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a b s t r a c t

In recent years, the Extreme Learning Machine (ELM) has been hybridized with the Particle Swarm
Optimization (PSO) and such hybridization is called PSO-ELM. In most of these hybridizations, the PSO
uses the Global topology. However, other topologies were designed to improve the performance of the
PSO. In the literature, it is well known that the performance of the PSO depends on its topology, and
there is not a best topology for all problems. Thus, in this paper, we investigate the effect of eight PSO
topologies on performance of the PSO-ELM. The results showed empirically that the Global topology was
more promising than all other topologies in optimizing the PSO-ELM according to the root mean squared
error (RMSE) on the validation set in most of the evaluated datasets. However, no correlation was
detected between this good performance on the RMSE and the testing accuracy.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In 2004, Huang et al. [1] proposed an efficient training algorithm
for single-hidden layer feedforward neural network (SLFN) called
Extreme Learning Machine (ELM) that overcomes some disadvan-
tages of gradient-based methods such as back-propagation and
its variant the Levenberg–Marquardt [2]. In the ELM, first the
input weights and hidden layer biases are randomly assigned
and then the output weights are analytically determined through
solving a linear system by using Moore–Penrose (MP) general-
ized inverse. Using this strategy, ELM not only can be thousands of
times faster than traditional learning algorithms but it can also
obtain SLFNs with better generalization performance [3,4]. ELM also
avoids many difficulties faced by gradient-based learning methods
such as stopping criteria, learning rate, learning epochs, and local
minima [3,5].

However, ELM tends to require more hidden neurons than
traditional tuning-based algorithms in many cases [3], which may
lead ELM to respond slowly to unknown data [4]. Thus, in [3], Zhu
et al. used an evolutionary algorithm to select the input weights of
a SLFN and the Moore–Penrose generalized inverse to analytically
determine the output weights. Using this method, they were able
to achieve SLFNs more compact (with less hidden neurons) with
good generalization performance. Particle Swarm Optimization
(PSO) [6] has also been combined with ELM in order to improve
the generalization capacity of the SLFNs. PSO has some advantages

with respect to evolutionary algorithms [4]. PSO for example has
no complicated operators as evolutionary algorithms and it has
less parameters which need to be adjusted [7]. In 2006, Xu and
Shu presented an evolutionary ELM based on PSO, PSO-ELM, and
applied this algorithm in a prediction task [8]. In 2011, Han et al.
[9] proposed an Improved Extreme Learning Machine, IPSO-ELM,
that uses an improved PSO with adaptive inertia to select the input
weights and hidden biases of the SLFN. However, unlike the PSO-
ELM, the IPSO-ELM optimizes the input weights and hidden biases
according to the RMSE on the validation set only (instead of the
whole training set to avoid overfitting [3]) and the norm of the
output weights. Thus, IPSO-ELM algorithm can obtain good per-
formance with more compact and well-conditioned SLFN than
other approaches of ELMs.

In all these works, the social topology used in the PSO is the
Global. In Global topology, all particles are fulled connected. That
is, each particle can communicate with every other particle. In this
case, each particle is attracted towards the best solution found by
the entire swarm. Besides of the Global topology, other topologies
were designed to improve the performance of the PSO. As
observed in [10], the performance of the PSO depends strongly
on its topology and there is no outright best topology for all
problems. An improper choice of the topology may lead the PSO to
premature convergence or may lead to low search efficacy [11].
Thus, it is important to investigate the effect of the PSO topologies
on the performance of the PSO-ELM in the training of SLFNs.

Studies on the effect of the PSO topology on the performance of the
PSO in training neural networks have been carried out in [12]. Van
Wyk and Engelbrecht investigated the overfitting in neural networks
trained with the PSO based on three topologies: Global, Local and
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Von Neumann [13]. Cheng et al. [11] studied the effect of the
topologies on the swarm diversity in several benchmark problems.

In a previous work [14] we studied the effect of five topologies
(Global, Local, Von Neumann, Wheel and Four Clusters) on the
performance of the PSO-ELM. In this paper, we carried out an
extension of this previous work including more datasets (more
classification datasets and function approximation problem) and
two dynamic topologies, Clan and Multi-Ring. These new topolo-
gies are appropriate topologies for multi-modal problems [15,16].

