
standing for ,Iq Q∈  that is, the automaton initial state. 

4 The set R of network accepting states will consist of 
vectors xi representing the states ,Iq F∈  that is, the 
automaton set of final states. 

In summary, the algorithm above generates a GSSWNN 
which has its number of nodes logarithmic in the number of 
automaton states and each node has a number of memory 
locations linear in the number of such states. Once the 
network is generated, it can be used with the recognition 
algorithm presented in de Souto et al. (1998), which makes 
such a network behave like a probabilistic automaton. 

3.3 Discussion 

The two methods presented in the previous sections not only 
allow the construction of any weighted regular 
language/probabilistic automaton into MPLN/pRAM 
networks, but also increases the class of functions that can 
be computed by such networks. For instance, these 
networks can now deal with some context-free languages 
(Ludermir, 1992; de Souto et al., 1998). 

Also, these methods could be used to create the structure 
of the network and its initial probabilities from a partially 
known weighted regular grammar/probabilistic automaton. 
Then, such a network can be submitted to some kind of 
learning algorithm. For instance, its training could involve: 

• only changes in the probabilities stored in the nodes 

• changes in any memory position of the node 

• changes in the value of the threshold (cut-point). 

The languages recognised by a neural network when only 
the threshold is changed are related to each other. The larger 
the value of the threshold, the fewer the elements of the 
language that will be recognised by the network. That is, 

1 2 ... nL L L⊃ ⊃ ⊃  when 1 2 ... n< <λ < λ λ . If the threshold 
is small, there will be more restrictions in the path followed 
in the network: every time a new symbol, Xi, is submitted to 
the network, the value of the probability of the pattern 

(X)p  will decrease or will not change, but it will never 
increase. 
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When changes occur only in the probabilities stored in 
the nodes, the training algorithm can be very simple. Given 
a pattern X , if X L∈ , then reward the network (increase 
the probabilities of the transitions that the network has 
undergone when fed with X ), otherwise punish the network 
(decrease the probabilities of the transitions that the network 
has undergone when fed with X ). 

As these WNNs, generated by the previous procedures, 
are similar to probabilistic automata (Ludermir, 1992; de 
Souto et al., 1998), one should take into account their 
behaviour in a noisy environment. For instance, a slight 
perturbation in the probability of the state transition of a 
probabilistic automaton could lead the automaton to 
recognise a different language (Rabin, 1963). In fact, there 
are some sufficient conditions for stability in probabilistic 
automata, as well as there are cases in which stability is not 
possible. 

The general problem of stability is still unsolved, which 
means that if the changes generated by the training 
algorithm in the state transition of the network are small 
there is no guarantee that the training will change the 
language recognised by the network. Thus, if changes are 
allowed in the contents of the nodes, a completely different 
structure might arise. However, practical shortcomings of 
these results need to be investigated further. 

4 The rule extraction problem 

In this section, the rule extraction problem is described with 
a detailed discussion of the advantages and disadvantages of 
the rule extraction algorithms proposed. The approaches of 
rule extraction are described followed by the two methods 
proposed by the authors. At the end of the section, a 
comparative study of the algorithms is presented. 

Given a trained ANN and the examples used in the 
training process, produce a concise and precious symbolic 
description of the ANN. This is the formulation of the rule 
extraction problem originally made in Craven and Shavlik 
(1994). 

In essence, the task of extracting rules from a trained 
ANN is one of interpreting in a comprehensive fashion the 
collective effect of: the network architecture, an activation 
function associated with each unit of the ANN and a set of 
numerical values stored/associated in/with each unit. 

A correlated problem to that of rule extraction from a 
trained ANN is that of using the ANN for the refinement of 
existing rules within symbolic knowledge bases. The idea is 
to program the network with a knowledge base (a prior 
knowledge) and train the network to produce a set of better 
rules (a posteriori knowledge). 

The main benefits of ANN rule extraction, as mentioned 
in Andrews et al. (1995) are: 

• Provision of a user explanation capability – while 
provision of an explanation capability is a significant 
innovation in the ongoing development of ANNs, of 
equal importance is the quality of the explanation 
given. For example, experience has shown that an 

explanation based on a rule traced from a poorly 
organised rule-base with perhaps hundreds of premises 
per rule is not regarded as being transparent. ANNs has 
no declarative knowledge structures and hence, is 
limited in providing an explanation component. 

• Extension of ANN systems to safety-critical problem 
domains – the internal states of the system to be both 
accessible and able to be interpreted unambiguously. 
Satisfaction of such requirements would make a 
significant contribution to the task of identifying and, if 
possible, excluding those ANN-based solutions that 
have the potential to give erroneous results without any 
accompanying indication as to when and why a result is 
sub-optimal. 

