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Abstract
This work presents results of the use of a wavelet filter for noise reduction and data compression of signals generated by

artificial nose sensors. To verify the performance of the wavelet analysis in the treatment of odor patterns, we compare two

widely used artificial nose classifiers, multi-layer perceptron neural network and time delay neural network in the analysis of

signals generated by eight conducting polymer sensors exposed to gases derived from the petroliferous industry.
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1. Introduction

For a number of decades, scientists have recog-

nized the power of incorporating biological principles

into the design of artificial devices or systems. One

contemporary example of this approach is the

development of artificial noses [11]. Artificial noses

are systems developed for the automatic detection and

classification of odors, vapors and gases. These

electronic devices have two main components, the

sensor system and the automated pattern recognition

system. In the artificial nose, the odor recognition

process begins in the sensor system, which is

responsible for the capturing or measurement of the
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odorant stimulus through the sensitivity of its sensors.

The sensor system can be made up of either a set of

distinct sensors, where each element measures a

different property of the odorant composition or a

single device that produces a set of measurements and/

or characteristics. Each odorant substance is presented

to the sensor system, which generates a pattern of

resistance values that characterize the odor. This

pattern is presented to the recognition system, which,

in turn, classifies the odorant stimulus.

In this process, data preprocessing is an important

step before classification can be performed. The phase

is important because a number of different problems

can compromise the performance of sensor system.

These include: (1) the odor signal measurer can

present disturbance or noise; (2) the data acquisition

process tends to be unstable (e.g. the sensors present

variations during the acquisition phase, which can be
.
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transformed into ‘outliers’ in the database); and (3)

the propagation of the signal through the commu-

nication channel between the sensor and pattern

recognition systems can be contaminated by inter-

ference signals coming from the surrounding envir-

onment. The treatment of odor patterns is necessary

before they are presented to the pattern recognition

system to compensate for the concentration drifts in

the response arrays, eliminate noise and normalize

data.

Considering the odorant signals obtained by the

artificial nose are signals acquired by a sensor in a

particular time space, it seems natural that techniques

used for digital signal processing are the appropriate

tools for the treatment of these data. For this purpose,

the wavelet transform [6] was used as the preproces-

sing method for the odorant signals.

The wavelet transform is a time-scale representa-

tion that has been used successfully in a broad range of

applications. Its main feature is its time–frequency

analysis capability using a single transformation,

which makes it useful in applications such as signal

de-noising, wave detection, data compression, feature

extraction, etc. [2,19,27] and [12]. This work proposes

the utilization of the wavelet transform for preproces-

sing odor patterns as a filter for noise reduction and

compressing the signal generated by the sensor

system. The results of this wavelet filter are compared

in two widely used artificial nose classifiers, the multi-

layer perceptron neural network (MLP) [23] and the

time delay neural network (TDNN) [15]. The

remainder of this paper is divided into five sections.

Section 2 presents the wavelet method and the

preprocessing results. Section 3 shows details of the

experiments. Section 4 describes the strategy used for

performance assessment. In Section 5, the results of

the experiments are presented. Section 6 contains a

summary and conclusions.
2. Wavelet transform

The wavelet transform is a signal processing

technique that represents a transient or non-stationary

signal in terms of time and scale distribution. Due to

its light computational complexity, the wavelet

transform is an excellent tool for on-line data

compression, analysis and de-noising.
Unlike more traditional filtering methodologies,

wavelet transforms have the ability to preserve the

temporal locality of sharp transitions within time

domain signals. This property is important in a fault

detection context, as sharp transitions are likely

indicators of fault conditions and, hence, any utilized

filtering methodology should not disturb the location

of their occurrence.

The basic idea behind signal processing with

wavelets is that, as in Fourier analysis [3], a signal can

be decomposed into its component elements through

the use of basis functions. In Fourier analysis, the basis

functions are sine and cosine waves. In the case of

wavelet analysis, the basis functions consist of the

wavelet scale function, as well as scaled and shifted

versions of the mother wavelet function. The scale

function in wavelets is used to capture the general (or

low detail) information on the signal, whereas

different mother wavelet scales are used to capture

the details of the signal, with each successive scale

capturing (describing) finer and finer levels of detail.