The rest of this paper is organized as follows. Section 2 presents
the ELM algorithm. Section 3 presents the PSO algorithm and the
topologies used in this work. The experimental arrangement is
detailed in Section 4. Section 5 discusses the experimental results.
Finally, Section 6 summarizes our conclusions.

2. Extreme learning machine

Given N distinct training samples ðxi; tiÞARn �Rm, where xi is
the input pattern i such that xi ¼ ½xi1; xi2;…; xin�T and ti is the target
i such that ti ¼ ½ti1; ti2;…; tim�T . A SLFN with K hidden nodes and
activation function gð�Þ can approximate these N samples with zero
error. This means that

Hβ¼ T; ð1Þ
where H¼ fhijg (i¼ 1;…;N and j¼ 1;…;K) is the hidden layer
output matrix, hij ¼ gðwT

j � xiþbjÞ denotes the output of jth hidden
node with respect to xi; wj ¼ ½wj1;wj2;…;wjn�T denotes the weight
vector connecting the jth hidden node and the input nodes, and bj
is the bias (threshold) of the jth hidden node; β¼ ½β1; β2;…; βK �T is
the matrix of output weights and βj ¼ ½βj1; βj2;…; βjm�T (j¼1,…,K) is
the weight vector connecting the jth hidden node and the output
nodes; T¼ ½t1; t2;…; tN �T denotes the matrix of targets.

ELM works as follows. Initially the ELM generates the input
weights and hidden biases randomly. Next, the determination of
the output weights, linking the hidden layer to the output layer,
consists in finding simply the least-square solution to the linear
system given by Eq. (1). This solution is given by the following
equation:

β̂ ¼H†T; ð2Þ
where H† is the Moore–Penrose (MP) generalized inverse of matrix H.

3. Particle swarm optimization

This section presents the basic algorithm of Particle Swarm
Optimization and the information sharing topologies.

3.1. Basic concepts

The Particle Swarm Optimization (PSO) is a population-based
stochastic optimization technique developed by Kennedy and
Eberhart in 1995 [6]. PSO is inspired by the social behavior of
biological organisms such as birds in a flock [4]. In PSO, each
particle represents a candidate solution within a n-dimensional
search space. The position of a particle i at iteration t is denoted by
xiðtÞ ¼ ½xi1; xi2;…; xin�. At every iteration of the PSO, each particle
moves through the search space with a velocity viðtÞ ¼ ½vi1; vi2;…;

vin� calculated as follows:

vijðtþ1Þ ¼wvijðtÞþc1rj1½yijðtÞ�xijðtÞ�þc2rj2½ŷijðtÞ�xijðtÞ�; ð3Þ
where jA ½1;2;…;n� is a dimension of the search space, w is
the inertia weight, yiðtÞ is the personal best position of the particle
i at iteration t and ŷðtÞ is the global best position of the swarm
iteration t. The personal best position is named pbest and it
represents the best position found by the particle during the

search process until the iteration t. The global best position is
named gbest and it represents the best position found by the entire
swarm until the iteration t. The parameters c1 and c2 are accelera-
tion coefficients and the terms rj1 and rj2 are random numbers
sampled from an uniform distribution Uð0;1Þ. The velocity is limited
to the range ½vmin; vmax�. After updating velocity, the new position of
the particle i at iteration tþ1 is calculated using the following
equation:

xiðtþ1Þ ¼ xiðtÞþviðtþ1Þ: ð4Þ
In [17], Shi and Eberhart proposed an adaptive inertia in which

the parameter w reduces gradually as the iteration increases
according to the following equation:

wðtÞ ¼wmax�t � ðwmax�wminÞ
tmax

; ð5Þ

where wmax is the initial inertia weight, wmin is the final inertia
weight and tmax is the maximum number of iterations.

Algorithm 1 summarizes the PSO.

Algorithm 1. PSO Algorithm.

