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Abstract— This paper presents a new method that inte-
grates tabu search, simulated annealing, genetic algorithms and
backpropagation in both a pruning and constructive manner.
The approach obtained promising results in the simultaneous
optimization of an artificial neural network architecture and
weights. With the proposed method, we investigate four cost
functions for global optimization methods: the average method,
weight-decay, multi-objective optimization and combined multi-
objective/weight-decay. The experiments are performed in four
classifications and one prediction problem.

I. INTRODUCTION

The performance of an artificial neural network depends
upon the selection of proper weight connections and network
topology during network training. Due to the complex nature
of neural network training, even simple functions can have
very complex error surfaces. Since the nature of neural
network learning algorithms is local convergence, it can be
demonstrated that solutions are highly dependent upon the
initial random drawing of connection weights. If these initial
weights are located on a local grade, which is probable,
the learning algorithm will likely become trapped in a local
solution that may or may not be the global solution.

Another critical subject involved in neural network training
is the stability versus plasticity relation in the architecture
definition. A lack of network connections can render a
neural network unable to solve the investigated problem as
a result of the inadequacy of adjustable parameters, whereas
an excess of connections can cause overfitting in the training
data and fail to have an adequate generalization capacity.

Basically, there are four approaches to defining the neural
network architecture [32]: (1) The empirical approach con-
sists of testing several topologies until finding one that
presents satisfactory results; (2) the search optimization ap-
proach consists of generating variations of a neural network
and combining the best characteristics of this new network
in order to improve performance; (3) the pruning approach
consists of optimizing a network through the elimination of
the elements (network connections) that have no influence
over the generalization performance; and (4) the constructive
approach, in which the networks begin with a minimum
topology and the architecture is built during the training
process.

Genetic Algorithms (AG) [13], Simulated Annealing (SA)
[21] and Tabu Search (TS) [12] are the most popular of

the iterative optimization algorithms. All three optimization
heuristics have similarities [37]: (1) They are approximation
(heuristic) algorithms, i.e., they do not ensure the finding
of an optimal solution; (2) They are blind, in that they
do not know when they have reached an optimal solution
and, therefore, must be told when to stop; (3) They have
a “hill climbing” property, i.e., they occasionally accept
uphill (bad) moves; (4) They are general, i.e., they can
easily be engineered to implement any combinatorial op-
timization problem; all that is required is for a suitable
solution representation, a cost function and a mechanism to
traverse the search space; and (5) Under certain conditions,
they asymptotically converge to an optimal solution. To
perform search network architecture optimization, this new
methodology integrates these three heuristics, combining the
advantages in order to overcome the limitations.

This paper presentes a new methodology for optimizing
Multi-Layer Perceptron neural networks (MLP) that inte-
grates the main potentialities of these approaches: (1) search
optimization for generating new solutions; (2) pruning to
eliminate connections and optimize network size; and (3) the
constructive approach for finding the best network topology.

Four cost functions for global optimization will be in-
vestigated in our evaluation: (1) average method, which is
the average of the classification error and the percentage of
connections the network uses; (2) weight-decay mechanism,
inspired by weight decay backpropagation implementation;
(3) multi-objective optimization strategy in genetic operators;
and (4) a combination of the weight-decay mechanism and
multi-objective optimization strategy. All approaches seek to
minimize both network performance and complexity.

In experiments to validate the method, four classification
simulations are performed: (1) The odor recognition problem
in artificial noses [8]; (2) Diabetes diagnoses in Pima indians
[4]; (3) Fisher’s Iris data set [2]; (4) Thyroid dysfunction data
set [36]; and one prediction simulation: (1) Mackey-Glass
time series [26].

The next section describes the optimization techniques
investigated. Section 3 contains some related work. The ex-
periments performed and discussion are presented in Section
4 and Section 5. Section 6 contains the final remarks.
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II. DESCRIPTION OF SEARCH HEURISTICS

A. Genetic Algorithms
Genetic algorithms emerged from the analogy between

optimization, the genetic mechanisms of species and natural
evolution. They are based on the chromosome representation
of the optimization variables in the reproduction process and
genetic operators such as crossover and mutation [17].

A genetic algorithm is characterized by a parallel search
of the state space rather than a point-by-point search through
conventional optimization techniques. The parallel search
is accomplished by maintaining a set of possible solutions
for the optimization problem, known as a population. An
individual in the population is a string of symbols and
is an abstract representation of the solution. The symbols
are called genes and each string of genes is termed a
chromosome. The individuals in the population are evaluated
through a fitness measure. The population of chromosomes
evolves from one generation to the next through the use of
two types of genetic operators: (1) unary operators, such as
mutation and inversion, which alter the genetic structure of a
single chromosome; and (2) higher-order operators, referred
to as crossovers, which obtain a new individual by combining
genetic material from two selected parent chromosomes [13].

In the experiments performed, each chromosome repre-
sents a neural network architecture. The initial population
was defined with a size of 10 chromosomes. The chromo-
somes are classified by Rank Based Fitness Scaling [3].
Parent selection for the next generation is accomplished in
a probabilistic manner, using Universal Stochastic Sampling
[3]. Elitism was also used, with a probability of 10%. For
the combination of the parent chromosomes, the crossover
operator Uniform Crossover [41] was used, with a probability
of 80%. The mutation operator used was Gaussian Mutation
[39], with a probability of 10%. The stop criteria were: (1)
the GL5 criterion defined in Proben1 [35], (based on the
classification error for the validation set); and (2) a maximum
number of 200 generations.