Fig. 1 illustrates the process where the resolution of

the time-domain signal x(k), k = 1, . . ., N, is changed

by low/high pass filtering operations and the scale is

changed by downsampling/upsampling operations.

The parameters of the wavelet transform are the type

of the wavelet filter used and the number of

decomposition levels (l = 1, . . ., L).

At low scale levels, time resolution is traded for

better frequency resolution, thereby allowing low

frequency events to be analyzed very accurately with

respect to their frequency content, but not with respect

to their location in time. At high scale levels,

frequency resolution is traded for time resolution;

the location of high frequency events is accurately

marked in time, but their actual frequency content is

poorly resolved.

The wavelet transform can be given by:

d0;0 ¼ hgðtÞ;fðtÞi (1)

d j;k ¼ hgðtÞ;c j;kðtÞi;

j ¼ 1; . . . ;N; k ¼ 1; . . . ; 2 j�1
(2)

where dj, k are the wavelet coefficients, g(t) is the

signal to be transformed, f(t) the scale function,

cj, k(t) the scaled and shifted version of the mother



C. Zanchettin, T.B. Ludermir / Applied Soft Computing 7 (2007) 246–256248

Fig. 1. (A) Forward and (B) inverse wavelet transform.
wavelet function c(t) given by:

c j;kðtÞ ¼ 2 j=2cð2 jt � kÞ (3)

and, N is the number of wavelet scales over which the

wavelet transform is generated. Following this nota-

tion, the inverse wavelet transform can therefore be

given by:

gðtÞ ¼ d0;0fðtÞ þ
X

j;k

d j;kc j;kðtÞ (4)

2.1. Compressing data and de-noising processing

A possible application of the discrete wavelet

analysis is to remove undesired components (noise)

from the signal through a de-noising approach.

Basically, the procedure includes decomposing the

signal into the detail components described above,

identifying the noise components, and reconstructing

the signal without these components.

The wavelet de-noising approach is based on the

observation that random errors in a signal are present

in all coefficients, while deterministic changes get

captured in a small number of relatively large

coefficients. As a result, a non-linear thresholding

(shrinking) function in the wavelet domain will tend to

keep a few larger coefficients representing the

underlying signal, while the noise coefficients will

tend to reduce to zero. The advantage of the wavelet

de-noising method over classical linear filtering

methods is that it attempts to remove whatever noise

is present and retain whatever signal is present

regardless of the frequency content of the signal.

The compression features of a given wavelet basis

are primarily linked to the relative scarceness of the

wavelet domain representation for the signal. The

notion behind compression is based on the concept
that a regular signal component can be accurately

approximated using the following elements: a small

number of approximation coefficients (at a suitably

chosen level) and some of the detail coefficients. For

the de-noising and compression process, we consider

the following model of a discrete noisy signal:

yðnÞ ¼ f ðnÞ þ seðnÞ n ¼ 1; . . . ;N (5)

The vector y represents a noisy signal and f is an

unknown, deterministic signal, where it is assumed

that e is Gaussian white noise N(ms2) = M(0, 1). For

filtering out white noise, we use a method proposed by

Donoho [8].

The method can be carried out through the

following three steps:
(1) T
ransform the signal f(k) corrupted by noise into

wavelet domain, and get a group of wavelets

coefficients w j;k.
(2) D
isposal w j;k using soft- or hard-thresholding

function, thereby suppressing those coefficients

smaller than a certain amplitude, then obtain a

group of estimate coefficients dw j;k.
(3) R
econtruct signal using dw j;k, then obtained the

estimated signal bfk, which is the de-noised signal.
The choice of the mother wavelet plays a significant

role in de-noising and data compression process.

Wavelet analysis is a measure of similarity between

the basis functions and the signal itself. Here the

similarity is in the sense of having similar frequency

content. Therefore, in this case, the mother wavelets

must be highly localized in time and frequency.

