
Prog Artif Intell (2014) 2:205–215
DOI 10.1007/s13748-014-0053-6

REGULAR PAPER

An automatic methodology for construction of multi-classifier
systems based on the combination of selection and fusion

Tiago P. F. de Lima · Adenilton J. da Silva ·
Teresa B. Ludermir · Wilson R. de Oliveira

Received: 10 December 2012 / Accepted: 10 January 2014 / Published online: 16 April 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract We present a methodology for the automatic con-
struction of multi-classifiers systems based on the combi-
nation of selection and fusion. The proposed methodology
initially finds the optimum number of clusters for training
data set and subsequently determines an ensemble for each
cluster found. Self-organizing maps were used in the clus-
tering phase, and multilayer perceptrons, in the classification
phase. Adaptive differential evolution was used in order to
optimize the parameters and performance of the techniques
employed in the classification and clustering phases. The pro-
posed methodology, called SFJADE, was applied on data
compression of signals generated by artificial nose sensors
and a variety of known classification tasks, including can-
cer, card, diabetes, glass, heart, horse, soybean, and thyroid.
The experimental results shown that the SFJADE methodol-
ogy had a better performance than some methods reported
in related literature and significantly outperformed the meth-
ods commonly used to construct multi-classifier systems, for
instance, bagging, boosting, and random subspaces.

T. P. F. de Lima (B) · A. J. da Silva · T. B. Ludermir
Centro de Informática, Universidade Federal de Pernambuco,
Av. Jornalista Anibal Fernandes, s/n, Cidade Universitária,
CEP: 50740-560 Recife-PE, Brazil
e-mail: tpfl2@cin.ufpe.br

A. J. da Silva
e-mail: ajs3@cin.ufpe.br

T. B. Ludermir
e-mail: tbl@cin.ufpe.br

W. R. de Oliveira
Departamento de Estatística e Informática, Universidade Federal
Rural de Pernambuco, Rua Dom Manoel de Mendeiros,
s/n, Dois Irmãos, CEP: 52171-900 Recife-PE, Brazil
e-mail: wilson.rosa@gmail.com

Keywords Multi-classifier systems ·Ensembles ·Selection
and fusion · Self-organizing maps · Multilayer perceptrons ·
Adaptive differential evolution

1 Introduction

Classification is a data mining technique used to predict
group membership for data instances whose classes are
unknown [35]. Pattern classification involves building a func-
tion that maps the input feature space to an output space of
two or more than two classes. Decision trees, Bayesian mod-
els, and artificial neural networks (ANNs) are examples of
effective classifiers in the field of pattern classification [29].
However, by the No Free Lunch theorem, there is no single
classifier that can be considered optimal for all tasks. In an
attempt to improve recognition performance of a single clas-
sifier, a common approach is to combine various classifiers
forming what is called a multi-classifier systems (MCS) [36].

There are several reasons for combining multiple classi-
fiers to solve a given learning task [29]. First, MCS, also
known as ensembles or committees, exploits the idea that
a pool of different classifiers, referred as experts, can offer
complementary information about the patterns to be clas-
sified, improving the effectiveness of the overall recogni-
tion process. Second, in some cases, ensembles might not
be better than the single best classifier but can diminish or
eliminate the risk of picking an inadequate single classifier.
Another reason for ensembles arises from limited represen-
tational capability of learning algorithms. It is possible that
the classifier space considered for the task does not contain
the optimal classifier.

Successful applications of MCS have been reported in var-
ious works in the literature, such as handwritten digit recogni-
tion [13], signature verification [5], image labeling [42], just

123

206 Prog Artif Intell (2014) 2:205–215

to name a few. Basically, most of these systems may take two
approaches: selection and fusion (SF) [46]. In the classifier
fusion, every classifier in the ensemble is used. Bagging [8],
boosting [41], and the random subspace method (RSM) [22]
are frequently used for the generation of members, while
arithmetic rule (e.g., maximum, mean, median, minimum,
product), majority vote or the use of another classifier are
examples of strategies used to combine their decisions [37].
In classifier selection, each ensemble member is supposed to
know well a part of the feature space and be responsible for
objects in this part [29].

Most of the discussions and design methodologies of
ensembles are devoted to fusion version and are concerned
with how to achieve good performance by creating diversity
measure and combination schema. Research is less common
in selection methodology. Basically, for the selection scheme,
a means of partitioning the feature space and estimating the
performance of each classifier are required. In Woods’ DCS-
LA approach [46], for example, the classification accuracy
is estimated in small regions of feature space surrounding
an unknown test sample, and then the most locally accurate
classifier is nominated to make the final decision. On the
other hand, Kuncheva [27] presents an algorithm where the
training data are clustered to form the decision regions, and
a confidence interval is used to determine whether one or
multiple classifiers should be used to make a final decision.

Non-automatic design of ensembles often involves a
tedious trial-and-error process which might be appropriate
where prior knowledge and an experienced expert are avail-
able, which might not be the case for many real-world tasks
and are hard to find in practice [2]. The goal of ensembles
design is to determine ensemble architectures automatically.
In this paper, we report the performance of a novel automatic
method, named SFJADE, to combine selection and fusion
(SF) via adaptive differential evolution (JADE). JADE is a
powerful stochastic real-parameter optimization algorithm
in current use [16]. For the clustering phase, self-organizing
maps (SOM) was chosen since it is a simple technique that
has good performance [12]. For the classification phase, the
attractiveness of ANNs stems from their many inherent char-
acteristics, including nonlinearity, high parallelism, robust-
ness, fault tolerance, learning, and their capability to gener-
alize [21].

This paper is organized as follows. Section 2 gives the
theoretical justification of selection and fusion, by means of
clustering algorithms; Sect. 3 presents some related works,
that show strengths and weaknesses in the development of
ensembles; Sect. 4 presents the evolutionary algorithm used
in the current work; Sect. 5 describes the basic idea of
proposed methodology; Sect. 6 presents the experimental
results; Finally, Sect. 7 presents some final considerations
about the main topics covered in this work, including contri-
butions reached and directions for future works.