B. Simulated Annealing
The simulated annealing method is different from other

search methods in that uphill moves are occasionally ac-
cepted in order to escape from local minima. The search
process consists of a sequence of iterations. Each iteration
consists of randomly changing the current solution to create
a new solution in its neighborhood. Once a new solution
is created, the corresponding change in the cost function is
computed to decide if the new solution can be accepted.
If the new solution cost is lower than the current solution
cost, the new solution is accepted. Otherwise, the Metropolis
criterion is verified [29], based on the Boltzmann probability.
A random number d in a [0, 1] interval is generated from a
uniform distribution. If δ ≤ e

∆E
T , where ∆E is the change

in the cost function and T is a parameter called temperature,
then the new solution is accepted as the current solution.
If not, the current solution is unchanged and the process
continues from the current solution.

The algorithm was originally derived from thermodynamic
simulations. Thus, the parameter T is referenced as tem-
perature and the temperature reduction process is called the
cooling process. The cooling strategy chosen was geometric
cooling rule. According to this rule, the new temperature is
equal to the current temperature multiplied by a temperature
factor (smaller than, but close to one) [33]. The initial
temperature is set at 1 and the temperature factor is set at
0.9. The temperature is decreased every 10 iterations, with a
maximum number of 1000 iterations. The GL5 stop criterion
was also used.

C. Tabu Search

Tabu search is an iterative search algorithm characterized
by the use of a flexible memory. In this method, each
iteration consists of the evaluation of a certain amount of new
solutions (neighborhood moves). The best of these solutions
(in terms of cost function) is accepted. However, the best can-
didate solution may not improve the current solution. Thus,
the algorithm chooses a new solution that either produces
the greatest improvement or the smallest deterioration in the
cost function. This strategy allows the method to escape from
local minima. A tabu list is used to store a certain amount
of recently visited solutions. The solutions on the tabu list
are marked as forbidden for subsequent iterations. The tabu
list registers T last visited solutions. When the list is full, a
new movement is registered, replacing the older movement
kept on the list.

In the present work, a neighborhood with 20 solutions was
used and the algorithm chose the best non-tabu solution. The
proximity criterion [38] was used to compare two solutions.
A new solution is considered identical to the tabu solution if:
(1) each connectivity bit in the new solution is identical to
the corresponding connectivity bit in the tabu solution; and
(2) each connection weight in the new solution is within ±N
of the corresponding connection weight in the tabu solution.
The parameter N is a real number with a value of 0.001.
A maximum number of 100 iterations is allowed. The GL5

stop criterion was also employed.

III. RELATED WORK

A number of approaches in the literature have used the
integration of tabu search, simulated annealing and genetic
algorithms for specific applications. An integration of the
three heuristics was proposed by Mantawy et al. [27], Liu
et al. [25] and Jiang et al. [18]. In Li et al. [23], genetic
algorithms and simulated annealing were combined for en-
gineering the optimization of planning processes.

In artificial neural network training, simulated annealing,
tabu search and genetic algorithms were used separately in
several applications [15], [34], [38]. In most approaches,
the aim was to minimize the local convergence problem of
the backpropagation algorithm. Among the three approaches,
genetic algorithms are the most widely used in artificial
neural network optimization. In a number of works, there are
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simultaneously optimized configuration parameters and net-
work architecture [15]. Other authors use genetic algorithms
to simultaneously optimize parameters and initial values for
weight connections among processing units [20]. Garca-
Pedrajas et al. [10] proposed new crossover operators for
neural network training using genetic algorithms.

Lacerda [22] studied the application of genetic algorithms
for based radial artificial neural networks. Tsai et al. [42]
used a hybrid algorithm to feedforward artificial neural
network architecture and parameter design. Palmes et al.
[31] use a mutation-based algorithm to train MLP nodes.
Gepperth and Roth [11] used an evolutionary multi-objetive
process to optimize feedforward architectures. Works using
simulated annealing and tabu search for artificial neural
network optimization are scarcer. Some applications using
simulated annealing and backpropagation were implemented
for the training of a MLP with a fixed topology containing
two hidden layers. The problem addressed was the recogni-
tion of sonar responses [34].

The simulated annealing method was successfully used
in some global optimization problems, as can be seen in
Corana et al. [7] and Sexton et al. [39]. In Stepniewski
and Keane [40], simulated annealing and genetic algorithms
were used to optimize architectures of MLP neural networks.
Similar experiments were performed by Sexton et al. [39],
but the candidate solutions were represented by vectors of
real numbers containing all of the network weights. The same
experiments were performed by Sexton et al. [38] applying
the tabu search algorithm. Metin et al. [28] used simulated
annealing to optimize artificial neural network architectures
applied to expert diagnosis systems. In Hamm [14] simulated
annealing was used to optimize artificial neural networks
weights. Karaboga and Kalinli [19] proposed a parallelism-
based tabu search model to train recurrent artificial neural
networks with the aim of identifying dynamic systems.
Cannas et al. [5] used tabu search to optimize artificial neural
network architectures for time series prediction.

The integration of tabu search, simulated annealing and
backpropagation (TSa) was proposed by Yamazaki [1] for
MLP artificial neural network architecture and weight op-
timization. Lins [24] proposed a few modifications to the
Yamazaki model in order to increase the search space
and modify the cooling schedule process. Thus, the three
approaches are normally used to adjust connection values
among processing units in fixed topologies.