In the present work, we are interested in detecting

low amplitude, short duration, fast decaying and

oscillating types of signals. One of the most popular

orthonormal wavelet is Daubechies’ wavelet, which

has been shown to meet the requirements. Daube-



C. Zanchettin, T.B. Ludermir / Applied Soft Computing 7 (2007) 246–256 249

Fig. 2. Tree of decomposition used to de-noise and compress the odor signal.
chies’ wavelet with various filter coefficients was

studied. It was been found that larger filter coefficients

generate more localized wavelets in both time and

frequency dimensions.

In experiments, we employed the order three

wavelet transform of the Daubechies’ family [5]. The

wavelet filter was implemented using the wavelets

toolbox [18] in the Matlab 6.5.1 simulation software.

The wavelet filter is implemented through the multi-

resolution pyramid decomposition technique [16]. In

principle, signal s is decomposed into two sets: a dm

set of wavelet coefficients (also known as ‘details’)

and an am set of coefficients known as ‘approxima-

tion’, using filters g and h for the decomposition,

respectively. Digital filter g is a pass band filter. Thus,

the filtered d1 signal is a detailed version of the s signal

and possesses high frequency components in compar-

ison to the a1 signal approach, which uses a pass low

filter. The am set later received a new decomposition to

generate the am + 1 and dm + 1 coefficients, and so on.

The decomposition of the odorant signal s can be

described as:

s ¼ sþ n ¼ am þ
Xm

i¼1

di (6)
where m is the greatest decomposition level and n the

noise.

The data acquisition method in the artificial nose

induces low-frequency noises. The signals free of

noise were found in the component of lowest

frequency of a tree with three decomposition levels

(a3). Fig. 2 displays the decomposition tree of the

analyzed signal. From this decomposition, the original

odor signal was reconstructed from the third decom-

position level without the noise components that could

hinder the classifier performance.
3. Experiments

This study sought to classify five gases from the

petroliferous industry (Petro-bras, Brazil). A proto-

type of an artificial nose was used to acquire the data

[24]. Sensor systems are often built with polypyrrol-

based gas sensors. Some advantages of using this kind

of sensor include [21]: (1) rapid absorption kinetics at

room temperature; (2) low power consumption (in

terms of microwatts), as no heating element is

required; (3) resistance to poisoning; and (4) the

possibility of building sensors tailored to particular

classes of chemical compounds.
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The prototype was composed of eight distinct gas

sensors built by electro-chemical deposition of

polypyrrol using different types of dopants. Tests

were carried out with the petroleum gas derivates

methane, ethane, propane and butane. Sensitivity was

verified with carbon monoxide gas.

The data sets were obtained with nine data

acquisitions for each of the gases by recording the

resistance value of each sensor every twenty seconds

over a period of 40 min. In the acquisition phase, each

sensor obtained 120 resistance values for each gas. A

pattern is a vector of eight elements representing the

resistance values recorded by the sensor array. Thus,

each acquisition contains 600 patterns formed by 960

values for each of the gases.

3.1. Multi-layer perceptron neural networks

Artificial neural networks have been widely applied

to pattern recognition systems of artificial noses [4].

This approach has many advantages, such as the

ability to handle non-linear signals from the sensor

array, adaptability, fault tolerance, noise tolerance and

inherent paralelism generating a high speed of

operation subsequent to training. Among the several

existing models of artificial neural networks (ANNs),

the MLP is the most widely used, partly for its ease of

implementation, and partly for its simplicity. These

characteristics also make the MLP one of the most

employed ANNs for odor classification in artificial

noses [28,7,11,14,25] and [24].

The data set for training and testing the network are

divided into three distinct sets: a training set,

containing 50% of the total amount of patterns; a

validation set, containing 25% of the patterns; and test

set, which contains the remaining 25%. This division

of data is suggested by [22]. The five gases to be

classified are represented by the same amount of

patterns in each of the three data sets.