• Software verification and debugging of ANN 
components in software systems – if ANNs are to be 
integrated within larger software systems that need to 
be verified, then this requirement clearly must be met 
by the ANN as well. 

• Improving the generalisation of ANN solutions – by 
being able to express the knowledge embedded within 
the trained ANN as a set of symbolic rules, the rule 
extraction process may provide an experienced system 
user with the capability to anticipate or predict a set of 
circumstances under which generalisation failure can 
occur. 

• Data exploration and the induction of scientific theories 
– ANNs has proven to be extremely powerful tool for 
discovering previously unknown dependencies and 
relationships in data sets. As Craven and Shavlik 
(1994) observe, a (learning) system may discover 
salient features in the input date whose importance was 
not previously recognised. But even if a trained ANN 
has learned interesting and possibly non-linear 
relationships, these relationships are encoded 
incomprehensibly as weight vectors within the trained 
ANN and hence cannot easily serve the generation of 
scientific theories. 

• Knowledge acquisition for symbolic AI systems – the 
most difficult, time consuming and expensive task in 
building an expert system is constructing and 
debugging its knowledge base. The notion of using 
trained ANNs to assist in the knowledge acquisition 
task has existed for some time. An extension of these 
ideas is to use trained ANNs as a vehicle for 
synthesising the knowledge that is crucial for the 
success of knowledge-based systems. Alternatively, 
domain knowledge that is acquired by a knowledge 
engineering process may be used to constrain the size 
of the space searched during the learning phase and 
hence contribute to improving the learning 
performance. 
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4.1 Approaches to rule extraction 

One approach to testing rules for a multi-layer network is to 
treat the network as a collection of perceptrons and to 
extract rules for each hidden and output unit separately 
(Maclin and Shavlik, 1993). In this approach, the rules for 
each unit are expressed in terms of the units that feed into it. 
An advantage of this approach is that it produces 
‘intermediate terms’ which may result in simpler 
descriptions. A disadvantage of this method, however, is 
that it requires that the hidden units of the networks be 
approximated by threshold units and, thus, the extracted 
rules may not provide an accurate representation of the 
network. This approach is referred to as ‘decompositional’ 
or ‘local’. The distinguishing characteristic of the 
decompositional approach is that the focus is on extracting 
rules at the level of individual (hidden and output) units 
within the trained ANN. Examples of algorithms in this 
class are SUBSET (Towell and Shavlik, 1993), M of N 
(Towell and Shavlik, 1993) and Rulex (Andrews et al., 
1995). Other works can be found in Andrews et al. (1995), 
Towell and Shavlik (1993), Craven and Shavlik (1994), 
Thrun (1991) and Jacobsson (2005). 

The other approach is called ‘global method’. This 
approach describes the behaviour of hidden and output units 
in function of the input units alone. The extracted 
knowledge can only provide a crude approximation of the 
network because these methods treat the trained ANN as a 
black box. The main algorithms in this approach are the 
validity interval analysis (VIA) (Thrun, 1991) and the 
Trepan (Craven and Shavlik, 1996). 

Most rule extraction methods for ANN suffer from both 
a lack of generality and lack of stability. Some methods are 
limited in their applicability because they impose 
restrictions on the network architecture (Thrun, 1991; 
Craven and Shavlik, 1994) or because they require hidden 
units to use sigmoidal transfer functions (Maclin and 
Shavlik, 1993). 

4.2 Extracting rules from WNNs 

In the next sections, two methods for extracting rules from 
trained WNNs are presented. The first one deals with the 
extraction of symbolic grammatical rules from recurrent 
WNNs, whereas the second method produces Boolean 
expression rules from feed-forward WNNs. 

4.2.1 Extracting symbolic grammatical rules from 
WNNs 

Next, a generic description for extracting rules from trained 
recurrent WNNs is given. It is shown that for any MPLN 
network, it is possible to generate a set of symbolic rules 
that describes the set of patterns that the network 
recognises. This result is expressed as the following 
theorem: 

Theorem 4.1: If a set of patterns L is recognised by an 
MPLN neural network, then this set can be generated by a 
weighted regular grammar Gw. 

Proof: Let N be the MPLN network that recognises only the 
set of patterns L and let GW = (VN, VT , PW, q0) be the 
grammar that generates only and all patterns of L. Suppose 
there is an initial state q0 of N from which the feed of all 
patterns of L will start and suppose further that q0 is not a 
final state. Then, there is a production rule ( )i jS aS p→  

whenever the feed of the symbol a to the network in state Si 
causes the network to enter state Sj with probability p and 
also ( )iS a p→  whenever the feeding of the symbol a to 
the network in state Si takes the network to a final state with 
probability p. 