A. Integration of Simulated Annealing, Tabu Search and
Genetic Algorithms in a Constructive Manner

The simulated annealing method has the ability to escape
from local minima through the choice between accepting or
discarding a new solution that increases cost (uphill moves).
The tabu search method, in contrast, evaluates one group
of new solutions at each iteration (instead of only one
solution as in simulated annealing). This makes tabu search
faster, as it generally needs less iterations to converge. The
genetic algorithm evolution, in turn, involves a sequence

of iterations, where a group of solutions evolves through
selection processes and reproduction. This process, which
is more elaborate than the other algorithms, can result in
solutions of better quality.

These observations motivated the proposal of an opti-
mization methodology that combines the main advantages
of genetic algorithms, simulated annealing and tabu search
in an effort to avoid their limitations.

In general terms, the method works in the following
manner: the initial solution has a minimum valid architecture
size. A group of new solutions is generated at each iteration,
starting from the micro-evolution of the current population,
as in genetic algorithms. The cost of each solution is eval-
uated and the best solution is chosen, as in tabu search.
However, differently from a tabu search, this solution is not
always accepted. The acceptance criterion is the same used
in the simulated annealing algorithm - if the chosen solution
has a smaller cost than the current solution, it is accepted;
otherwise, it can either be accepted or not, depending on
a probability calculation. This probability is given by the
same expression used in the simulated annealing method.
Previously visited solutions are marked as tabu, as in a tabu
search. In the course of the search, the chromosome size
is increased in a constructive manner in order to find the
best solutions according the acceptance criterion. During the
optimization process, only the best solution found is stored,
that is, the final solution comes back through the method.

Algorithm 1 - Pseudo-code of the proposed algorithm
1. P0 ← initial population with K solutions sk

. and size sz

2. T0 ← initial temperature
3. Update SBSF with sk of the P0 (best solution
. found so far)
4. For i = 0 to Imax − 1
5. If i + 1 is not a multiple of IT

6. Ti+1 ← Ti

7. Else
8. Ti+1 ← new temperature
9. Increase the size of the population Pi

10. Pi ← Pz

10. If validation based stopping criteria
. are not satisfied
11. Stop global search execution
12. For j = 0 to gn

13. Generate a new population P ′ from Pi

14. Pi ← P ′

15. Choose the best solution sk from Pi

16. If f(s′) < f(sk)
17. sk+1 ← s′

18. Else
19. sk+1 ← s′ with probability e

f(s′)−f(sk)
Ti+1

20. If f(sk+1) < f(SBSF )
21. Update SBSF

22. Keep the topology contained in SBSF constant
. and use the weights as initial ones for
. training with the backpropagation algorithm

The pseudo-code of the proposed method is presented in
Algorithm 1. Let S be a group of solutions and f a real
cost function, the proposed algorithm searches the global
minimum s, such that f(s) ≤ f(s′), ∀ s′ ∈ S. The
process finishes after Imax iterations or if the stop criterion
based on the validation error is satisfied. The best found
solution SBSF (best so far) is returned. The cooling process
updates the temperature Ti of the iteration i to each IT
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algorithm iteration. At each iteration, a new population with
k solutions of size z is generated. A genetic micro-evolution
of gn generations is used to generate this population from
the current population. The micro-evolution combines the
best population solutions and, in the process, creates and
eliminates network connections, like a pruning process. The
initial solution is coded with the minimum valid network
topology and new hidden nodes are added following the
constructive process. It is of interest to remember that each
solution contains information on the topology and weights
of a MLP neural network. Moreover, at the end of the global
search (GaTSa), a hybrid training is used, combining the
proposed method with a local search technique. The local
search technique can be implemented, for instance, by the
well-known backpropagation algorithm.

B. Representation of Solutions

In this work, all MLP topologies have a single hidden layer
network, containing only connections between adjacent lay-
ers. The maximal topology must be defined, which contains
N1 input nodes, N2 hidden nodes and N3 output nodes.

The parameters N1 and N3 are problem-dependent
according to the data preprocessing and the number of input
and outputs features, but N2 must be defined in the Neural
Network implementation. Thus, the maximum number of
connections is given by:

Nmax ≡ N2(N1 +N3) (1)

Each solution is composed of two vectors: (a) the
connectivity vector C, containing a set of bits that represent
the network topology; and (b) the connection vector W ,
containing real numbers that represent the network weights.

s ≡ (C,W ) (2)

C ≡ (c1, c2, ..., cNmax), ci ∈ {0, 1}, i = 1, 2, ..., Nmax (3)

W ≡ (w1, w2, ..., wNmax), wi ∈ <, i = 1, 2, ..., Nmax (4)

where < is the set of real numbers.
Thus, the connection i is specified by two parameters: a

connectivity bit (ci), which is equal to 1 if the connection
exists in the network, and zero otherwise; and the connection
weight (wi), which is a real number. If the connectivity bit is
equal to zero, its associated weight is not considered, since
the connection does not exist in the network.

The initial solution s0 is a MLP network with the mini-
mum topology (i.e., ci = 1, i = 1, 2, ..., Nmax) and the initial
weights are randomly generated from a uniform distribution
in the interval [-1.0, +1.0].

C. Cost Function

Considering NC classes in the data set, the true class of
the pattern x from the training set Pt is defined as:

γ(x) ∈ {1, 2, ..., NC},∀x ∈ Pt (5)

In the experiment, the winner-takes-all classification rule
was used in which the number of output units (N3) is equal
to the number of classes (NC).

