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a b s t r a c t

Social class differences in the prevalence of Common Mental Disorder (CMD) are likely to vary according
to time, culture and stage of economic development. The present study aimed to investigate the use of
optimization of architecture and weights of Artificial Neural Network (ANN) for identification of the fac-
tors related to CMDs. The identification of the factors was possible by optimizing the architecture and
weights of the network. The optimization of architecture and weights of ANNs is based on Particle Swarm
Optimization with early stopping criteria. This approach achieved a good generalization control, as well
as similar or better results than other techniques, but with a lower computational cost, with the ability to
generate small networks and with the advantage of the automated architecture selection, which simplify
the training process. This paper presents the results obtained in the experiments with ANNs in which it
was observed an average percentage of correct classification of individuals with positive diagnostic for
the CMDs of 90.59%.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The Common Mental Disorders (CMDs), and among them the
anxiety and depression have been pointed out as the common
causes of morbidity in developed countries as much as in the
developing ones, as the example of Brazil. These mental disorders
represent a high social and economic charge because they are dis-
abled, they constitute important cause of lost of workdays and they
take a substantial use of health care services (Ludermir & Lewis,
2003). The use of techniques that may lead to an identification of
the factors that present the larger possibility of being related to
these CMDs it is of great relevance to assist within the process of
decision taking around the planning and intervention of public
health care. Artificial Neural Networks (ANNs) have been largely
used in the health care field and they are known because they gen-
erally obtain a good precision result (Marcano-Cedeño et al., 2013;
Babu & Suresh, 2013). When they are applied to epidemiological
data the ANNs have also had acceptance (Chernbumroong, Cang,
Atkins, & Yu, 2013).

With this research we intend, mainly, to experimentally display
that a MLP network trained with Particle Swarm Optimization
(PSO) (Kennedy & Eberhart, 1995) with early stopping criteria is
able to identify the factors related to the CMDs. Global search
ll rights reserved.
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techniques, such as Tabu Search (TS) (Glover, 1989), Evolutionary
Algorithms (EAs, like Genetic Algorithm - GA) (Eiben & Smith,
2003), Differential Evolution (DE) (Storn, 1999), Particle Swarm
Optimization (PSO) (Kennedy & Eberhart, 1995) and Group Search
Optimization (GSO) (He, Wu, & Saunders, 2009), are widely used in
scientific and engineering problems, and these strategies have
been combined with ANNs to perform various tasks, such as
connection weight initialization, connection weight training and
architecture design. PSO has some advantages with respect to
evolutionary algorithms. PSO for example has no complicated
operators as evolutionary algorithms and it has less parameters
which need to be adjusted (Kennedy & Eberhart, 1995).

The obtained results in the experiments with ANNs were com-
pared with the ones presented by Ludermir and Lewis (2003) who
applied the logistics regression method, using the same data basis
to analyze the independence of each variable association with the
CMDs. On the statistic analysis for the identification of the factors
related to the CMDs, it was estimated the simple and adjusted
odds-ratios, whose statistic significance was evaluated by the
Students t-test, considering the 95% confidence interval and values
of p < = 0.05.

The remainder of the article is organized as follows: Section 2
presents the standard PSO algorithm and the proposed methodol-
ogy, PSO–PSO:WD. Section 3 describes the data basis and Section 4
presents the experimental setup of this work. Section 5 presents
and analyzes the results obtained from the experiments and in
Section 6 we summarize our conclusions and future works.
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2. Particle Swarm Optimization

This section presents the basic algorithm of Particle Swarm
Optimization and the algorithm based on the interleaved execution
of two PSO algorithms.

2.1. Basic concepts

The Particle Swarm Optimization (PSO) is a population-based
stochastic optimization technique developed by Kennedy and
Eberhart in 1995. PSO attempts to model the flight pattern of a
flock of birds (Kennedy & Eberhart, 1995). In PSO, each particle rep-
resents a candidate solution within a n-dimensional search space.
The position of a particle i at iteration t is denoted by xi(t) = [xi1,
xi2, . . . ,xin]. In each iteration of the PSO, each particle moves through
the search space with a velocity vi(t) = [vi1, vi2, . . . ,vin] calculated as
follows:

v ijðt þ 1Þ ¼ wv ijðtÞ þ c1rj1½yijðtÞ � xijðtÞ� þ c2rj2½ŷijðtÞ � xijðtÞ�; ð1Þ

where w is the inertia weight, yi(t) is the personal best position of
the particle i at iteration t and ŷðtÞ is the global best position of
the swarm at iteration t. The personal best position is named pbest
and it represents the best position found by the particle during the
search process until the iteration t. The global best position is
named gbest and it represents the best position found by the entire
swarm until the iteration t. The terms c1 and c2 are acceleration
coefficients and are responsible for taking control of how far a par-
ticle can move in a single iteration. The terms rj1 and rj2 are random
numbers sampled from an uniform distribution U(0,1). The velocity
is limited to the range [vmin,vmax].

