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Abstract In a paper on quantum neural networks, Zhou and Ding (Int. J. Theor. Phys.
46(12):3209-3215 (2007)) proposed a new model of quantum perceptron denoted quantum
M-P neural network and showed its functionality by an example. In this letter, we show
that the proposed learning algorithm does not follow an unitary evolution and the proposed
neuron can be efficiently simulated by a classical single layer neural network.
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1 Introduction

In [2] Kak proposed an idea of quantum neural computation. Since then, several researchers
have proposed quantum neural networks [6–8] and quantum inspired neural networks [3, 4].
In [8] Zhou and Ding proposed a quantum perceptron; they called the new neuron model as
quantum M-P neural network (qMPN). The weights of qMPN are stored in a squared matrix
W . Let |x〉 be an input vector, the output |y〉 can be calculated as in (1).

|y〉 = W |x〉 (1)

Representing a neural network as a quantum operator can bring new possibilities to neural
computation. A quantum neural network can receive any superposition of quantum states
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at its inputs which can be seen as untrained data. The network operator acts linearly. For
instance, if a neuron with weight matrix W receives the input |α〉 = ∑n

k=1 αk|k〉 it will act
linearly in each value in the superposition and its output will be |y〉 = ∑n

k=1 αkW |k〉.
In Section 4.2 of [8] is presented a prepocessing step to work with non-orthogonal states.

This prepossessing step changes the input representation from qubits (or vectors) to a matrix
of inner products. Any quantum bit can be represented as a superposition of orthogonal vec-
tors and this step is not used in any other section of [8]. This prepocessing is a nonquantum
operation for it accesses the amplitudes since inner product is employed freely. Calculat-
ing the inner product with a basis element results the amplitude corresponding to that basis
element in a superposition.

In this letter we first show that the proposed learning algorithm for qMPN does not pre-
serve unitary operators and it can produce non unitary weight matrices. After these steps
we show that any qMPN can be efficiently simulated by a single layer neural network com-
posed of classical perceptrons and that the learning algorithm of the qMPN is exactly the
classical perceptron learning rule.

2 Learning Algorithm

The learning algorithm proposed in [8] for qMPN is described in Algorithm 1. The weights
update rule of Algorithm 1 is described in (2), where wij are the entries of the n × n matrix
W , 1 ≤ i, j, ≤ n, η is a learning rate, |d〉i and |y〉i corresponds to the ith probability
amplitude of n-dimensional qubits |d〉 and |y〉, and |x〉j is the j th probability amplitude of
the n-dimensional qubit |x〉.

wij (t + 1) = wij (t) + η (|d〉i − |y〉i ) |x〉j (2)

If |d〉 = α|0〉 + β|1〉, then |d〉1 = α and |d〉2 = β are the probability amplitudes of
the state |d〉. In quantum computation, one cannot direct access a probability amplitude [5].
Measuring a qubit returns only |0〉 with probability |α|2 or |1〉 with probability |β|2. There-
fore, the learning rule described in (2) is not a quantum learning rule and one cannot use a
quantum computer to train the qMPN with Algorithm 1.

One alternative is to use a classical computer to train the qMPN with Algorithm 1. How-
ever this strategy can lead to non-unitary neurons configurations, as we show in (3), where

W(0) =
[

0 1
−1 0

]

, |x〉 = 1√
2

(|0〉 + |1〉), |d〉 = 1√
2

(|0〉 + 1), and η = 1. After the first

learning algorithm iteration the qMPN will be represented by the matrix W(1). Clearly
W(1) is a non unitary operator. Quantum gates must be unitary operators [5], so the qMPN
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trained with this algorithm is not necessarily a quantum neuron. We conclude this paragraph
with Theorem 1.

|y〉 = W(0)|x〉 =
[

0 1
−1 0

]

· 1√
2

[
1
1

]

= 1√
2

[
1
−1

]

w00(t + 1) = w00(t) + η (|d〉0 − |y〉0) |x〉0 =
= 0 +

(
1√
2

− 1√
2

)

· 1√
2

= 0

w01(t + 1) = w01(t) + η (|d〉0 − |y〉0) |x〉1 =
= 1 +

(
1√
2

− 1√
2

)

·
(

1√
2

)

= 1

w10(t + 1) = w10(t) + η (|d〉1 − |y〉1) |x〉0 =
= −1 +

(
1√
2

+ 1√
2

)

·
(

1√
2

)

= 0

w11(t + 1) = w11(t) + η (|d〉1 − |y〉1) |x〉1 =
= 0 +

(
1√
2

+ 1√
2

)

·
(

1√
2

)

= 1

W(1) =
[

0 1
0 1

]

(3)

Theorem 1 qMPN learning rule does not preserve unitary operators.

We verified that Algorithm 1 is not a quantum algorithm. The main question in this letter
is about the differences between the perceptrons and the qMPN and if the Algorithm 1
presents some advantage when compared with classical neural networks learning algorithm.
Before start this analysis we define a classical neuron.

A neuron with inputs x1, x2, · · · , xn and weights w1, w2, · · · , wn and linear activation
function f has its output y described in (4). One possible weight update rule for an artificial
neuron is the Least Mean Square (LMS) rule [1] described in (5).

y = f

(
n∑

i=1

xi · wi

)

(4)

wi(t + 1) = wi(t) + η · (d − y) · xi (5)

Now we present an example with two artificial neurons, where the weights of the first
neuron are w11 and w12 and the weights of the second neuron are w21 and w22. If the
neurons receive an input

[
x1 x2

]
, then the output of the first neuron will be y1 = x1w11 +

x2w12 and the output of the second neuron will be y2 = x1w21 + x2w22.

One can organize the weights in a matrix W =
[

w11 w12
w21 w22

]

, the inputs in a vector

|x〉 = [
x1 x2

]T , and the neurons outputs can be calculated exactly as in (1), where |y〉 =
[
y1 y2

]T
. The desired outputs for |x〉 can be represented with a vector |d〉 = [

d1 d2
]
,

where di is the desired output of ith neuron, when |x〉 is presented. We rewrite (5) using a
matrix notation and we obtain exactly the learning rule in (2) that was proposed in [8].
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The authors also shown the capacity of the qMPN to solve non linearly separable pat-
terns. But to perform this task the values 00, 01, 10, 11 were associated with qubits in the
computational basis that are linearly independents.

3 Conclusion

We conclude claiming that for any qMPN one can create an equivalent classical single layer
neural network. We also verified that the learning algorithm proposed by Zhou and Ding
does not present any advantage over the classical ones and works exactly as the LMS rule.
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