As ok(x) is the output value of the output unit k for the
pattern x, the class assigned to pattern x is defined as:

φ(x) = argmax ok(x),∀x ∈ Pt, k ∈ {1, 2, ..., N3} (6)

The network error for the pattern x is defined as follows:

ε(x) =
{

1, if φ(x) 6= γ(x),
0, if φ(x) = γ(x). (7)

Therefore, the classification error for the training set Pt,
which represents the percentage of incorrectly classified
training patterns, can be defined as:

E(Pt) =
100
#Pt

∑
xePt

ε(x) (8)

where #Pt is the number of patterns in the set Pt.
The percentage of connections used by the network is

given by:

ψ(C) =
100
Nmax

Nmax∑
i=1

ci (9)

In experiments, four ways of performing cost evaluation
were evaluated: (1) mean of the classification error and the
percentage of connections; (2) weight decay mechanism in-
spired by weight decay backpropagation implementation; (3)
multi-objective optimization strategy in the genetic operators;
and (4) a combination of the weight decay mechanism and
multi-objective optimization strategy. The algorithms in all
approaches seek to minimize both network performance and
complexity. Only valid networks (i.e., networks with at least
one unit in the hidden layer) were considered.

1) Average method: The original cost function proposed
for GaTSa is the average method, given by the mean of the
classification error for the training set and the percentage
of connections used by the network. For classification
problems, the cost f(s) of the solution s is:

f(s) =
1
2
(E(Pt) + ψ(C)) (10)

For prediction problems, the cost f(s) of the solution s
is given by the mean of the squared error percentage (SEP)
for the training set and the percentage of connections used
by the network:

f(s) =
1
2
(SEP (Pt) + ψ(C)) (11)

The SEP error is given by:

SEP = 100
omax − omin

Nc#Pt

#Pt∑
p=1

Nc∑
i=1

(φ(x)pi − γ(x)pi)2 (12)

where omin and omax are the minimum and maximum
values of output coefficients in the problem representation
(assuming these are the same for all output nodes).
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2) Weight decay: Weight decay was initially suggested
as an implementation to improve the Backpropagation
algorithm (BP) for the preference bias of a robust neural
network that is insensitive to noise [16], [43]. The weight
decay mechanism performs in a network architecture
differentially toward zeroes by reinforcing large weights
and weakening small weights connections. As small weights
can be used by the network to code noise patterns, this
weight decay mechanism is considered especially important
in noisy data. The BP algorithm uses the gradient descent
method to drive the learning process. The objective is to
minimize the network error function:

f(s) =
1
2

∑
i

(Ti −Oi)2 (13)

where Ti is the target value and Oi is the output from the
network. The method is implemented by adding a bias term
B to the original cost function Er0:

f(s) = f(s)0 +
1
2
µB (14)

where µ is the parameter for the importance of the bias term
B. The bias term can represent different results regarding the
network weights. A bias choice is presented in equation 15.
In this equation, it is possible to decay small weights more
rapidly than large weights.

B =
∑
ij

W 2
ij/(1 +W 2

ij) (15)

where Wij is the weight connection from node j to node i.
The weight decay mechanism is used in the GaTSa cost

function to eliminate solutions with small weights that can
be used by the neural network to code noise patterns. The
GaTSa cost function is presented in equation 16.

f(s) =
1
2

∑
i

E(Pt)+
1
2
ψ(C)+

1
2
µ

∑
ij

W 2
ij/(1+W 2

ij) (16)

3) Multi-objective optimization: Multi-objective
optimization is the search for simultaneously minimizing
the n components fk, k = 1, ..., n, of a vector function f of
a variable x in a universe u, where,

f(x) = (f1(x), ..., fn(x)) (17)

The problem usually has no unique, global solution, but
has a set of equally efficient or non-inferior alternative
solutions, known as the Pareto-optimal set [9]. Pareto-
optimal solutions consist of all solutions for which
the corresponding objective cannot be improved in any
dimension without degradation in another. Mathematically,
the concept of Pareto optimality is: considering no loss of
generality, a minimization problem and two solutions a, b ∈
X . Thus, a ≺ b (a to dominate b) if:

∀i ∈ {1, 2, ..., n} : fi(a) ≤ fi(b) ∧
∃j ∈ {1, 2, ..., n} : fi(a) < fi(b) (18)

In the present work, the multi-objective strategy is used in
genetic operators to evolve the population of solutions. As
opposed to the objective problem, the ranking of a population

in the multi-objetive case is not unique. This is due to
concepts such as dominance and preferability, which define
partial rather than total orders. In experiments, ranking is
obtained in the same way as in Fonseca and Fleming (1998).
Thus, the rank of the individual xi at generation g is the
number of individuals in the current population that are
preferable to it. This ensures that all preferred individuals
in the current population are assigned a zero rank. The
best individual is the individual with the best rank. In the
case of multiple individuals with the same rank, the best
individual between them is the individual with the lesser
classification error. In the population, the normalized rank
r(g)/N constitutes an estimate of the fraction of the search
space preferable to each individual considered.