1: Initialize the swarm S in the search space;
2: while maximum number of iterations is not reached do
3: for all particle i of the swarm do
4: Calculate the fitness of the particle i
5: Set the personal best position yiðtÞ;
6: end for
7: Set the global best position ŷðtÞ of the swarm;
8: for all particle i of the swarm do
9: Update the velocity viðtÞ;
10: Update the position xiðtÞ;
11: end for
12: end while

3.2. Topologies

The PSO described above is known as gbest PSO. In this PSO,
each particle is connected to every other particle in the swarm in a
type of topology referred to as Global topology. Different topolo-
gies have been developed for PSO and empirically studied [10],
each affecting the performance of the PSO in a potentially drastic
way [13,18]. Some of the most common topologies are [11,10]:

Global or Star: In Global topology, the particles are fully con-
nected and each particle communicates with every other particle of
the swarm as illustrated in Fig. 1a. Thus, each particle is attracted
towards the best solution found by the entire swarm. In this
topology particles can spread information quickly through the
swarm and it has faster convergence than other topologies, but
with a susceptibility to be trapped in local minima [10].

Local or Ring: The Local topology was proposed as a way
to deal with problems in which the Global topology fails. That
is, problems that contain cliffs, variable interactions, and other
features that are not typified by smooth gradients [19]. In the Local
topology, each particle communicates with its nN immediate
neighbors. Thus, instead of a global best particle, each particle
selects the best particle in its neighborhood. When nN¼2, each
particle within the swarm communicates with its immediately
adjacent neighbors as illustrated in Fig. 1b. The particles are
typically included in their own neighborhood. Thus, they may
influence themselves, if they have found the best problem solution
in the neighborhood so far [19,10]. Using this topology, different
regions of the search space can be explored simultaneously [16].

Von Neumann: In Von Neumann topology, each particle is
connected to its left, right, top and bottom neighbors on a two
dimensional lattice. For example, in a swarm with 20 particles, the
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particles are arranged in a grid 5�4 whose edges are wrapped
[19]. In some studies, this topology has shown to be more
promising than other topologies [10].

Wheel: In Wheel topology, the particles are isolated from one
another and one particle serves as the focal point in which all
information flow occurs, as illustrated in Fig. 1d. In this paper, the
focal particle was chosen randomly.

Four Clusters: In Four Clusters topology, the swarm is divided
into four subgroups in which each subgroup is a star topology.
Each subgroup has three particles connected to the three other
groups as illustrated in Fig. 1e.

The neighborhood of the particles in all topologies is based on
their indexes. For a more detailed description of these topologies,
the reader may consult [10].

All topologies aforementioned are static topologies, that is, the
neighborhood of each particle does not change during the search
process. More recently dynamics topologies have been proposed
in the literature. For example, Bastos-Filho et al. [15] proposed a
topology named Multi-Ring [15] and Carvalho et al. [16] proposed
a topology named Clan. In all these topologies, the neighborhood
of the particles varies over the iterations. These topologies are
explained hereafter:

Clan Topology: In Clan topology, the swarm is divided into
subswarms named clans and each clan has a fully-connected
structure (gbest topology). Fig. 2a shows a swarm divided into
four clans. In each iteration of the PSO, each clan performs a search
and the particle that had reached the best solution of the entire
clan is chosen as the leader for its clan. Once leaders are
determined, a process named conference occurs. In the confer-
ence, the leaders generate a new swarm using a Global topology
and adjust their positions using this topology. Fig. 2b illustrates
the conference process of the leaders. In Fig. 2b, the leaders (in
gray) are placed together in the same swarm and the leaders need

to decide which of them is the gbest. The conference process uses
only the leaders of each clan to perform a new PSO search. The
leaders attending the conference may change in the course of the
search process.

The conference can also be performed using the Local topology
instead of Global topology. Fig. 3 illustrates a conference among
leaders using the Local topology. In this paper, three clans were
used as in [16] in the Clan-Global and Clan-Local topologies.

Multi-Ring Topology: The Multi-Ring is inspired in the ring top-
ology. This topology is formed by layers stacked one over the other
using the ring topology as illustrated in Fig. 4. Fig. 4 shows an
example of this topology with n layers. Each layer has the same
number of particles. The Multi-Ring topology is similar to the Von
Neumann topology but the first layer does not communicate with
the nth layer. Thus, let ki be ith particle in the layer k then the
neighbors of the particle ki are fki�1; kiþ1; ðkþ1Þi; ðk�1Þig if 1okon.
Otherwise, the neighbors of the particle ki are fki�1; kiþ1; ðkþ1Þig if
k¼ 1 or fki�1; kiþ1; ðk�1Þig if k¼n.