Fig. 1 An example of partitioning the feature space with two classifi-
cation regions into four selection regions, from [27]

2 Theoretical justification

Let D = {D1, D2, . . . , DL} be a set of L classifiers and E =
{E1, E2, . . . , EM } be a set of M ensembles formed from D.
The construction of the system is realized by grouping the
training set regardless of the class labels in K > 1 regions of
competence denoted by R1, R2, . . . , RK , as show in Fig. 1.

For each region R j , j = 1, 2, . . . , K is designated an
ensemble from E which have the highest accuracy in R j .
Let E∗ ∈ E be the ensemble with the highest average accu-
racy over the whole features space. Denote by P(Ei |R j) the
probability of correct classification by ensemble Ei in region
R j . Consider Ei(j) the ensemble designated for region R j .
The overall probability of correct classification of a system
is described in Eq. (1),

Pc =
K∑

j=1

P(R j)Pc(R j) =
K∑

j=1

P(R j)P(Ei(j)|R j) (1)

where P(R j) is the probability that an input x drawn from
the distribution of the task falls in R j . To maximize Pc, we
assign Ei(j) so that

P(Ei(j)|R j) ≥ P(Et |R j), t = 1, . . . , M. (2)

Thus, from Eqs. (1) and (2), we have that

Pc ≥
K∑

j=1

P(R j)P(E∗|R j) (3)

Equation (3) shows that the combined scheme performs
equal or better than the best ensemble E∗, regardless of
the way the features space has been partitioned. However,
the model might overtrain, giving a deceptively low training
error. Hopefully, nominating an ensemble when it is better
than the others will be a basis of a combination scheme less
prone to overfitting and spurious errors.

123

Prog Artif Intell (2014) 2:205–215 207

3 Related works

The fusion method is widely used having several strategies
that improves its performance. In contrast, no improvements
have been proposed for the selection method, although their
potential has already been proved in the literature [29]. In
[46] is proposed the dynamic classifier selection by local
accuracy (DCS-LA) where the accuracy of each classifier
in the neighborhood of the test pattern is computed and the
classifier with the best result is selected to give a final answer.
The DCS-LA is capable of improving overall performance
significantly. However, this method is time-consuming due
to the accuracy estimation for each test sample calculated in
real time.

Kuncheva [27] presents a method, named clustering-and-
selection (CS), based on a probabilistic interpretation to stat-
ically select the best classifier. The training data set was clus-
tered to form k > 1 decision regions, and a confidence inter-
val was used to determine whether one or multiple classifiers
should be used to make a final decision. The experiments
showed the superior performance of the CS method when
compared with some methods based on fusion methodology.
However, the CS method has some drawbacks: The use of
a non-automatic method and the reduced number of tasks
employed in the experiments.

Liu and Yuan [31] present an algorithm based on CS,
which can find in the feature space the regions where each
classifier has best classification performance. In the cluster-
ing step, the feature space is partitioned by clustering sepa-
rately the correctly and incorrectly classified training samples
from each classifier, and the performances of the classifier
in each region are calculated. In the selection step, the most
accurate classifier in the vicinity of the input sample is nom-
inated to provide the final decision. This method showed
good results when compared with classical CS method, but
the experiments were performed with a reduced number of
tasks.

Kuncheva [28] present another important work that com-
prises a combination of classifier SF by using statistical infer-
ence to switch between the two. Selection is applied in those
regions of the feature space where one classifier strongly
dominates the others from the pool and fusion is applied in the
remaining regions. Unfortunately, this model still used a non-
automatic method and its real power was not explored. Even
when using a non-automatic method, the results reported
were better than those obtained with other methods, which
encourage its use.

Dos Santos et al. [17] present a method that combines an
optimization process and dynamic selection in a two-level
selection phase to allow the selection of the most confident
subset of classifiers to label each test sample individually.
The optimization level is intended to generate a population
of highly accurate candidate classifiers ensembles, while the

dynamic selection level applies measures of confidence to
reveal the candidate ensemble with the highest degree of con-
fidence in the current decision.

Jackowski and Wozniak [24] present a method to split and
select classifiers to compose an ensemble. Such method uses
genetic algorithm to perform the feature space division and
select the best classifiers existing in a pool of classifiers.
An appropriated combination schema based on weighted
majority voting is used. The experimental results reported
pointed out that the proposed method has a better perfor-
mance than single ANNs and classical ensembles. Nonethe-
less, the experiments were performed using only four tasks.

Lima et al. [30] presented an evolutionary method, named
SFDEGL, based on a combination of selection and fusion.
SFDEGL is composed by two phases: the first for design-
ing the individual classifiers and the other for clustering pat-
terns of training data set and search an ensemble for each
cluster found. Differential evolution with global and local
neighborhoods (DEGL) has been used in order to optimize
the parameters and performance of the different techniques
used in classification and clustering phases. The experimen-
tal results have shown that the SFDEGL method has better
performance than non-automatic methods and significantly
outperforms most of the methods commonly used to com-
bine multiple classifiers for a set of four benchmark tasks.
The work of [30] showed that there is a great deal of poten-
tial in the use of EA to automatic construct of ensembles.

4 Evolutionary algorithms

One way to solve optimization problems is to use exact meth-
ods. Unfortunately, these methods do not work properly in
hard optimization problems. Another possibility is the appli-
cation of heuristics, i.e., methods designed for a particular
class of problems incorporating knowledge about the prob-
lem [44]. The drawback of this approach is the missing guar-
antee of optimality. But for some real-world applications, an
approximate answer may be sufficient, even if it is not the
best. Consequently, heuristics are widely used [7].

A keen observation of the underlying relation between
optimization and biological evolution led to the develop-
ment of an important paradigm of computational intelligence,
the evolutionary computing techniques [16]. The evolution-
ary algorithms (EA) stands for a class of global optimiza-
tion heuristics that search for optima using a process that is
analogous to Darwinian natural selection [18]. The selection
performs the “survival of the fittest” principle: population
members with higher fitness are more likely to survive and
participate in generating offspring. New candidate solutions
are created through stochastic variation operators, which use
the population information to direct the search to promising
regions.