D. Insertion of new hidden nodes
The constructive process is used to add new hidden nodes

in the topology. The search process starts with the probability
of adding new, larger nodes, but in order to perform a
better error surface exploration, the addition of new nodes is
controlled. New nodes are added in the topology following a
rule. According to this rule, the new probability of a hidden
node being added is equal to the current node multiplied
by a factor (ε), which is smaller than, but close to 1. The
initial probability λε and the factor ε must be defined in
the implementation, as well as Iλ (number of iterations
between two consecutive probability variations) and Imax

(maximum number of iterations). Thus, the probability of
the insertion of new hidden nodes λi at iteration i is given by:

λi ≡
{
ελi−1, if i = kIλ, k = 1, 2, ..., Imax

Iλ
,

λi, otherwise.
(19)

E. Generation Mechanism for the New Solutions
The initial solution is randomly generated with N1

and N3 being problem-dependent values and N2 = µ,
µ = 1, 2, ..., N3. The initial population is defined with a size
of 10 chromosomes. From the current solution s = (C,W ),
the new solution s′ = (C ′,W ′) is generated by the genetic
micro-evolution of gn generations. The chromosomes
are classified by Rank Based Fitness Scaling [3]. Parent
selection for the next generation is accomplished in a
probabilistic manner, using Universal Stochastic Sampling
[3]. Elitism was not used and the crossover operator
Uniform Crossover [41] was used for the combination of
the parent chromosomes, with a probability of 80%. The
crossover operation is performed by combining the parts
of the parent chromosomes that have the same length, as
in the sample below. The mutation operator used was the
Gaussian Mutation [39], with a probability of 10%.

Uniform Crossover︷ ︸︸ ︷
Parent A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Parent B 0 0 0 0 0 0 0 0 0 0 0

Child A 1 1 1 0 0 1 0 0 1 0 0 1 1 1 1
Child B 0 1 0 1 1 1 0 0 1 1 0
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F. Cooling Schedule and Stopping Criteria

The cooling strategy selected is the geometric cooling
rule. According to this rule, the new temperature is equal
to the current temperature multiplied by a temperature
factor (r), which is smaller than, but close to 1. The initial
temperature T0 and the temperature factor r must be defined
in the implementation, as well as IT (number of iterations
between two consecutive temperature updates) e Imax

(maximum number of iterations). Thus, temperature Ti at
iteration i is given by:

Ti ≡
{
rTi−1, if i = kIT , k = 1, 2, ..., Imax

IT
,

Ti, otherwise.
(20)

The optimization process stops if: (1) the GL5 criterion
defined in Proben1 [35] is met (based on the classification
error or SEP of the validation set); or (2) the maximum
number of iterations is reached. For the implementation of
the GL5 criterion, the classification error or SEP for the
validation set is evaluated at each IT iterations.

The GL5 criterion is a good approach for avoiding
overfitting to the training set. The classification error
for the validation set Pv is given by E(Pv), which is
calculated according to Equation 8. Thus, denoting by
V (k) the classification error E(Pv) at iteration i = kIT ,
k = 1, 2, ..., Imax

IT
, the generalization loss parameter

(GL) is defined as the relative increase in the validation
error over the minimum-so-far. The GL5 criterion stops the
execution when the parameter GL becomes higher than 10%.

GL(k) ≡
(

V (k)
minj≤k V (j)

− 1
)

(21)

IV. EXPERIMENTS

Four classification problems were used in experiments:
(1) The odor recognition problem in artificial noses [8]; (2)
Diabetes diagnoses in Pima indians [4]; (3) Fisher’s Iris data
set [2]; (4) Thyroid dysfunction data set [36]; aAnd one
prediction problem: (1) Mackey-Glass time series [26].

A. Artificial nose data set

In this problem, the aim is to classify odors from three
different vintages (1995, 1996 and 1997) of the same wine
(Almadn, Brazil). A prototype of an artificial nose was used
to acquire the data. The data set has 6 inputs, 3 outputs
and 1800 examples. Further details on the data set and the
artificial nose prototype can be found in [8].

B. Diabetes data set

This data set contains diabetes diagnoses in Pima indians
based on personal data and results from medical examina-
tions. The data set has 8 inputs, 2 outputs and 768 examples.
There are no absent values, but there are non-representative
values. The data set was obtained from [4].

C. Iris data set

Fisher’s Iris data set contains 150 random samples of
flowers from the iris species setosa, versicolor and virginica
collected by [2]. For each species, there are 50 observations
regarding sepal length, sepal width, petal length and petal
width in centimeters. This dataset was obtained from [4].

D. Thyroid data set

This data set contains information related to thyroid dys-
function. The problem is to determine whether a patient has
a normally functioning thyroid, an under-functioning thyroid
(hypothyroid) or an over-active thyroid (hyperthyroid). There
are 7200 cases in the data set, with 21 attributes used to
determine to which of the three classes the patient belongs.
This dataset was obtained from [4].

E. Mackey Glass data set

In experiments, a neural network was used to predict
points of the time series that result from the Mackey-Glass
equation integration [26], given by:

dx

dt
≡ −bx(t) + a

x(t− τ)
1 + x10(t− τ)

(22)

This is a time series with chaotic behavior, recognized as
a reference in the study of the learning and generalization
capacity of different architectures of neural networks and
neuro-fuzzy systems. To obtain the time series value at
integer points, the fourth order Runge-Kutta method was
applied to generate 1000 data points. The time step used
assumes the values x(0) = 1.2, τ = 17 and x(t) = 0
for t < 0. The neural network training was performed with
500 data points (t = 118 to 618), using 250 data points for
validation (t = 618 to 868) by giving 4 inputs (t−18, t−12,
t− 6 and t) and we attempted to predict the output (t+ 6).
The neural network were tested with another 250 data points
(t = 867 to 1.118).

In the classification problems, the data for training and
testing the artificial neural network were divided as follows:
50% of the patterns from each class were assigned randomly
to the training set, 25% were assigned to the validation set,
and 25% were reserved to test the network, as suggested by
Proben1 [35]. All network units implemented the hyperbolic
tangent activation function. The patterns were normalized to
the range [-1, +1].