During the search process, the particles of same layer may
stagnate in many regions of the search space. This fact in turn may
lead the stagnation of the entire swarm [15]. In order to try to solve
this problem, the Multi-Ring topology has a strategy in which
the layers can rotate and thus to change the neighborhood of
the particles. The rotation process occurs as follows. If layer k does
not improve its own best solution, this layer is rotated. Thus, each
particle in this layer has its index modified to i¼ ðiþdÞmodðnlÞ,
where d is the rotation distance and nl is the number of particles in a
layer. For illustrating the rotation process, consider Fig. 5. Initially,
particle E communicates with particles fD; F;B;Hg. After the rotation
process, the neighborhood of particle E is modified to fD; F ;A;Gg. This
process improves the information flow in the swarm and hence it
also improves the convergence capacity of the swarm. It is important
to note that not only particle E changes its neighborhood, but all

Fig. 1. Topologies of the PSO: (a) Global, (b) Local, (c) Von Neumann, (d) Wheel, (e) Four Cluster.
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other particles of the same layer change too. The rotation process
starts when the best solution of the layer does not change during tr
iterations. In this paper, we used nl¼4 (i.e., the number of rings
was 5), tr¼20 and d¼ nl=2. The value d¼ nl=2 was chosen according
to the recommended by [15].

4. Experimental arrangement

4.1. PSO-ELM description

The combination of the PSO with the ELM used in this paper was
defined as follows. The PSO was used to select the input weights and
hidden biases of the SLFN, and the MP generalized inverse is used to
analytically calculate the output weights using a training set. Thus,
each particle in the swarm represents the input weights and the
hidden biases. For example, the particle i is given by xi ¼ ½w11;

w12;…w1n;…w21;w22;…w2n;…;wK1;wK2;…wKn; b1; b2;…; bK �. The
fitness of each particle is adopted as the root mean squared error
(RMSE) on the validation set. We used the RMSE because it is a
continuous metric thus the search process can be conducted smoothly.
The RMSE on the validation set was also used in [4] both to prediction
and classification problems. In the SLFN trained by ELM, the activation
function was the sigmoid function given by the following equation:

gðvÞ ¼ 1
1þe�v: ð6Þ

4.2. Performance metrics

In order to evaluate the performance of PSO-ELM, two metrics
are used: the root mean squared error (RMSE) over the validation
set referred to as RMSEV and the testing accuracy denoted by TA.
The testing accuracy TA refers to the percentage of correct
classifications produced by the trained SLFNs on the testing set
and it is given by the following equation:

TA¼ 100� nc

nT
; ð7Þ

Fig. 2. Clan topology: (a) individual clans, (b) conference of the leaders with Global topology.

Fig. 3. Conference of the leaders with local topology.

Fig. 4. Multi-Ring topology.

Fig. 5. Rotation skill example.
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where nT is the size of the testing set and nc is the number of
correct classifications in this set.

The RMSE on the validation set of size N is calculated using the
following equation:

RMSEV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i ¼ 1∑
m
j ¼ 1ðti;j�oi;jÞ2
N �m

s
; ð8Þ

where m is the number of output units in the SLFN, ti;j is the target
to the pattern i in the output j, oi;j is the output obtained by the
network to the pattern i in the output j and N is the number of
samples.

Other metric used in this work is the global swarm diversity DS

[20] that is calculated as follows:

DS ¼
1
jSj ∑

jSj

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
I

k ¼ 1
ðxik�xkÞ2

s
; ð9Þ

where jSj is the swarm size, I is the dimensionality of the search
space, xi and x are particle position i and the swarm center,
respectively. This metric is used to measure the convergence of the
PSO. In this metric, a small value indicates swarm convergence
around the swarm center while a large value indicates a higher
dispersion of particles away from the center.

4.3. Problem sets

In order to evaluate the effect of the several topologies on the
performance of the PSO-ELM, we used nine benchmark classifica-
tion problems and one regression problem. The classification
datasets are obtained from UCI Machine Learning Repository [21]
and they present different degrees of difficulties and different
number of classes. The classification problems and chosen sizes of
the hidden layer are given in Table 1. The sizes of the hidden layer
used were the same as [22] for the problems Cancer, Diabetes,
Glass, Heart, Iris, Ecoli, and as [23] for the problems Ionosphere,
Sonar, Vehicle. For all the datasets, the data was treated as
presented in [22], that is, the attributes have been normalized into
the range [0,1], while the outputs (targets) have been normalized
into [�1,1]. Each dataset was divided into training, validation and
testing sets, as specified in Table 2. This division was based on
[22,23] depending on the dataset. For all topologies, 30 indepen-
dent executions were done for each dataset. The training, validation
and testing sets were randomly generated at each trial of simula-
tions. All topologies were executed on the same sets generated.