123

208 Prog Artif Intell (2014) 2:205–215

4.1 Differential evolution

Differential evolution (DE), proposed by Storn and Price
[43], is a powerful, easy to use, fast, reliable EA that is used
for tackling difficult optimization tasks. Since its creation,
DE’s reputation as an effective optimization algorithm has
grown. One of the main advantages of the DE algorithm is
that it has a small number of control parameters for adjust-
ment which adds to its simplicity. Only three parameters
need to be adjusted when optimizing a function: the step
size known as the scale factor F , the crossover probability
Cr, and the population size NP. Despite its simplicity, DE
exhibits much better performance in comparison with sev-
eral others EA on a wide variety of tasks including single-
objective, multi-objective, unimodal, multimodal, separable,
non-separable [16]. DE works through a cycle of generations,
as presented in Algorithm 1.

In DE, diversity of the population is vital to avoid pre-
mature convergence. In general, selection tends to decrease
the diversity of the population, whereas mutation increases
it. The DE algorithm has three control parameters that main-
tain this diversity: the mutation scale factor F , the crossover
control parameter Cr, and the population size NP. These are
fixed values for the duration of the algorithm. Proper tuning
of these parameters is essential for the reliable performance
of the algorithm. Trying to tune these three main control para-
meters and finding bounds for their values has been a topic
of intensive research [32].

Algorithm 1: Differential Evolution
begin1

Create a random initial population P of NP individuals2
Evaluate each individual3
while termination criterion not met do4

for i = 1 to N P do5
Select basis vector Xbasis,G6
Randomly choose Xr1,G �= Xbasis,G7
Randomly choose Xr2,G �= Xr1,G �= Xbasis,G8
Calculate the vector donor9
Vi,G = Xbasis,G + F(Xr1,G − Xr2,G)

Generate jrand = randint(1,D)10
for j = 1 to D do11

if j = jrand or rand(0, 1) < C R then12
U j,i,g = V j,i,g13

else14
U j,i,g = X j,i,g15

end16
end17
if f (Xi,G) ≤ f (Ui,G) then18

Xi,G+1 = Xi,G19
else20

Xi,G+1 = Ui,G21
end22

end23
end24

end25

The mutation scale factor F controls the robustness and
speed of the search. A lower value for F increases the conver-
gence rate, but it does so at the risk of getting stuck into a local
optimum and therefore failing to find the global solution.
High values of Cr favor a higher mutated element crossover
to current elements; as a result, the mutation factor F has
a greater impact on the search. An increased value of NP

increases the diversity of the population and with it the poten-
tial to find the true optimal solution from the greater search
space but at the cost of longer computation time.

The rule-of-thumb values for the control parameters given
by Storn and Price [43] for F are usually between 0.5 and
1.0 and Cr between 0.8 and 1.0. These authors have proposed
that the population size NP should be between 5D and 10D,
where D is the dimension of the problem. The suggestions
by Storn and Price [43] for the control parameters are valid
for many practical purposes but still lack generality. This
means that, in practice, many time-consuming trial runs are
required to find optimal parameters for each problem setting.
As a result of the difficulty of setting appropriate control
variables, research has focused on finding parameters such
as F and Cr settings automatically [48].

4.2 Adaptive differential evolution

It is expected that solving a complex optimization problem
itself should not be very difficult. In addition, an optimization
algorithm should be able to converge to the true optimum
for a variety of different tasks. Furthermore, the computing
resources spent on searching for a solution should not be
excessive. Thus, a useful optimization method should be easy
to use, reliable, and efficient to achieve satisfactory solutions.
JADE is such an optimization approach that addresses these
requirements.

The JADE algorithm was proposed to improve optimiza-
tion performance of DE by implementing a new muta-
tion strategy, “DE/target-to-pbest” with optional external
archive and updating control parameters in an adaptive man-
ner [48]. The “DE/target-to-pbest” is a generalization of
the classic “DE/target-to-best”, while the optional archive
operation utilizes historical data to provide information of
progress direction. Both operations diversify the population
and improve the convergence performance. The parameter
adaptation automatically updates the control parameters to
appropriate values and avoids a users prior knowledge of the
relationship between the parameter settings and the charac-
teristics of optimization problems. The JADE algorithm is
described in algorithm 2.

5 Proposed method

The design of ensembles involves the choice of parame-
ters as the model, number of components, combination

123

Prog Artif Intell (2014) 2:205–215 209

Algorithm 2: JADE
begin1

Set μC R = 0.5; μF = 0.5; A = ∅2
Create a random initial population P of NP individuals3
while termination criterion not met do4

SF = ∅; SC R = ∅5
for i = 1 to N P do6

Generate C Ri = randni (μC R, 0.1),7
Fi = randci (μF , 0.1)

Randomly choose xp
best,g as one of the 100p % best8

vectors
Randomly choose xr1,g �= xi,g from current9
population P
Randomly choose xr2,g �= xr1,g �= xi,g from P ∪ A10

vi,g = xi,g + Fi (x
p
best,g − xi,g) + Fi (xr1,g − xr2,g)11

Generate jrand = randint (1, D)12
for j = 1 to D do13

if j = jrand or rand(0, 1) < C Ri then14
u j,i,g = v j,i,g15

else16
u j,i,g = x j,i,g17

end18
end19
if f (xi,g) ≤ f (ui,g) then20

xi,g+1 = xi,g21
else22

xi,g+1 = ui,g ; xi,g → A;C Ri → SC R ; Fi → SF23
end24

end25
Randomly remove solutions from A so that |A| ≤ N P26
μC R = (1 − c) · μC R + c · mean A(SC R)27
μF = (1 − c) · μF + c · meanL (SF)28

end29
end30

schema, and learning algorithms. In the same way, the use
of ANNs involves a set of parameters that directly affects
the final performance. Therefore, the design of ANN ensem-
bles requires high number of parameters that need to be
adjusted; the need for a priori knowledge on the problem
domain and functioning ANN to define these parameters; and
an expert when such knowledge is lacking. In some cases, the
choice of parameters is manually performed through a trial-
and-error method, which is a tedious, less-productive, and
error-prone task. Furthermore, when the complexity of the

problem domain increases and near-optimal networks are
desired, non-automatic searching becomes harder and unman-
ageable [3].