In order to perform a better comparison among the meth-
ods at the end of the search process, the MLP architecture
optimized by all methods is kept constant and the weights are
taken as the initial ones for training with the backpropagation
algorithm using the same training parameters in order to
perform a fine-tuned local search, as performed in the GaTSa
method.
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V. RESULTS AND DISCUSSION

A. MLP Experiments

Apart from the GaTSa method, the other investigated opti-
mization techniques require a good initial network topology
(maximum topology) to obtain success in neural network
architecture optimization. To define this topology, experi-
ments were performed with different architecture topologies
on each one of the data sets. For all data set experiments
in each topology, 10 runs were performed, with 30 distinct
random weight initializations. Table I presents the Squared
Error Percentage (SEP) and the classification error of the
test set obtained in the training of a fully connected MLP
Neural Network by using a gradient descent with momentum
backpropagation. The learning rate was set at 0.001 and the
momentum term at 0.7.

TABLE I
RESULTS FOR MLP NEURAL NETWORKS

Artificial Mackey
Nose Iris Thyroid Diabetes Glass

N2 Mean test classification error (%) SEP
02 33.6296 19.0598 10.2000 - 4.2146
03 - 18.2051 - - -
04 17.8123 7.9487 9.2704 27.8819 1.4357
05 - 6.8376 - - -
06 14.1185 10.6838 - 30.2951 1.8273
07 - 8.9744 - - -
08 11.1136 - 13.1519 28.4201 1.9045
10 6.3086 - 7.3800 27.0833 1.5804
12 8.8667 - 7.3804 27.3264 2.3831
14 11.9704 - 7.4824 28.4549 2.7860
16 - - 10.2537 - -

The best performance of MLP in the Artificial Nose data
set was the topology using 10 hidden units (which contains
90 connections), with a mean classification error of 6.31%. In
the Iris data set, the best results were obtained by the topol-
ogy with 5 hidden units (which contains 32 connections),
with a mean classification error of 6.84%. In the Thyroid
data set, the smallest mean classification error (7.38%) was
obtained by the topology with 10 hidden units (using 240 unit
connections). The fully connected MLP presented the best
performance in the Diabetes data set using 10 hidden units
(which contains 72 connections), with a mean classification
error of 27.08%. In the prediction problem using the Mackey-
Glass data set, the best performance of the MLP was found
in the topology using 4 hidden units (which contains 20
connections), with a squared error percentage of 1.43.

B. Optimization Methodologies Experiments

1) GaTSa Fixed Architecture Experiments: Table II
presents the average performance of each investigated opti-
mization technique starting the search with the same network
architecture as in the Artificial Nose data set. These results
were obtained for each technique in the optimization of
the number of connections and weight connection values of
an MLP artificial neural network. The parameters evaluated
were: (1) Squared Error Percentage (SEP) and the classifi-
cation error (Class) of the training, validation and test sets;

(2) algorithm iteration number; (3) artificial neural network
connection number; and (4) the temperature value. The
following table displays the average results of 10 simulations.
Each simulation contained 30 different runs of the algorithm.

The technique that combines the heuristics of tabu search,
simulated annealing and genetic algorithms obtained the best
performance. This technique was better without using the
local search heuristic to optimize the artificial neural net-
work connection values. The average classification error was
2.87%, with an average of 8 connections from 36 possible
connections in a fully connected neural network. Using a
fully connected network, the local optimization technique
backpropagation obtained an average error of 6.78%.

Figure 1 presentes graphs comparing the performance of
the investigated techniques. The proposed technique obtained
the best results regarding the classification error, final net-
work connection number and the number of iterations needed
for architecture optimization.

TABLE II
OPTIMIZATION TECHNIQUE PERFORMANCE

Training Validation Test
Technique SEP Class SEP Class SEP Class Iterat. Connec.

TS 18.74 5.44 18.86 5.88 18.75 5.3805 51 11.42
SA 19.65 6.91 19.76 7.47 19.65 6.9331 715 11.77
GA 21.66 15.88 21.73 16.52 21.66 15.9240 315 16.64
GaTSa 18.69 3.58 18.76 3.81 18.69 3.5664 46 8.33
GaTSa + BP 4.78 - 2.41 - 2.14 2.8684 86 8.33
BP 6.30 - 3.15 - 2.84 6.7854 90 36

Fig. 1. Topology optimization of the optimization techniques.

2) GaTSa Variable Architecture Experiments: For SA, TS,
GA and TSa, the maximal topology in the Artificial Nose
data set contains six input units, ten hidden units and three
output units (N1 = 6, N2 = 10 and N3 = 3, the maximum
number of connections (Nmax) is equal to 90). In the Iris
data set, the maximal topology contains N1 = 4, N2 = 5,
N3 = 3 and Nmax = 32. For the Thyroid data set, the
maximal topology contains N1 = 21, N2 = 10, N3 = 3
and Nmax = 240. In the Diabetes data set, the maximal
topology contains N1 = 8, N2 = 10, N3 = 2 and Nmax =
100. In the Mackey-Glass experiments, the maximal topology
contains N1 = 4, N2 = 4, N3 = 1 and Nmax = 50. In all
Neural Network topologies, N1 and N3 values are problem-
dependent and N2 was obtained in experiments from the
previous section. For GaTSa, the same values for N1 and
N3 are used, but the value of N2 is optimized, together
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with the network weights and connections, in a constructive
manner.