4.4. PSO configuration

In this paper the parameters used in the PSO were defined as
follows. The coefficients c1 and c2 were both set to 2.0 and the
adaptive inertia was used where the initial inertia is 0.9 and the
end inertia is 0.4. All components are limited within the range

½�1;1� and we used vmax ¼ 1 and vmin ¼�1 for all dimensions
of the search space. The swarm size used was 20. A small number
of particles was used because we wanted to observe the effect of
topology on information sharing. If we use a very large number
of particles as in [9,4,3], the effect of the topology on the
communication of the particles could be hidden. The PSO was
executed for 1000 iterations. We use many iterations because we
wanted to provide enough time for the exchange of information
between the particles for all topologies.

5. Experiment results and discussion

This section presents the experimental results and analyses of
the effect of the PSO topology on performance of the PSO-ELM.
First we analyzed the evolution of the RMSEV along the iterations
in order to observe the behavior of the PSO (Section 5.1). Due
to space limitations, we restrict this analysis only to the Vehicle
dataset. Vehicle is considered one of the most difficult dataset of
the UCI repository. Then we show the performance of the eight
topologies on the nine datasets using the three metrics: RMSEV, TA
and DS (Section 5.2). However, it is necessary to assess whether
the performance of the topologies is statistically different on all
datasets. Thus, we performed the one-way analysis of variance
(ANOVA) with 5% of significance on all experiments (Section 5.3).

5.1. Evolution of the RMSEV for Vehicle dataset

In this section, we analyzed the evolution of the RMSEV along
the iterations in order to observe the behavior of the PSO. The
objective of this section is to verify if the PSO works as expected.
Fig. 6 shows the evolution of the RMSEV on the eight topologies
investigated. This graph corresponds to the mean over 30 samples.
As can be seen from the graph, all topologies had similar behavior

Table 1
Specification of the classification problems used in the experiments.

Problem Attributes Classes Hidden nodes

Cancer 9 2 5
Pima Indians Diabetes 8 2 10
Glass Identification 9 6 10
Statlog Heart 13 2 5
Iris 4 3 10
Ecoli 7 8 20
Ionosphere 34 2 20
Sonar 60 2 20
Vehicle 18 4 20

Table 2
Partition of the datasets used in the experiments.

Problem Training Validation Testing Total

Cancer 350 175 174 699
Pima Indians Diabetes 252 258 258 768
Glass Identification 114 50 50 214
Statlog Heart 130 70 70 270
Iris 70 40 40 150
Ecoli 180 78 78 336
Ionosphere 175 88 88 351
Sonar 104 52 52 208
Vehicle 423 212 212 846
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Fig. 6. RMSEV over time on the Vehicle dataset. Graph shows mean over 30 runs.
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up to approximately 200th iteration. After this iteration, the
decrease in the RMSEV occurred differently for each topology up
to 700th iteration. In particular, the Wheel topology reached lower
RMSEV in this stage than with other topologies. After the 700th
iteration, the PSO begins the exploitation process. Again, this
happens in a different way for each topology. The Wheel topology,

for example, starts the exploitation stage later than other topol-
ogies. On the other hand, the other topologies start the exploita-
tion stage approximately at the same time. By the end of the
search process, the Wheel topology reached a worse RMSEV than
other topologies. On the other hand, the Global topology reached
the best RMSEV value for this problem.

Table 3
Performance of the eight topologies on datasets Vehicle, Ionosphere and Sonar.