Recently, there has been an increase in the use of EAs for
the optimization problems, including the automated design of
ANN ensembles. Some motivations for such research come
from successful works that prove the power of EA to optimize
ANNs for a large class of tasks [10,11]. In this way, EA are
usually employed with the purpose of finding a set of ANNs,
as diverse and accurate as possible, for composition of the
ensemble.

5.1 Composition and functioning of the methodology

In Fig. 2, the flowchart of our methodology is shown, in
which, given a task, in the first step, the data set is divided
into training, validation, and testing. Subsequently, in the
second and third steps, the search for optimized clustering
maps and near-optimal ANNs take place, respectively. The
parameters of each step were defined after many executions,
and they were fixed for all tasks.

A functioning ensemble built with SFJADE method is
shown in Fig. 2 with solid line beginning in step 1 and end-
ing in ensemble output. The testing data set is submitted to
clustering technique and the nearest cluster to data input will
emit a supervised response through the fusion of all com-
ponents in their respective pool. In what follows, the search
process of clustering maps and ANNs will be described.

5.2 Search by clustering maps

In the second step of our method, the clustering of train-
ing data set, not considering the labels, occurs in order to
discover unknown clusters and its appropriate amount. Clus-
tering indicates the act of partitioning a data set into groups
of similar objects [15].

It is worth mentioning that data clustering is an NP-hard
problem when the number of clusters exceeds three [9].
Therefore, many researchers have employed EA to perform
the search for the appropriated number of clusters size and

Fig. 2 Composition and
functioning of SFJADE

123

210 Prog Artif Intell (2014) 2:205–215

Fig. 3 Encoding scheme used in the SFJADE, adapted from [15]. Six
cluster centers are encoded for a 3-D data set and activated cluster
centers are shown as gray-filled circles

weights adjusted according to some standard learning algo-
rithm [23]. In this way, the JADE algorithm was used for 50
generations with 35 individuals. With the use of JADE, an
encoding schema and fitness function were defined.

5.2.1 Encoding schema

In the second step of SFJADE, the first Kmax entries are
floating points in [0, 1] which control whether the corre-
sponding cluster is to be activated or not. The remainder
entries are reserved for Kmax cluster centers, each one with
D dimension. In this way, the vector has the dimension of
Kmax + Kmax × D. In Fig. 3, this encoding schema is shown
with three active clusters centers. Such encoding schema was
proposed by Das et al. [15].

For each i th individual from the population used in JADE,
the j th cluster center is active or selected for partitioning the
associated data set if Ti j > 0.5; otherwise, the j th cluster
is inactive. The Ti j ’s values are called activation thresholds,
because they govern the selection of active cluster centers
[15]. If due to mutation some threshold Ti j in an offspring
exceeds 1 or becomes negative, it is forcefully fixed to 1 or
0, respectively. In the same way, all first Kmax values may
become smaller than 0.5, in this case, randomly, a number of
thresholds greater than two are selected and reinitialized to
a random value >0.5.

5.2.2 Fitness function

The issue of cluster quality is a complicated one. Typically,
two evaluation criteria are used: resolution and topology
preservation [25,26]. The map resolution measure is the aver-

age distance between each data vector and the best match unit
(BMU). For topology preservation, a measure of topographic
error is used, and the proportional of all the data vectors for
which first and second BMUs are not adjacent units. Beyond
the quality measures presented, the numbers of active and
non-representative clusters (<10 examples) are also used for
fitness computation. In this way, after structure is set, the
clustering algorithm is executed for ten epochs, and for a
given individual, the fitness Iclustfit is defined by Eq. (4).

Iclustfit = α × Irslt + β × Itply + γ × Iactv + δ × Inrep (4)

where Irslt is the resolution error, Itply is the topological error,
Iactv represents the perceptual number of active cluster over
the maximum number of active clusters allowed, and Inrep is
the perceptual number of clusters that has no representative
examples in validation data set. All components of Eq. (4)
have values between [0.1] and the constants α, β, γ , and
δ are used to control the contribution of each one over the
fitness value, and consequently, to guide the search process
to find solutions with an equilibrium between such informa-
tion. We assigned α = 0.05, β = 0.05, γ = 0.1, and δ = 0.8
which indicates that SFJADE method finds optimized clus-
tering maps by initially taking into account whether the clus-
ter found will have representative samples, subsequently, the
number of clusters is considered, and finally, the method
prefers solutions with an equilibrium between the error
measures.

5.3 Search by ANNs

The universal approximation capability presented by ANNs
has been demonstrated over the years by the successful use
in many types of problem with different degrees of complex-
ity and in different fields of application [21]. However, the
success of an ANNs application implies considerable time
spent choosing a set of parameters that contribute toward
improving the final performance. Training algorithms rates,
the amount of hidden layers and nodes, and transfer func-
tions are normally selected through a non-automatic process
of trial-and-error that often fails to find the best possible set
of ANN parameters for a specific task [3].

The hybridization of JADE and ANN was performed to
build an automatic method capable of seeking near-optimal
or even optimal neural networks for a given problem, thereby
avoiding considerable human effort and difficulties stem-
ming from a non-automatic trial-and-error search. An opti-
mal neural network can be seen as an ANN tailored to a
specific problem, thus having a smaller architecture with
faster convergence and a better generalization performance
[3]. Moreover, a near-optimal ANN is a neural network with
the specific and correct parameters chosen to a particular task
having a structure and final performance better than an ANN

123

Prog Artif Intell (2014) 2:205–215 211

Fig. 4 Composition of an individual in ANN optimization

discovered through the trial-and-error method [1,3]. With the
use of the JADE algorithm, an encoding schema and fitness
function were defined.