The pattern set was normalized so as to be within a

range of values between�1.0 and +1.0. A MLP neural

network was used, containing only one hidden layer.

The input layer had eight units, corresponding to the

values of the eight sensors. The output layer had five

units, corresponding to the five gases to be classified

(in this experiment the 1-of-m output coding was used,

where m is the number of classes). All network-

processing units were implemented hyperbolic tan-
gent activation functions [22]. The neural network

contains all possible feedforward connections

between adjacent layers, without having any connec-

tion between non-adjacent layers. In this work, five

distinct topologies were trained (4, 8, 12, 16 and 20

units in the hidden layer).

The training algorithm used is a version of the

Levenberg–Maquardt method described in [9]. For

each topology, 30 different and random weight

initializations were performed. In all cases, the

maximum quantity of iterations was 5000. The

training stops if the criterion GL5 of Proben1 [22]

is satisfied twice (to avoid initial oscillations in

validation errors). The GL5 criterion provides an idea

of the generalization loss during training and it is

sufficiently useful in avoiding overfitting. It is defined

as the increase in the overall validation error in

relation to the minimum validation error. Training also

stops if the training progress criterion defined in

Proben1 [22], with P5(t) < 0.1, is satisfied, or if the

maximum quantity of 5000 iterations is reached.

The error measure used in the analysis of results

was the squared error percentage, presented in Eq. (7).

E ¼ 100
omax � omin

NP

XP

p¼1

XN

i¼1

ðo pi � t piÞ2 (7)

where omin and omax are the minimum and maximum

values of output coefficients in the problem represen-

tation, N is the number of output nodes of the network,

P the number of patterns (examples) in the data set

considered, and t the desired output of the network.

Another error measure used is the classification

error of the test set, which corresponds to the number

of incorrectly classified patterns divided by the total

quantity of patterns. Thus, the aspects observed at the

end of training were the squared error percentage of

the training, validation and test sets and the

classification error of the test set.

3.2. Time-delay neural networks

Time-delay neural networks (TDNN) were origin-

ally developed for speech recognition by [26]. The

main goal in development of TDNN was to have

neural network architecture for non-linear feature

classification invariant under translation in time or

space. TDNN uses built-in time-delay steps to
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represent temporal relationships. The translation

invariant classification is accomplished by sharing

the connection units of the time delay steps. The

activation of each TDNN processing unit is computed

by the weighted summation of all activations of

predecessor processing units in an input window over

time and applying a non-linear function (i.e. a sigmoid

function) to the sum.

The TDNN proposed for odor recognition consists

of a pattern recognition system capable of analyzing

the temporal features of the signals generated by the

sensors of the artificial nose. This system considers the

variation of the signals generated by the sensors along

the time interval in which the data acquisitions were

accomplished. Thus, the TDNN has 16 inputs,

corresponding to the curves generated by eight

sensors along time, and five outputs representing

the classification of the odor signal. The TDNN is a

type of ANN that has presented promising results in

odor classification [28,31,29] and [30].

As described in [28], the architecture of the pattern

recognition system needs to receive complete curves

generated by the sensors during the data acquisition.

Thus, only complete data acquisitions can be used as

training, validation and test sets. One of the data

acquisitions (960 patterns of each gas) was used as the

training set. Similarly, two further acquisitions (with

the same amount of data) were used as the validation

and test sets. The choice of the acquisitions was made

arbitrarily by using the three first data acquisitions.

The same data set in the previous section was used,

allowing a comparison between approaches. The same

normalization, topologies, activation function, output

coding, training algorithm and stopping criteria

adopted for the MLP experiments were used. The

architecture used was a TDNN containing only one

hidden layer. The input layer had 16 units, as the input

was formed by the current pattern and the previous

pattern (one delay for each sensor). For each topology,

30 runs were performed with different and random

weight initializations. In all cases, the maximum

number of epochs allowed was 100.