Topology RMSEV TA ð%Þ DS

Vehicle
Global 0.556570.0174 77.4972.22 3.556370.9151
Local 0.565970.0118 77.6872.64 7.782470.2122
Von Neumann 0.560670.0153 77.6072.12 6.837970.8367
Wheel 0.570970.0163 77.5772.80 5.993570.8497
Four Clusters 0.559670.0136 77.8872.49 7.225970.3611
Multi-Ring 0.564270.0125 77.9572.28 7.482270.5445
Clan Global 0.559270.0149 78.1872.54 7.855370.3691
Clan Local 0.569770.0137 77.3672.83 8.282570.3247

Ionosphere
Global 0.419670.0526 88.4574.08 4.825271.0642
Local 0.449370.0495 88.9073.53 10.747070.2648
Von Neumann 0.428570.0464 88.0373.97 9.308571.0479
Wheel 0.478770.0633 88.6773.67 8.283270.8108
Four Clusters 0.437070.0575 88.8373.07 9.941570.4645
Multi-Ring 0.438170.0548 88.7574.21 10.399170.4644
Clan Global 0.423970.0486 89.3273.45 11.020370.4039
Clan Local 0.468970.0498 88.6473.24 11.370370.4413

Sonar
Global 0.324270.0588 76.9976.03 4.251771.2101
Local 0.406770.0591 76.0376.64 13.807370.2837
Von Neumann 0.378070.0462 75.9075.57 10.965171.5757
Wheel 0.440870.0926 75.9075.64 9.738171.9339
Four Clusters 0.354870.0546 74.8775.67 12.280170.7902
Multi-Ring 0.393570.0523 77.6976.01 12.809670.8124
Clan Global 0.343170.0435 76.7377.66 13.834170.4714
Clan Local 0.452470.0403 75.0675.59 14.673170.3839

Table 4
Performance of the eight topologies on datasets Cancer, Diabetes and Ecoli.

Topology RMSEV TA ð%Þ DS

Cancer
Global 0.289870.0418 96.3871.28 0.778770.1867
Local 0.300870.0391 96.4071.32 3.038470.1396
Von Neumann 0.295470.0417 96.3671.34 1.940570.4816
Wheel 0.301670.0407 96.4471.40 1.315870.4965
Four Clusters 0.298070.0400 96.4071.46 2.636070.2826
Multi-Ring 0.296370.0402 96.3071.45 2.393770.3064
Clan Global 0.290370.0394 96.3471.33 3.154570.2891
Clan Local 0.297370.0389 96.4871.30 2.957770.4175

Diabetes
Global 0.760070.0261 76.6572.19 2.074070.4341
Local 0.762070.0225 76.6571.92 3.964270.1577
Von Neumann 0.757670.0225 76.4571.79 3.595470.4541
Wheel 0.764970.0259 76.4972.07 2.831270.4015
Four Clusters 0.757270.0243 76.6771.95 3.743570.2525
Multi-Ring 0.759470.0232 77.1272.18 3.867370.2629
Clan Global 0.757170.0224 76.5871.96 4.009270.2314
Clan Local 0.759370.0237 76.4172.10 4.129070.2733

Ecoli
Global 0.360670.0580 84.2373.97 3.257870.4549
Local 0.350670.0404 84.6274.31 5.547570.2585
Von Neumann 0.350870.0451 84.1974.32 5.089170.3584
Wheel 0.355970.0416 83.9774.49 4.329670.6231
Four Clusters 0.361770.0569 83.9374.22 5.347570.3268
Multi-Ring 0.359270.0575 84.2373.90 5.387570.3091
Clan Global 0.359370.0551 84.5773.92 5.490070.2691
Clan Local 0.359270.0471 83.9774.88 5.570970.2576
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5.2. Performance of topologies on classification datasets

The main objective of the experiments is to investigate the
influence of different topologies on the performance of a PSO-ELM.
The results of the experiments are organized in tables for the
datasets. The RMSEV, TA and DS are emphasized in bold to indicate
the best value obtained among the topologies and the results
are for 30 independent executions. Table 3 shows the results for
Vehicle, Ionosphere and Sonar datasets in which the Global
topology reached the smallest RMSEV and DS on the three datasets.