5.3.1 Encoding schema

The third step has a special encoding schema that comprises
all ANN parameters needed for its functioning. The individ-
ual encodes the information of learning algorithm, algorithm
parameters, hidden layers, hidden neurons, transfer function,
as illustrated in Fig. 4.

The first part of the individual corresponds to the type
of training algorithm used and its size is determined by the
number of algorithms included in the search process. For this,
part were considered four algorithms: backpropagation (BP)
[40], resilient backpropagation (RPROP) [39], Levenberg-
Marquardt (LM) [20], and scaled conjugate gradient (SGC)
[34]. The BP algorithm is used to train the ANN when the
highest value is in the first attribute of this part; the RPROP
algorithm is used when the highest value is in the second
attribute; and so on.

The second part involves the parameter values from the
learning algorithm specified in the previous part. Each para-
meter has a predetermined position; therefore, when the algo-
rithm is chosen, it is possible to recover: learning rate (lr) and
momentum (α), for BP; learning rate (lr), increment to weight
change (deltinc), decrement to weight change (deltdec), ini-
tial weight change (delt0) and maximum weight (deltmax),
for RPROP; initial Mu (μ), Mu decrease factor (μdec), Mu
increase factor (μinc) and maximum Mu (μmax), for LM;
and change in weight for second derivative approximation (δ)
and regulating the indefiniteness of Hessian (λ), for SGC. All
these parameters have real values with the intervals described
in Table 1, but they are not directly encoded. They are initial-
ized between [−1.0; 1.0] and a linear map is used to obtain
the real values of the parameters.

The third part contains information about the numbers of
hidden layers. According to Cybenko [14], from extension of
the Kolmogorov theorem, we need at most two hidden layers,
with a sufficient number of units to produce any mappings.
It was also proved by Cybenko [14], that only one hidden
layer is sufficient to approximate any continuous function.
Nevertheless, in complex tasks, the use of three hidden layers
can facilitate and improve the generalization. Therefore, in
this work, the ANNs have a maximum of three hidden layers.
To determinate the number of hidden layers is considered the
attribute with the highest value in this part.

Table 1 Training algorithm parameters

Parameter Min Max

lr 6 × 10−3 1.4 × 10−2

α 0 1

deltinc 1 2

deltdec 0.3 0.7

delt0 0.042 0.098

deltmax 30 6 × 109

μ 6 × 10−4 1.4 × 10−3

μdec 6 × 10−2 1.4 × 10−1

μinc 6 14

μmax 6 × 109 1.4 × 1010

δ 3 × 10−5 7 × 10−5

λ 3 × 10−7 7 × 10−7

The fourth part encodes the number of neurons in each
hidden layer. This part considers the maximum number of
neurons per layer equal to n. Therefore, this part has three
sections with dimension 3n . The first n attributes correspond
to number of hidden neurons in the first layer; the next n
attributes correspond to the number of hidden neurons in
the second layer; and the last n attributes correspond to the
number of hidden neurons in the third layer. The number
of hidden neurons is defined by the position of the attribute
with the highest value in their respective section. The lit-
erature states that the best networks are those with a small
number of neurons [6,21], so we use the maximum number
of neurons n = 12.

The fifth part encodes the transfer function in each hid-
den layer, following the same principle as that of the fourth
part. As three types of transfer functions are used in the search
process, this part is divided into three sections, each one with
three components. Each section refers to a hidden layer, and
the highest value within it specifies the type of transfer func-
tion of the layer. If this value is the first attribute, then the lin-
ear function is used; if this value is the second attribute, then
the tangent hyperbolic function is used; otherwise, logistic
sigmoid function is used.

5.3.2 Fitness function

The information of each part of the individual is decoded
to form the neural network. Furthermore, an arbitrary num-
ber of subspaces (without replacement) are selected from
the original feature space. This randomization should create
classifiers that are complementary. After structure is set, the
neural network is trained with the training data set for up to
100 epochs, and for the fitness, Ifit is considered Eq. (5).

Ifit = θ × Ive + ϑ × Ite + ι × Ihid + κ × Inod + ν × Ifunc

(5)

123

212 Prog Artif Intell (2014) 2:205–215

Equation 5 is composed by: validation error (Ive); training
error (Ite); number of hidden layers (Ihid); number of hidden
nodes (Inod); and weight of transfer functions (Ifunc) used.
Each transfer function has an empirically determined weight:
linear with 0.2, tangent hyperbolic with 0.3, and sigmoid
logistic with 0.5.

The constants θ , ϑ , ι, κ , and ν of Eq. (5) have values
between [0, 1] and control the influence of the respective
factors upon the overall fitness calculation process. To favor
classification accuracy regarding validating and training, the
constants are defined empirically by Almeida and Ludermir
[3] as follows: θ = 0.8, ϑ = 0.145, ι = 0.03, κ = 0.005, and
ν = 0.02. These definitions imply that when apparently sim-
ilar individuals are found, those that have the least training
error, structural complexity, and transfer function complex-
ity will prevail. The Ive and Ite values are calculated using
Eq. (6).

Ie = 100

P N

P∑

i=1

N∑

j=1

(
di j − oi j

)2 (6)

In Eq. (6), N and P are the total number of outputs and
number of patterns, respectively; d and o are the desired
output and network output, respectively.

6 Experiments and results

The experiments were conducted using a real problem in
which data compression of signals generated by artificial
nose sensors are used to classify gases derived from oil
(propane, butane, methane, and ethane) [47] and eight well-
known benchmarks classification tasks found in the UCI
repository [4]. The characteristics of these tasks are sum-
marized in Table 2, which shows considerable diversity in
the number of examples, attributes, and classes among the
problems.