It is important to emphasize that the analyzed errors

were computed separately for each gas. In other

words, for each sensor the network evaluated the five

curves corresponding to the five gases independently,

so that no single curve contained the values of the five

gases in sequence. This was adopted so that the
presentation order of the gases to the network would

not influence the results.
4. Performance assessment

Empirically evaluating the accuracy of hypotheses

is fundamental to machine learning. The statistical

methods for estimating hypothesis accuracy focus on

three basic questions. First, given the observed

accuracy of a hypothesis over a limited sample of

data, how well does it estimate its accuracy over

additional examples? Second, given that one hypoth-

esis outperforms another over some sample of data,

how probable is it that this hypothesis is more accurate

in general? Third, when data is limited, what is the

best way to use this data both to learn a hypothesis and

estimate its accuracy? As limited samples of data

might misrepresent the general distribution of data,

estimating true accuracy from such samples can be

misleading. Statistical methods, together with

assumptions on the underlying distributions of data,

allow one to draw boundaries between the observed

accuracy over the sample of available data and the true

accuracy over the entire distribution of data [20].

To verify the classifier performance, all continuous

variables were expressed as mean standard deviation in

the analysis of the experiments. The 2-tailed paired

Student’s t-test was used to compare the related samples

[13]. The Student’s t-test is a statistical method that

deals with problems associated to inference based on

‘small’samples. The test is used to verify the hypothesis

that a given variable differs between two groups, but the

paired test is specifically used when each data point in

one group corresponds to a matching data point in

another group.

The degree of agreement between the methods, as

well as the variabilities of the wavelet filter method,

were assessed by use of the analysis method reported

by Bland and Altman [1]. This technique compares

two methods by calculating the mean and 95% range

of the differences between the data points of the

methods. In the Bland–Altman test, the data analysis

may be displayed in the form of a graph on which the

x-axis shows the mean of the results of the two

methods ([A + B]/2), while the y-axis represents the

difference between the two methods ([B � A]), which

may be plotted on either an absolute, percentage, or
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logarithmic scale. The graph includes a line for the

mean difference between the methods and lines for the

2-s limits of the mean difference.

The linear regression analysis and Pearson

correlation were also used for assessing the relation

between both methods (multi-layer perceptron versus

multi-layer perceptron with wavelet filter). The

results were considered statistically significant when

P < 0.05.
5. Results

The experimental results are presented in this

section. To measure the performance of wavelet

analysis, the MLP was trained with and without the

preprocessing data by the wavelet filter. The results are
Table 1

Mean and standard deviation for the results of MLP experiments with or

Hidden nodes Training error Validation error

Mean S.D. Mean S.D.

4 2091.89 3500.98 1067.58 1783.34

8 1849.77 2681.81 967.09 1379.39

12 3060.68 4440.45 1549.07 2217.48

16 3690.66 4174.59 1868.96 2093.64

20 5636.20 5182.06 2845.62 2588.31

Table 2

Mean and standard deviation for the results of MLP using wavelet filter

Hidden nodes Training error Validation error

Mean S.D. Mean S.D.

4 2067.22 3401.50 1063.94 1711.02

8 1425.67 2373.96 737.11 1209.04

12 2640.24 4278.83 1329.16 2149.28

16 3761.41 4944.03 1899.51 2483.61

20 5456.01 4913.29 2751.25 2454.55

Table 3

Mean and standard deviation for the results of TDNN, with original data

Hidden nodes Training error Validation error

Mean S.D. Mean S.D.

4 6.4900 4.4133 85.0300 25.6867

8 2.9167 2.9167 73.3800 30.1867

12 4.7700 9.9867 72.7833 33.9867

16 46.8000 49.7900 106.1500 47.5533

20 52.1033 35.4200 106.7600 43.6933
displayed in both Table 1 (original data) and Table 2

(preprocessing data).

With the use of the wavelet analysis, a considerable

improvement in the classification errors of odor

patterns was achieved. The best classification result

was in the topology with four nodes in the hidden

layer, classification error of 14.39% (Table 1). With

the use of the wavelet analysis the error was reduced to

11.50% (Table 2).