Tables 4 and 5 show the results for the other six datasets. As
can be seen from these three tables, the Global topology reached
the best RMSEV in five datasets (Vehicle, Ionosphere, Sonar, Cancer
and Heart). For the other datasets the best topologies were Local,
Von Neumann, Four Clusters and Clan-Global. In general, we
observed that in problems with more than four classes (Glass
and Ecoli), the topologies less connected (Von Neumann and Local)
presented better RMSEV than other topologies. On the other hand,
in problems with few classes (r4), the topologies more connected
(Global, Clan-Global, Four Clusters) presented better RMSEV than
other topologies. In terms of diversity, the Global topology reached
lower values than other topologies on all datasets, this means that
the particles, in the end of the algorithm, are near each other
around the center of swarmwhat may indicate convergence of the
swarm. This result is according to what we expected from this
topology and a similar result was obtained by [13] in the case in
which neural networks are fully trained by PSO. From an empirical
analysis of the experimental results, we may conclude that the
performance of the PSO with respect to RMSEV (that is the fitness
function) depends on its topology. This analysis is consistent with
the literature [10,11,15,16,19] that says that the topologies have
different performances depending on the problem. However, it is
important to say that the RMSEV is statistically similar for the
topologies Global, Von Neumann, Four Clusters and Clan-Global as
we are going to see in the next section.

5.3. Statistical analysis of experimental results on
classification datasets

So far our analysis on the RMSEV and TA was empirical.
However, it is necessary to assess whether the performances of
the topologies are statistically different on all datasets. Thus, we
performed the one-way analysis of variance (ANOVA). To use
ANOVA is necessary to know if the RMSEV samples came from a
normal distribution for all topologies for each dataset. Thus,
we used the normality test known as Lilliefors test with 1% of
significance for all topologies in each dataset. We conclude that all
topologies come from a normal distribution for all datasets except
to the Ecoli dataset. Moreover, for each dataset, it is necessary to
verify whether the RMSEV samples of the different topologies have
the same variance. We used Bartlett's test (Matlab function
vartestn) with 5% of significance to verify this hypothesis. Thus
we conclude that the variances of the distributions of all topolo-
gies are the same for all datasets except to Sonar dataset. Therefore
we performed the ANOVA analyses in all datasets except to the
datasets Ecoli and Sonar because in these datasets the two
hypotheses for using the ANOVA were not satisfied. We used the
ANOVA with 5% of significance (Matlab function anova). We verify
that the means of all topologies are equal in each dataset except to
the datasets Vehicle and Ionosphere.

In order to find out what are the different topologies, we
performed a multiple comparison analysis with 5% of significance
(Matlab function multcompare). Fig. 7 shows the confidence inter-
vals with 95% of confidence of the topologies for Vehicle dataset.
As can be seen from this figure, there are a significance difference
between the Global topology and the Wheel topology with respect
to RMSEV.

Fig. 8 shows the confidence intervals with 95% of confidence of
the topologies for the Ionosphere dataset. In this dataset, the
Global, Von Neumann and Clan Global topologies are better than
the Wheel topology.

Table 5
Performance of the eight topologies on datasets Glass, Heart and Iris.

Topology RMSEV TA ð%Þ DS

Glass
Global 0.546070.0324 64.2775.50 2.226970.4757
Local 0.553970.0298 63.3375.74 4.274270.1323
Von Neumann 0.544170.0266 63.6776.10 3.657170.3624
Wheel 0.557370.0275 62.0776.07 3.186870.5424
Four Clusters 0.547370.0315 62.4075.79 4.028170.1995
Multi-Ring 0.544970.0297 62.5376.66 3.993870.2639
Clan Global 0.544470.0290 63.6076.44 4.310870.2347
Clan Local 0.551470.0290 62.3376.08 4.423370.2285

Heart
Global 0.572570.0410 81.9074.81 0.926770.2427
Local 0.604570.0470 81.6274.80 3.563270.1663
Von Neumann 0.593370.0437 81.8174.71 2.517570.5661
Wheel 0.606270.0506 82.4874.55 1.885870.5036
Four Clusters 0.589870.0436 82.0075.21 3.065170.4207
Multi-Ring 0.593870.0445 82.1975.32 2.942170.4551
Clan Global 0.587070.0470 81.6775.57 3.641370.2493
Clan Local 0.597070.0464 82.3874.32 3.667470.2733

Iris
Global 0.293170.0479 95.6772.70 1.620570.3058
Local 0.296870.0441 96.4272.68 3.149770.1504
Von Neumann 0.289370.0486 96.3372.60 2.764770.2156
Wheel 0.303470.0422 95.5072.66 2.221070.3820
Four Clusters 0.288770.0447 95.5872.68 2.880770.1909
Multi-Ring 0.292770.0453 96.2573.06 2.854670.2098
Clan Global 0.294170.0477 95.6772.78 3.095770.1607
Clan Local 0.294270.0472 95.9272.58 3.139570.2255
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We performed a similar analysis for the metric TA. We applied
the ANOVA method for all datasets except to the datasets Heart,
Ionosphere and Iris because these datasets do not satisfy the
assumptions of the ANOVA. We conclude that all topologies have
the same performance in terms of TA for the datasets Cancer,
Diabetes, Glass, Ecoli, Vehicle and Sonar.