In the same way, there is a set of production rules such 
that ( )i jS S p→w , whenever the feed of the patterns w  to 

the network in state Si causes the network to enter state Sj 
with probability p. If w  is accepted by N then, Si is q0 and 
Sj is a final state. Hence L(N) = L(GW). 

Now let q0 be in the set of final states, then the empty 
word, ∈, is in L. Note that the grammar defined above is  

– .L L= ∈  GW can be modified by adding a new start 
symbol S with productions 0 1( )S q p→  and 2( )S p→∈ . 

4.2.2 Extracting rules from feed-forward WNNs 

An algorithm to extract rules from feed-forward WNNs, in 
terms of Boolean expressions, is given below: 

Rule extraction algorithm 

1 For each RAM node in the network do: 
a find all 1’s positions in the memory locations 
b generate the expressions for all memory 

contents with 1’s. 
c build an OR function with all expressions 

generated in Step (b) above. 

2 Apply the method of Veitch-Karnaugh for expression 
simplification to the expression generated by 1. 

This algorithm works for any kind of feed-forward WNN. 
As a result of the application of the algorithm to a trained 
WNN, a set of simple rules is obtained. It is also possible to 
insert this set of rules back into a WNN. 

In what follows, two examples of rule extraction are 
given. The first example uses a standard example of WNN 
found in the literature (Beale and Jackson, 1991) while the 
second is a classical real world classification problem, the 
Winsconsin breast cancer database (Merz and Murphy, 
1996). 

The first example is the network of Figure 3. The 
training set for this network is shown in Figure 4. The RAM 
nodes are taught to respond with 1 for those patterns in the 
training set and only those patterns. Thus, any pattern that 
makes all three nodes to output 1s would be classified in the 
same way as the training set – in this case, the 
generalisation set (the extra patterns recognised by the 
network) is shown in Figure 5. 
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Figure 3 RAM network with three nodes 

 

Figure 4 Training set 

 

Figure 5 The generalisation set: extra patterns that the network 
recognises 

 

Consider the input pattern as a matrix where the elements of 
the first line are a11, a12 and a13; the elements of the second 
line are a21, a22 and a23; and the elements of the third line 
are a31, a32 and a33. The rule generated by Step 1 of the 
algorithm is: 

(((not a11) and a12 and (not a13)) or (a11 and a12 and (not 
a13))) and 

(((not a21 and a22 and (not a23)) or ((not a21) and a22 and a23)) 
and 

(((not a31) and a32 and (not a33) or ((not a31) and a32 and a33)) 

The (minimal) rule generated by Step 2 of the algorithm is: 

(a12 and (not a13)) and 

((not a21) and a22) and 

((not a31) and a32) 

The ands in bold face in the rules above is because of the 
and gate, which connects the RAM nodes in the network of 

Figure 3. In general, the minimal rule has less than half the 
size of the rule generated by Step 1. 

In order to assess the performance of the method 
proposed in this section in a real world pattern classification 
problem, the breast cancer database from the UCI repository 
will be used (Merz and Murphy, 1996). This database, 
consisting of 699 cases – 458 presenting benign cancer and 
241 of the malign type, represent here the knowledge of the 
specialist of domain and will be used to test and train the 
RAM network. All these cases reflect the results from 
clinical diagnosis obtained from the Hospital of Wisconsin 
University (Madison-USA), between January 1989 and 
November 1991. Each register of this database corresponds 
to a case of breast cancer and has 11 attributes. The first 
attribute corresponds to the identification number of the 
case, the next nine attributes refer to the symptoms 
(attribute of microscope analyses made in the tumours 
removed from the patients which is denoted by x1 to x9 in 
this paper), necessary to reach a classification and the last 
attribute is the class or type of cancer associated to the 
symptoms mentioned in the nine preceding attributes. For 
16 registers, one attribute is missing, so they have been 
removed from the dataset used in this work. The remaining 
683 have been subdivided into training (372 patterns) and 
test set (311 patterns). For the nine attributes of the 
symptoms, the values are integer number in the range 1 to 
10. The integer numbers are converted in binary numbers to 
be used as the input of the RAM networks. The input 
pattern is represented as a matrix nine by four, the lines are 
the nine input features of the problem. As in the previous 
example, Figure 3, a feed-forward RAM network with a 
single-layer of adjustable nodes is used where each line of 
the input matrix is the input of one RAM node. The outputs 
of the nine RAM nodes are combined by an and gate. The 
rule below, extracted from the trained network with this 
problem, is expressed with integer numbers (instead of 
binary numbers) to better expressiveness, so each line i of 
the matrix is denoted by xi. 