TABLE III
OPTIMIZATION TECHNIQUE PERFORMANCE

SA TS GA TSa GaTSa
Class. (%) 3.3689 3.2015 13.3884 1.4244 0.7914

Artificial Input 5.9400 5.9667 4.9667 5.8800 5.2267
Nose Hidden 7.8067 8.0667 1.9333 7.0567 4.4867

Connec. (%) 39.3000 40.7036 31.3556 32.3370 36.2254
Class. (%) 12.6496 12.4786 2.5641 4.6154 5.2564

Iris Input 2.8500 2.8767 2.4333 2.7100 3.3600
Hidden 2.7567 3.4867 1.5667 2.6567 4.1333

Connec. (%) 26.0728 25.9375 22.9792 24.2603 31.8538
Class. (%) 7.3813 7.3406 7.2850 7.3322 7.1509

Thyroid Input 20.7700 20.7700 12.8333 20.3700 7.1233
Hidden 7.2267 7.4667 2.4000 6.3900 2.0833

Connec. (%) 34.8875 35.8916 14.3902 29.8111 12.6400
Class. (%) 27.1562 27.4045 25.9948 25.8767 27.0615

Diabetes Input 7.7600 7.7800 4.9667 7.5633 1.5100
Hidden 5.2700 5.3700 1.9333 4.5300 1.2000

Connec. (%) 30.3833 30.8167 18.7033 25.5067 9.0975
SEP Test 2.0172 0.8670 0.6542 0.6847 0.72164

Mackey Input 3.6167 3.7967 2.2667 3.4567 1.0533
Glass Hidden 1.9000 2.2700 1.3667 1.8933 1.0100

Connec. (%) 19.2600 24.1400 15.9533 17.1334 11.4923

Table III displays the average performance of each opti-
mization technique investigated. These results were obtained
for each technique in the optimization of the number of con-
nections and weight connection values of an MLP artificial
neural network. The parameters evaluated were: (1) Squared
Error Percentage (SEP) and the classification error (Class) of
the test set; (2) Mean number of input processing units; (3)
Mean number of hidden processing units; and (4) Percentage
of network connections. Table III displays the average results
of 10 simulations. Each simulation contains 30 different runs
of the algorithms.

For all data sets, the neural networks obtain a lower
classification error than those obtained by MLP networks
without topology optimization (Table I) and the mean number
of connections is much lower than the maximum number
allowed. In all data sets, the best optimization performance
was obtained by the proposed methodology. For the Artificial
Nose data set, the classification error was around 0.79%
(the fully connected MLP obtained a classification error of
6.30%) and the mean percentage number of connections
obtained 36% of the maximum number allowed. In the Iris
data set, the best classification error was of 5.26% (6.84%
in a fully connected MLP) and the mean percentage of
connections was 31.85%. In the Thyroid data set, the mean
classification error was 7.15% (7.38% in a fully connected
MLP) and the mean percentage of connections was 12.64%
of a fully connected network. For the Diabetes data set, the
mean classification error was 27.06% (the fully connected
MLP obtained an error of 27.08%) and the mean percentage
of connections was 9.10%. For the prediction problem of the
Mackey-Glass data set, the obtained squared error percentage
was 0.72 (1.43 in a fully connected neural network), using an
11.49% mean percentage of connections in a fully connected
MLP.

Genetic algorithms, tabu search and simulated annealing
methods incorporate domain specific knowledge in their
search heuristics. They also tolerate some elements of non-
determinism, which helps the search escape from local
minima. They rely on the use of a suitable cost function that
provides feedback to the algorithm as the search progresses.
The proposed integration combines these advantages in order
to use a larger amount of information in the problem domain
and apply this information to practically all search phases.
The initial solution is coded with a minimum valid network
topology and hidden nodes are inserted in the network
topology during algorithm execution. This process is similar
to constructive neural network training and allows better
topology selection. Moreover, the proposed methodology has
two well-defined stages: a global search phase, which makes
use of the capacity for generating new solutions from the
genetic algorithms, the cooling process and cost function of
the simulated annealing as well as the memory characteristics
of the tabu search technique; and a local search phase, which
makes use of characteristics such as gradient descending for
a more precise solution adjustment. These characteristics can
obtain better solutions to the problems investigated, with
a short search time, low computacional cost and minimal
investigated search space.

The better search space exploration of the proposed
methodology can be verified in the experiment analysis.
The proposed methodology generated solutions with a low-
complexity topology. In order to find suitable solutions, the
remaining search techniques require the definition of a good
initial neural network topology. They then eliminate network
connections through pruning. The proposed methodology is
able to optimize the network size in the search automatically.

For the proposed methodology, the mean number of con-
nections was lower than all remaining approaches. It can be
seen that the method is able to perform better exploration
in the topology search space due to the combination of
the advantages of GA, SA and TS in order to generate
MLP networks with a small number of connections and
high classification performance. In the search process, irrel-
evant connections are eliminated from the network topology
through pruning. The integration of SA and TS have the same
characteristics, but the use of GA operators incorporate more
domain-specific knowledge in the search process.