The list of methods considered in this work can be cate-
gorized into those based on SFJADE, classical methods, and

Table 2 Summary of tasks used in the experiments

Task Examples Attributes Classes

Artificial nose 4668 16 4

Cancer 699 9 2

Card 690 51 2

Diabetes 768 8 2

Glass 214 9 6

Heart 920 35 2

Horse 364 58 3

Soybean 683 82 19

Thyroid 7200 21 3

Table 3 Comparison of SFJADE versions

Task Max Mean Median Min Prod Vote

Cancer 0.047 0.037 0.037 0.047 0.049 0.038

Card 0.154 0.138 0.140 0.162 0.164 0.139

Diabetes 0.247 0.241 0.243 0.244 0.242 0.242

Glass 0.339 0.309 0.313 0.370 0.341 0.316

Heart 0.185 0.172 0.173 0.180 0.184 0.174

Horse 0.377 0.345 0.343 0.379 0.390 0.340

Thyroid 0.017 0.013 0.014 0.018 0.019 0.014

Soybean 0.115 0.063 0.063 0.114 0.105 0.062

methods from literature. Six versions of SFJADE were imple-
mented in Matlab 2012a: SFJADE-MAX, SFJADE-MEAN,
SFJADE-MEDIAN, SFJADE-MIN, SFJADE-PROD, and
SFJADE-VOTE. The different variants of SFJADE method
were suggested to investigate the best fusion technique. The
classical methods considered in these experiments, executed
in Java language with Weka 3.6.8, were Adaboost (ADBO)
[19], Bagging (BAG) [8], MultiBoostAB (MBAB) [45],
RSM [22], and single multi-layer perceptron (MLP) [21].
The values of parameters for classical methods were chosen
as default from Weka 3.6.8.

To perform the experiments, we used 30 twofold itera-
tions. For each fold, the data were randomly divided with
stratification into 70 % for training and 30 % for testing. The
first part was used in the construction of model (70 % for
training and 30 % for validation) and the other part was used
only to test the final solution (testing data set). Table 3 shows
the error rate in test set of SFJADE variants, minimum val-
ues for each task are boldfaced. The SFJADE-MEAN has
the lowest error rates for most of the tasks presented, except
in horse and soybean data sets, and it is always statistically
equivalent to the best combination method. From now, we
will use only SFJADE-MEAN variant.

Table 4 presents the performance of some classical meth-
ods. In each line, according to the bootstrap hypothesis test,
the boldface result means that the method has the smallest
classification error for the task, and it is statistically better
(with significance of 10 %) than all classical methods in
italic. The results were expressed as the mean of classifi-
cation error in the test set (standard deviation). There are
more tasks where SFJADE-MEAN has statistically better
performance than all classical methods (6 out 9 of com-
parisons). This shows the potential of the SF when EA are
correctly employed to optimize clustering and classifica-
tion techniques. However, the disadvantage of the SFJADE
method, as demonstrate in Table 5, is that performing the
search is very time-consuming in comparison with the clas-
sical methods. Time is measured in minutes on a computer
with Microsoft Windows operational system, 8 GB of RAM
and a 3.4 GHz Intel Core i7 processor .

123

Prog Artif Intell (2014) 2:205–215 213

Table 4 Comparison between classical methods

SFJADE [19] [8] [45] [22]

Artificial 2.3E-3 4.81 67.76 4.83 11.21

Nose (1.3E-2) (1.68) (11.56) (1.68) (1.57)

Cancer 3.70 4.85 4.27 4.43 3.28

(1.00) (1.42) (1.17) (1.19) (0.94)

Card 13.86 17.42 15.25 17.15 16.04

(1.90) (2.17) (1.96) (2.13) (2.67)

Diabetes 0.241 0.268 0.253 0.249 0.252

(1.93) (2.82) (2.69) (2.50) (2.10)

Glass 30.87 34.97 35.18 34.3 1 35.13

(5.00) (5.27) (5.09) (5.02) (4.93)

Heart 17.27 21.13 19.11 19.20 18.07

(1.95) (1.75) (1.84) (2.09) (2.07)

Horse 34.53 35.87 34.04 35.75 34.53

(3.03) (4.02) (4.50) (4.57) (3.94)

Soybean 6.26 7.49 21.64 7.49 6.26

(1.74) (1.60) (3.16) (1.60) (1.61)

Thyroid 1.38 3.95 12.35 3.99 4.33

(0.29) (1.68) (1.16) (1.69) (1.58)

Table 5 Average time (in minutes) of processing for each execution

SFJADE [19] [8] [45] [22] MLP

Art. nose 89.88 0.66 1.47 0.86 0.77 0.15

Cancer 9.85 0.04 0.04 0.04 0.03 0.01

Card 11.65 0.26 0.61 0.29 0.20 0.06

Diabetes 8.75 0.04 0.05 0.05 0.03 0.01

Glass 6.32 0.02 0.03 0.03 0.02 0.01

Heart 13.19 0.25 0.40 0.36 0.15 0.04

Horse 9.65 0.24 0.43 0.31 0.14 0.04

Soybean 27.20 0.48 2.00 0.48 0.81 0.20

Thyroid 97.00 0.48 1.60 0.50 0.73 0.16

Average 30.39 0.23 0.65 0.26 0.26 0.06

The length of time required is the main disadvantage of
SFJADE method. While SFJADE takes on average more than
30 mins, the classical methods take <1 min to perform the
same task. This huge time difference can be explained by
the EA use and also by complexity of the classification and
clustering techniques. For high-dimensional problems, the
SFJADE method may need a long time. Thus, for applica-
tions in which time is an issue, SFJADE should not be used.
SFJADE could be applied in tasks where training can be exe-
cuted offline.