The same comparison was performed for the

TDNN neural network. The results are presented in

Table 3 (original data) and Table 4 (preprocessing

data). The use of the wavelet filter improved the results

of odor classification. The results with the TDNN are

better than those presented for the MLP network.

Without the use of wavelet analysis, the TDNN

presented a classification error of 11.34% (Table 3,
iginal data

Test error Classification error of test set

Mean S.D. Mean S.D.

1090.91 1773.15 0.1439 0.1882

968.29 1371.35 0.1462 0.913

1554.59 2214.10 0.2024 0.572

1873.48 2090.15 0.2622 0.626

2864.12 2588.75 0.3521 0.3088

Test error Classification error of test set

Mean S.D. Mean S.D.

1053.51 1710.92 0.1378 0.2039

731.34 1194.09 0.1150 0.1735

1326.96 2141.86 0.1729 0.2547

16250.16 2504.78 0.2365 0.2861

2761.49 2488.42 0.3446 0.2834

Test error Classification error of test set

Mean S.D. Mean S.D.

61.9833 19.2867 0.1259 0.1024

64.0167 16.3033 0.1134 0.0873

69.2333 15.2767 0.2052 0.1053

87.8567 38.3400 0.3151 0.1545

100.8667 50.4200 0.3238 0.1872
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Table 4

Mean and standard deviation for the results of TDNN using wavelet filter

Hidden nodes Training error Validation error Test error Classification error of test set

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

4 1.1800 1.7400 30.6900 24.2867 71.4233 12.4700 0.0316 0.0678

8 1.2533 1.9700 26.6500 22.0067 66.7467 7.3867 0.0075 0.0371

12 3.8100 9.6367 34.3900 23.7067 70.5833 11.1700 0.0200 0.0610

16 41.6367 48.9900 76.7333 52.6367 87.3267 38.2867 0.1895 0.1892

20 49.9000 44.3400 82.2567 51.8800 92.0033 38.1067 0.2372 0.1940
topology with eight hidden nodes); using wavelet filter

the error is less than 1%, more accurately at about

0.75% (Table 4, topology with eight hidden nodes).

Another point to consider was the low standard

derivation presented for the network using the filter,

which suggests a small variation in the results of the 30

runs. The excellent results obtained by the TDNN

were possible due to its capacity for using the temporal

characteristics of odor patterns in the neural network

learning, which guarantees better adaptability regard-

ing the odor recognition problem in artificial noses.

In order to verify the statistic relevance of the

results, the hypothesis t-test was carried out on the

performance of each one of the classifiers. The test is

accomplished from the best average results obtained in

experiments.

The classification error of ANNs was slightly

greater when the classifier did not use wavelet filter in

the data (14.39 � 17.96% and 11.34 � 8.50% for

MLP and TDNN, respectively, Tables 1 and 3) than

when wavelet filter was used (11.50 � 15.88% and

0.75 � 3.6%, respectively, Tables 2 and 4).

In the multi-layer perceptron results, the mean

difference between the measurements obtained using
Fig. 3. (A) Result of the Bland–Altman plot of the data obtained by use o

result of the Bland–Altman plot of the data obtained by use of the time delay

(bias) is represented by the solid horizontal line, and the agreement limit
both methods was �2.88% (95% confidence interval

from �0.1167 to 0.059%). Despite the better

classification error of multi-layer perceptron using

wavelet filter, statistically both methods present the

same performance (P = 0.5073). However, the 95%

agreement limit between the two methods was�4.3 to

+4.9% (Fig. 3(A)).

In time delay neural network results, the mean

difference between the measurements obtained

using both methods was �10.59% (95% confidence

interval from �0.1406 to �0.072%). The results

were statistically significant (P < 0.001), confirming

the hypothesis that the average performance of the

time delay neural networks making use of wavelet

analysis is superior to the same ANN without this

filter. More importantly, the 95% agreement limit

between the two methods was �7.6 to +2.88%

(Fig. 3B).