5.4. Evaluating the PSO-ELM in a regression problem

In this section, we carried out an experiment to evaluate all
topologies in an approximation function problem. The function
used was the ‘SinC’ function:

y¼ sin ðxÞ=x if xa0;
1 if x¼ 0:

�
ð10Þ

For this experiment, we created a training set ðxi; yiÞ and a
testing set ðxj; yjÞ with 1000 data, respectively, where xi’s and xj’s
are randomly distributed on the interval ð�10;10Þ according to a
uniform distribution. In order to make the regression problem
‘real’, large uniform noise distributed in [�0.2,0.2] has been added
to all the training samples while the testing samples remain noise-
free. In each trial of simulation, we created a new training set and
a new testing set. In each simulation, the whole training set was
divided into two sets (training and validation) with equal sizes
(500 samples to each one). In this experiment, we used the same
parameters used in the classification problems in the PSO-ELM but
we executed it with 10 hidden nodes.

The results are presented in Table 6, where RMSET represents
the root mean squared error on testing set. All topologies reached
similar values for the metric RMSEV but they reached empirically
different values for the metric RMSET. However, all topologies have

the same performance in terms of RMSET (using a similar statistical
analysis as done for the classification problems).

Fig. 9 shows the true and the approximated function of the
PSO-ELM learning algorithm using the Global topology.

6. Final considerations

This paper investigated the use of eight topologies on the
performance of a PSO-ELM. The empirical results clearly showed
that the topologies have different performance. We emphasize
the difference on performance mainly to metric RMSEV which is
the function being optimized and to metric DS that measures the
convergence of the PSO. In our experiments, the Global topology
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Fig. 9. Outputs of the PSO-ELM learning algorithm using the Global topology.

Table 6
SinC results after 1000 iterations. Performance of the eight topologies over 30 executions is reported with standard deviations.

Topology RMSEV RMSET ð%Þ Diversity

Global 0.116270.0021 0.017570.0031 1.023370.1871
Local 0.116270.0021 0.017870.0031 1.846070.2376
Von Neumann 0.116270.0020 0.018070.0032 1.677270.2605
Wheel 0.116270.0020 0.017770.0034 1.306370.3074
Four Clusters 0.116270.0020 0.018170.0031 1.737070.2487
Multi-Ring 0.116270.0020 0.018470.0033 1.763470.1883
Clan Global 0.116270.0020 0.017370.0028 1.751370.1558
Clan Local 0.116270.0021 0.017870.0036 1.789670.2036
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Fig. 7. Confidence intervals of the RMSEV with 5% of confidence for the Vehicle dataset.
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Fig. 8. Confidence intervals of the RMSEV with 5% of confidence for the Ionosphere dataset.
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reached empirically the best RMSEV on most of the datasets
(Vehicle, Ionosphere, Sonar, Cancer and Heart). For the other datasets,
the best topologies were Local, Von Neumann, Four Clusters and
Clan-Global. In particular, we noted that, in the evaluated datasets,
the topologies more connected (Global, Clan-Global, Four Clusters)
presented better RMSEV than other topologies on datasets with few
classes (r4). On the other hand, the topologies less connected (Von
Neumann and Local) presented better RMSEV than other topologies
on datasets with many classes. The experiments show that the
performance, measured by testing accuracy (TA), is statistically equal
using all topologies. In terms of diversity, the Global topology
reached lower values than other topologies on all datasets, this
means that the particles, in the end of the algorithm, are near each
other around the center of swarm. This fact indicates that when the
PSO uses this topology the particles converge more fast than when
using other topologies. Future work includes investigating the effect
of velocity clamping as well as the other parameters of the PSO
(w,c1,c2) on the performance of the PSO-ELM.
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