7 Conclusion

The work described in this paper shown, once more, that
EA represents a suitable technique to solve the problem of

ensemble design by yielding more than satisfactory results
on a set of 8 benchmark tasks. Furthermore, in artificial nose
task, the mean test error of SFJADE was 2,000 times smaller
than in the best classical method used. In comparison with the
result obtained in [47], SFJADE also got the best result with
an improvement of 326.09 in the mean test error, but one
have to be careful to compare these results because of the
different experimental methodology. A key advantage of the
approach proposed, which is computationally quite heavy, is
the reduction in the effort required from a human expert, the
most expensive resource of all, to design and set up an ensem-
ble for a given task. Nevertheless, computation time could be
further reduced by using different programming languages,
as C++ or Java. Furthermore, nowadays, the monetary cost
of machine time is rapidly decreasing and nothing suggests
a reversal of this trend is in sight in the foreseeable future.
The computational effort required by the SFJADE approach
can be easily accommodated in distributed machines, able to
perform parallel processing, thus increasing the performance
of the computational model that has to be implemented.

To conclude and attempt to establish a working model
to guide future research, this section suggests some top-
ics, primarily for efficiency and robustness improvements
of SFJADE. The extensions of this work might include:

– To perform more experiments with other types of tasks,
such as time-series, for the verification of the behavior of
SFJADE in prediction tasks.

– The automatic choice of the techniques/parameters thr-
ough a meta-learning algorithm [33,38]. The experiments
performed in this paper did not reveal a method of
adjusting techniques/parameters, suggesting that these are
dependent on the task.

– The multimodal and multi-objective techniques can cre-
ate diversity necessary in evolution of ANNs to produce
ensembles with good performance. The ability of algo-
rithms to discover and maintain multiple optima is of great
importance, in particular when several global optima exist
or when other high-quality solutions might be of interest.

– The exploration of multiprocessor architectures to improve
both the speed and the performance of SFJADE method.
JADE, like other EAs, can be parallelized due to the fact
that each individual of the population is evaluated indepen-
dently. The only phase of the algorithm that requires com-
munication with other individuals is reproduction. This
phase can also be parallelized for pairs of individuals.

References

1. Abraham, A.: Meta learning evolutionary artificial neural networks.
Neurocomputing 56, 1–38 (2004)

2. Akhand, M.A.H., Murase, K.: Adaptive ensemble construction
based on progressive interactive training of neural networks. Int. J.
Mach. Learn. Comput. 2(3), 283–286 (2012)

123

214 Prog Artif Intell (2014) 2:205–215

3. Almeida, L.M., Ludermir, T.B.: A multi-objective memetic and
hybrid methodology for optimizing the parameters and perfor-
mance of artificial neural networks. Neurocomputing 73(7), 1438–
1450 (2010)

4. Bache, K., Lichman, M.: UCI machine learning repository. Univer-
sity of California, School of Information and Computer Science,
Irvine, CA (2013). http://archive.ics.uci.edu/ml

5. Bertolini, D., Oliveira, L., Justino, E., Sabourin, R.: Reducing forg-
eries in writer-independent off-line signature verification through
ensemble of classifiers. Pattern Recognit. 43(1), 387–396 (2010)

6. Bishop, C.M., et al.: Neural Networks for Pattern Recognition.
Clarendon press Oxford, Oxford (1995)

7. Blickle, T.: Theory of Evolutionary Algorithms and Application to
System Synthesis, vol. 17. Hochschulverlag (1997)

8. Breiman, L.: Bagging predictors. Mach. learn. 24(2), 123–140
(1996)

9. Brucker, P.: On the complexity of clustering problems. Optim.
Oper. Res. 157, 45–54 (1978)

10. Bullinaria, J.A.: Evolving neural networks: is it really worth the
effort. In: Proceedings of the European Symposium on Artificial
Neural Networks, Citeseer, pp. 267–272 (2005)

11. Cantú-Paz, E., Kamath, C.: An empirical comparison of combina-
tions of evolutionary algorithms and neural networks for classifi-
cation problems. IEEE Trans. Syst. Man Cybern. Part B Cybern.
35(5), 915–927 (2005)

12. Chen, Y., Qin, B., Liu, T., Liu, Y., Li, S.: The comparison of som
and k-means for text clustering. Comput. Inf. Sci. 3(2), P268 (2010)

13. Cruz, R.M., Cavalcanti, G.D., Ren, T.I.: An ensemble classifier for
offline cursive character recognition using multiple feature extrac-
tion techniques. In: The 2010 IEEE International Joint Conference
Neural Networks (IJCNN), pp. 1–8 (2010)

14. Cybenko, G.: Approximation by superpositions of a sigmoidal
function. Math. Control Signals Syst. (MCSS) 2(4), 303–314
(1989)

15. Das, S., Abraham, A., Konar, A.: Automatic clustering using an
improved differential evolution algorithm. IEEE Trans. Syst. Man
Cybern. Part A Syst. Hum. 38(1), 218–237 (2008)

16. Das, S., Suganthan, P.N.: Differential evolution: a survey of the
state-of-the-art. IEEE Trans. Evolutionary Comput. 15(1), 4–31
(2011)

17. Dos Santos, E.M., Sabourin, R., Maupin, P.: A dynamic
overproduce-and-choose strategy for the selection of classifier
ensembles. Pattern Recognit. 41(10), 2993–3009 (2008)

18. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing.
Springer, Berlin (2008)

19. Freund, Y., Schapire, R.E., et al.: Experiments with a new boosting
algorithm. In: Machine Learning: Proceedings of the Thirteenth
International Conference, pp. 148–156. Morgan Kauffman (1996)

20. Hagan, M.T., Menhaj, M.B.: Training feedforward networks with
the marquardt algorithm. IEEE Trans. Neural Netw. 5(6), 989–993
(1994)

21. Haykin, S.: Neural networks and learning machines, 3rd edn. Pear-
son Education, Upper Saddle River (2009)

22. Ho, T.K.: The random subspace method for constructing decision
forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844
(1998)

23. Hruschka, E.R., Campello, R.J., Freitas, A.A., De Carvalho,
A.P.L.F.: A survey of evolutionary algorithms for clustering. IEEE
Trans. Syst. Man Cybern.Part C Appl. Rev. 39(2), 133–155 (2009)