All the approaches implemented in the present work are
able to eliminate input units in MLP topologies. Therefore,
it is important to verify which input features are discarded
and which are more relevant in the neural network results. In
experiments, the proposed methodology performed a better
exploration in the architecture search space than the remain-
ing approaches, generating a larger number of topologies,
which do not need all these inputs. The inputs with the
highest usage frequency have the greatest importance in the
classification or prediction task. This information can be used
in real applications to reduce the database complexity and
improve the performance of the classifier. Figure 2 displays
the mean results of the MLP topology optimization in the
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Fig. 2. Topology optimization of the optimization techniques.

five data sets by all the techniques investigated.
A paired-difference t test with a 95% confidence level [30]

was applied in order to confirm the statistical significance of
these conclusions. Statistically, the GaTSa method achieves
better optimization of the architecture input nodes. Despite
its finding topologies with a smaller number of hidden
nodes, all methods were statistically equivalent regarding the
optimization of these units. This is an indication that the
constructive strategy works in the definition of the number
of hidden nodes. The MLP performance obtained from the
optimized neural networks was statistically equivalent for the
Thyroid, Diabetes and Mackey Glass data sets. The GaTSa
method obtained better results in the Artificial Nose data set,
whereas GA had the best performance in the Iris data set.

3) The Cost Function Influence: Table IV displays the
average results from 10 simulations. Each simulation con-
tains 30 different runs of the algorithms. In this table, the
cost functions evaluated are: the Average Method (Aver-
age), Weight-decay (WD), Multi-objective (MO) and Multi-
objective plus Weight-decay (MO+WD). The parameters
evaluated were: (1) Squared Error Percentage (SEP) and
the classification error (Class) of the test set; (2) Mean
number of input processing units; (3) Mean number of hidden
processing units; and (4) Percentage of network connections.

In the Artificial Nose data set, the best classification results
were obtained by the multi-objective approach and the best
architecture optimization was found by the weight-decay
method. In the Iris data set, the combination of weight-decay
and genetic operators using multi-objective optimization pre-
sented the best performance. The weight-decay cost function
presented the best optimization performance in the Thyroid,
Diabetes and Mackey-Glass data sets.

The better performance of weight-decay demonstrates the
capacity of this method for restricting the type of function-
ality that the network can produce by favoring networks that
produce smoother functions. Smooth output functions are
generally more likely to represent the underlying functions
of real-world data. Moreover, the use of weight-decay can
modify the error surface of a given problem in such a way

TABLE IV
EXPERIMENT RESULTS

Average WD MO MO+WD
Class. (%) 11.8595 7.5462 7.0407 12.6237

Artificial Input 5.9967 5.9233 5.9967 5.9867
Nose Hidden 9.1533 7.5600 8.4833 8.6200

Connec. 50.2400 33.2433 49.6500 42.0467
Class. (%) 6.1197 6.9316 4.2735 3.9829

Iris Input 3.5667 3.8167 3.8567 3.1467
Hidden 3.7967 4.4367 3.5500 3.0767
Connec. 13.3867 18.1167 15.8600 9.8000
Class. (%) 7.1024 6.8196 6.9270 6.8609

Thyroid Input 20.6733 20.7800 20.9800 20.9767
Hidden 7.1833 7.8067 8.5233 8.5167
Connec. 83.8800 91.6700 114.6667 115.0933
Class. (%) 28.4583 25.7552 28.2639 25.8542

Diabetes Input 7.7367 7.7767 7.9700 7.9667
Hidden 5.6100 5.2000 4.4133 6.3100
Connec. 31.8433 31.7433 43.2700 42.0367
SEP Test 0.6215 0.2721 0.5745 0.6293

Mackey Input 1.1067 1.0533 2.0933 1.7867
Glass Hidden 1.0000 1.0067 1.0100 1.1800

Connec. 2.1533 2.0833 3.6300 3.3233

as to reduce the growth of large update values.
The use of multi-objective optimization in genetic op-

erators presented interesting results in some data sets, but
exhibited poor performance in most. The main problem with
this approach is the construction of the Pareto ranking. There
is no efficient algorithm for checking non-dominance in a
set of feasible solutions. Traditional algorithms have serious
performance degradation as the size of the population and
the number of objectives increases [6]. The multi-objective
approach presented some outlier results in experiments.
These values hampered performance, and such problems also
hampered the performance of the combination of weight-
decay and multi-objective optimization. A paired-difference
t test with a 95% confidence level [30] was applied in order
to confirm the statistical significance of these conclusions.

The best problem search space exploration was with
the use of the weight-decay cost function in the experi-
ment analysis. This method generated solutions with low-
complexity topology and a low number of errors. The supe-
riority of the method was statistically verified in the Mackey-
Glass, Diabetes and Artificial Nose data sets.

VI. CONCLUSIONS

The present work introduced a methodology that integrates
the heuristics of tabu search, simulated annealing, genetic
algorithms and backpropagation. This method uses concepts
from search optimization, pruning and constructive training.
The proposed methodology combines strategies of global
and local searches, presenting excellent results regarding the
investigated solution space, computacional cost and search
time. It is important to remember that the problem investi-
gated involves a critical subject, the stability versus plasticity
relation in the training of artificial neural networks.

In the technique proposed, four cost functions were eval-
uated: the average of the classification error and the per-
centage of connections used by the network; the weight-
decay mechanism; multi-objective optimization strategy; and
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the combination of the weight-decay mechanism and multi-
objective optimization strategy. The best performance was
obtained by the weight-decay approach in the benchmarks
investigated.

In some of the literature, the multi-objective approach
clearly outperforms a pure random search strategy that
randomly generates new points in the search space without
exploiting similarities between solutions. The use of this
approach in the proposed methodology needs a more accurate
investigation in future work.

Considering the data sets used in this work, the method-
ology was able to generate MLP topologies automatically,
with much fewer connections than the maximum number
allowed. The results also generate interesting conclusions on
the importance of each input feature in classification and
prediction tasks.

Future investigations should consider other fitness func-
tions and mechanisms for inserting new hidden nodes in the
neural network architecture during the search process.
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