The rule generated by the algorithm is: 

x1 <= 8 and x4 <= 7 and x5 <= 5 and x6 <= 2 and x7 <= 9 and 

x8 <= 8 and x9 <= 3 or 

x1 <= 8 and x3 <= 2 and x4 <= 7 and x5 <= 5 and x6 <= 3 and 

x8 <= 8 or 

x3 = 1 and x4 <= 9 and x8 <= 8 or 

x1 <= 8 and x4 <= 7 and x5 <= 5 and x6 <= 4 and x7 <= 2 and 

x8 <= 8 and x9 <= 3 

The direct application of this rule in the test set gives an 
error of 14 patterns misclassified, a generalisation error of 
about 2%. 

In a previous work, a rule extraction mechanism were 
used to extract IF/THEN rules, from an MLP trained 
network with back propagation using the breast cancer 
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database. The generalisation error obtained was 17, 10% 
with a more complicated set of rules (Campos et al., 2004). 

4.3 Comparative study 

A classification scheme for rule extraction techniques is 
proposed in Andrews et al. (1995). The method of 
classification is in terms of: 

1 the expressive power of the extracted rules: 
a the output as a set of rules expressed using 

conventional logic 
b rules using the concept of membership functions 

(fuzzy logic) 
c rules represented in first-order logic form, i.e., 

rules with quantifiers and variables 

2 the translucency of the view taken within the rule 
extraction technique of the underlying ANN unit – the 
relationship between the extracted rules and the internal 
architecture: 

a decompositional – at the level of individual 
units 

b pedagogical – treats the trained ANN as a ‘black 
box’ 

c eclectic – which combines elements of the two 
basic categories above 

3 the extent to which the underlying ANN incorporates 
specialised training regimes provides some measure of 
the portability of the rule extraction technique across 
various ANN architectures 

4 the quality of the extracted rules: 
a accuracy – if it can correctly classify previously 

unseen examples 
b fidelity – if it can mimic the behaviour of the 

ANN from which it was extracted by capturing 
all the information embodied in the ANN 

c consistency – if, under differing training 
sessions, the ANN generates rule sets which 
produce the same classifications as unseen 
examples 

d comprehensibility – is measured by the size of 
the rule set (in terms of the number of rules) and 
the number of antecedents per rule 

5 the algorithmic complexity of the rule extraction 
technique – the algorithms to be as efficient as possible. 

The first method described in this paper is as follows: 

1 has high expressive power 

2 uses a decompositional technique, that is, the rule 
extraction is made at the level of individuals nodes 

3 is valid for every type of WNN 

4 extract rules of high quality, which means that: 

a accuracy – it can correctly classify previously 
unseen examples 

b fidelity – it mimics the behaviour of the ANN 
from which it was extracted by capturing all the 
information embodied in the ANN 

c consistency – the method does not have this 
property because the training algorithms used 
do not have it 

d comprehensibility – the size of rule is not large 

5 the complexity of the algorithm is low. 

The second method described in this paper is as follows: 

1 has the output expressed as a set of rules using 
conventional symbolic logic 

2 treat the trained ANN as a black-box 

3 is valid for all every type of WNN 

4 extract rules of high quality, which means: 
a accuracy – it can correctly classify previously 

unseen examples 
b fidelity – it mimics the behaviour of the ANN 

from which it was extracted by capturing all the 
information embodied in the ANN 

c consistency – the method does not have this 
property because the training algorithms used 
do not have it 

d comprehensibility – the size of rule is very 
small 

5 the complexity of the algorithm is low. 

With both methods, rules hold regardless of the values that 
unmentioned variables take on. The rules are maximally 
general in the sense that if any of the conditions are 
removed, then the rules are no longer valid. 

The overall process must preserve genuine 
knowledge/rules and must correct prior incorrect 
information rules. 

Clearly, an assessment of the quality of the rules 
produced by a given rule extraction technique is potentially 
of significant value to a prospective user. 

5 Conclusions 

This paper describes a hybrid system for WNNs. This is a 
hybrid system that uses both domain knowledge and 
labelled examples. For rule insertion, the system uses 
weighted regular grammars and probabilistic automata. 
After the rule insertion phase, the systems can use a WNN 
learning algorithm to improve performance. These two steps 
used together could lead to a classifier with better 
generalisation and efficiency (in terms of the number of 
training examples required) than systems that make use of 
only training examples. After the first step, the network 
topology and node contents are set in such a way that the 
network initially reproduces the set of inserted rules. The 
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network is then trained using a set of labelled examples and 
standard WNN algorithms. A hybrid system like this has the 
advantages of both hand-built classifiers and neural 
networks. 
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