24. Jackowski, K., Wozniak, M.: Algorithm of designing compound
recognition system on the basis of combining classifiers with simul-
taneous splitting feature space into competence areas. Pattern Anal.
Appl. 12(4), 415–425 (2009)

25. Kiviluoto, K.: Topology preservation in self-organizing maps. In:
IEEE International Conference on Neural Networks, vol. 1, pp.
294–299 (1996)

26. Kohonen, T.: Self-Organizing Maps, vol. 30. Springer, Berlin
(2001)

27. Kuncheva, L.I.: Clustering-and-selection model for classifier com-
bination. In: Proceedings of IEEE Fourth International Conference
on Knowledge-Based Intelligent Engineering Systems and Allied
Technologies, vol. 1, pp. 185–188 (2000). doi:10.1109/KES.2000.
885788

28. Kuncheva, L.I.: Switching between selection and fusion in com-
bining classifiers: an experiment. IEEE Trans. Syst. Man Cybern.
Part B Cybern. 32(2), 146–156 (2002)

29. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algo-
rithms. Wiley-Interscience, New York (2004)

30. Lima, T.P., Silva, A.J., Ludermir, T.B.: Selection and fusion of
neural networks via differential evolution. In: Pavn, J., Duque-
Mndez, N., Fuentes-Fernndez, R. (eds.) Advances in Artificial
Intelligence IBERAMIA 2012. Lecture Notes in Computer Sci-
ence, vol. 7637, pp. 149–158. Springer, Berlin Heidelberg (2012)

31. Liu, R., Yuan, B.: Multiple classifiers combination by clustering
and selection. Inf. Fusion 2(3), 163–168 (2001)

32. Mandal, K., Chakraborty, N.: Differential evolution technique-
based short-term economic generation scheduling of hydrothermal
systems. Electric Power Syst. Res. 78(11), 1972–1979 (2008)

33. Miranda, P.B.C., Prudencio, R.B.C., Carvalho, A.C.P.L.F., Soares,
C.: Combining meta-learning with multi-objective particle swarm
algorithms for svm parameter selection: an experimental analysis.
In: Symposium on Brazilian Neural Networks (SBRN), 20–25 Oct,
pp. 1–6 (2012). doi:10.1109/SBRN.2012.12

34. Møller, M.F.: A scaled conjugate gradient algorithm for fast super-
vised learning. Neural Netw. 6(4), 525–533 (1993)

35. Phyu, T.N.: Survey of classification techniques in data mining. In;
Proceedings of the International MultiConference of Engineers and
Computer Scientists, vol. 1, pp. 18–20 (2009)

36. Polikar, R.: Ensemble based systems in decision making. IEEE
Circuits Syst. Mag. 6(3), 21–45 (2006)

37. Ponti, M.P.: Combining classifiers: from the creation of ensembles
to the decision fusion. In: 24th SIBGRAPI IEEE Conference on
Graphics, Patterns and Images Tutorials (SIBGRAPI-T), 28–30
Aug, pp. 1–10 (2011). doi:10.1109/SIBGRAPI-T.2011.9

38. Prudêncio, R.B., Ludermir, T.B.: Combining uncertainty sampling
methods for supporting the generation of meta-examples. Inf. Sci.
196, 1–14 (2012)

39. Riedmiller, M., Braun, H.: A direct adaptive method for faster back-
propagation learning: the RPROP algorithm. In: IEEE International
Conference on Neural Networks, vol. 1 pp. 586–591 (1993). doi:10.
1109/ICNN.1993.298623

40. Rumelhart, D.E., Hintont, G.E., Williams, R.J.: Learning repre-
sentations by back-propagating errors. Nature 323(6088), 533–536
(1986)

41. Schapire, R.E.: The strength of weak learnability. Mach. learn. 5(2),
197–227 (1990)

42. Singh, S., Singh, M.: A dynamic classifier selection and combi-
nation approach to image region labelling. Signal Process. Image
Commun. 20(3), 219–231 (2005)

43. Storn, R., Price, K.: Differential evolution—a simple and efficient
heuristic for global optimization over continuous spaces. J. Glob.
Optim. 11(4), 341–359 (1997)

44. Watanabe, K., Hashem, M.: Evolutionary algorithms: revisited. In:
Evolutionary Computations, pp. 1–19. Springer, Berlin (2004)

45. Webb, G.I.: Multiboosting: a technique for combining boosting and
wagging. Mach. learn. 40(2), 159–196 (2000)

46. Woods, K., Kegelmeyer Jr, W.P., Bowyer, K.: Combination of mul-
tiple classifiers using local accuracy estimates. IEEE Trans. Pattern
Anal. Mach. Intell. 19(4), 405–410 (1997)

47. Zanchettin, C., Ludermir, T.: Wavelet filter for noise reduction and
signal compression in an artificial nose. Appl. Soft Comput. 7(1),
246–256 (2007

123

http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1109/KES.2000.885788
http://dx.doi.org/10.1109/KES.2000.885788
http://dx.doi.org/10.1109/SBRN.2012.12
http://dx.doi.org/10.1109/SIBGRAPI-T.2011.9
http://dx.doi.org/10.1109/ICNN.1993.298623
http://dx.doi.org/10.1109/ICNN.1993.298623

Prog Artif Intell (2014) 2:205–215 215

48. Zhang, J., Sanderson, A.C.: Jade: adaptive differential evolution
with optional external archive. IEEE Trans. Evolutionary Comput.
13(5), 945–958 (2009)

123

	An automatic methodology for construction of multi-classifier systems based on the combination of selection and fusion
	Abstract
	1 Introduction
	2 Theoretical justification
	3 Related works
	4 Evolutionary algorithms
	4.1 Differential evolution
	4.2 Adaptive differential evolution

	5 Proposed method
	5.1 Composition and functioning of the methodology
	5.2 Search by clustering maps
	5.2.1 Encoding schema
	5.2.2 Fitness function

	5.3 Search by ANNs
	5.3.1 Encoding schema
	5.3.2 Fitness function

	6 Experiments and results
	7 Conclusion
	References