The significant correlation between the two

methods was also demonstrated through the linear

regression analysis, considering the classifier without

wavelet filter as the dependent variable and the

classifier using the filter as the independent variable.

For the multi-layer perceptron experiments, the
f the multi-layer perceptron with and without wavelet filter and (B)

neural network with and without wavelet filter. The mean difference

is represented by the dotted horizontal lines.
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Table 5

Linear regression and Pearson correlation

Equation of the

regression line

Coefficient of

determination

Standard deviation

of the residues

Pearson

correlation

P

MLP y = 0.0321x + 0.1104 0.0013 0.1615 0.03630.8489

TDNN y = �0.0057x + 0.0081 0.0002 0.0373 �0.01320.9448

Fig. 4. (A) Multi-layer perceptron and (B) time delay neural network. Correlation between the results obtained by use of the classifier with and

without wavelet filter.
equation of the regression line was calculated as

y = 0.0321x + 0.1104, with a 95% confidence interval

of the ‘b’ coefficient from �0.3283 to 0.3915, and a

standard deviation of the residues of 0.1615 (Table 5).

The Pearson correlation coefficient showed little

relation between both methods (r = 0.0363; P =

0.8489) (Fig. 4A). In the time delay neural networks

experiments, the equation of the regression line was

calculated as y = �0.0057x + 0.0081, with a 95%

confidence interval of the ‘b’ coefficient from

�0.3717 to 0.3487, and a standard deviation of the

residues of 0.0373 (Table 5). The Pearson correlation

coefficient also showed little relation between both

methods (r = �0.0132; P = 0.9448) (Fig. 4B).
6. Discussion and conclusions

In this work, we presented the results obtained with

wavelet analysis in the processing of odor patterns in

an artificial nose. This analysis was used as a

preprocessing method of input patterns for multi-

layer perceptron and the time delay neural networks

classifiers.

The MLP presented a better performance with the

use of the wavelet filter in the input patterns. The

classification error decreased from 14.39 to 11.34%.
For the TDNN, the classification error decreased from

11.50 to 0.75%.

The correlation between the two methods (MLP

and TDNN, with and without wavelet filter), measured

through the Pearson correlation coefficient, was

neither expressive nor statistically significant

(r = 0.0363 and r = �0.0132; P = 0.8489 and P =

0.9448 for multi-layer perceptron and time delay

neural networks experiments, respectively). The linear

regression analysis also showed very consistent results

(Table 5). However, as reported by Bland and Altman

in their study on the comparison of the two

measurement methods, assessment [1] of the agree-

ment between methods is more important than the

correlation or linear regression.

Based on the analysis reported by Bland and Altman,

in the multi-layer perceptron experiments, we showed

that the mean difference between the values of the

classification error using wavelet filter was not sig-

nificant in practice, with only a �2.88% (95%

confidence interval from �0.1167 to 0.059%) of diff-

erence and not statistically significant (P = 0.5073). In

the time delay neural networks experiments, the mean

difference was very significant, with a �10.59% (95%

confidence interval from �0.1406 to �0.072%) of

difference and the results are statistically significant

(P < 0.0001).
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The agreement limit of the two methods (MLP and

TDNN, with and without wavelet filter) was �4.3 to

+4.9% and �7.6 to +2.88%, respectively. These

results show that the percentage of the classification

error using the wavelet filter, 95% of the time, will

have a difference lower than 4.9 and 2.88% of the

value that would be obtained without wavelet filter, for

multi-layer perceptron and time delay neural net-

works, respectively. This characterizes a fully

acceptable degree of agreement, showing that the

filter has homogeneous results. In addition, as shown

in the Bland–Altman plot (Fig. 3), the dispersion of the

individual differences around the mean difference

(bias) is very homogeneous. In other words, the

reproducibility of the wavelet filter results is good for

both methods.

In future work, other techniques of signal

compression and noise reduction will be combined

with wavelet analysis for increasing the compression

rate and improving the quality of the signal

reconstruction. Other wavelets and their tradeoffs

between performance and complexity need further

investigation.
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