After updating velocity, the new position of the particle i at iter-
ation t + 1 is calculated using Eq. (2)

xiðt þ 1Þ ¼ xiðtÞ þ viðt þ 1Þ: ð2Þ

In Shi and Eberhart (1998), Shi and Eberhart proposed an adap-
tive inertia in which the parameter w reduces gradually as the iter-
ation increases according to Eq. (3)

wðtÞ ¼ wmax � t � ðwmax �wminÞ
tmax

; ð3Þ

where wmax is the initial inertia weight, wmin is the final inertia
weight and tmax is the maximum number of iterations. The inertia
weight can control the degree of exploration of the search.

The standard PSO algorithm is presented in Algorithm 1. Rapid
convergence in unimodal functions, with good success rate, and
premature convergence in multimodal functions are properties fre-
quently attributed to the standard PSO algorithm.

Algorithm 1. PSO Algorithm

1: Initialize the swarm S;
2: while stopping condition is false do
3: for all particle i of the swarm do
4: Calculate the fitness f(xi(t));
5: Set the personal best position yi(t);
6: end for
7: Set the global best position ŷðtÞ of the swarm;
8: for all particle i of the swarm do
9: Update the velocity vi(t);
10: Update the position xi(t);
11: end for
12: end while
2.2. The PSO–PSO Methodology

The methodology used to optimize weights and architectures of
MLP neural networks is based on the interleaved execution of two
PSO algorithms, one for weight optimization (inner PSO) and the
other for architecture optimization (outer PSO). This approach
was presented by Zhang and Shao in Zhang and Shao (2000), in
which few details were given on the performance of the optimized
neural networks.

In this methodology, the outer PSO simply searches for the
number of hidden units for each of the considered hidden layers
in the MLP network. In this work, we considered only network
architectures of one hidden layer, but the extension for a more
general case is straightforward. The inner PSO is responsible for
the optimization of weights for each of the architectures (parti-
cles) present in the outer PSO. At the end of the inner PSO exe-
cution for an architecture of the outer PSO, the best set of
weights found is recorded in the particle representing that archi-
tecture. The two processes are interleaved for a specific number
of times.

The PSO–PSO methodology developed in this work used a PSO
algorithm to search for architectures and a PSO with weight de-
cay (PSO:WD) to search for weights. The PSO:WD algorithm
was created in a previous work (Carvalho & Ludermir, 2006)
and has more generalization control than the standard PSO. For
the evaluation of performance of the particles of the two PSOs,
we used different partitions of the example patterns set. The
training set partition (50%) was used within the inner PSO to opti-
mize weights while the validation set partition (25%) was used
within the outer PSO to search for architectures. The remained
data (25%) was used to test the final MLP network found by the
process.

It should be noted that all the three partitions used in the
methodology are disjoint. That restriction is related to the aim
of improving the generalization control of the optimized net-
works. This can be done through the adjustment of the complex-
ity (number of hidden units) of the networks guided by data
examples different from the ones used to guide the search for
synaptic weights.

The complete algorithm for the methodology created in this
work is presented in Algorithm 2, in which the term Ai.net repre-
sents the vector used to record the best network found so far for
the architecture Ai. Note that this term is updated with the best
particle at the end of an execution of the inner PSO (line 7),
and is used to assist a new execution of the inner PSO with pre-
vious good results (line 5). The PSO:WD algorithm is better de-
scribed in Carvalho and Ludermir (2006) in which the standard
PSO is combined with weight decay heuristic as an attempt to
improve the generalization performance of the trained MLP
networks.
3. Data basis description

Data collection was community-based through interviews and
assessment of mental health status from a research made in the
city of Olinda, Brazil by Ludermir and Lewis (2003). With that re-
search Ludermir and Lewis (2003) determined the prevalence of
the CMDs in that area, and analyzed the association with living
and work conditions.

The study was developed with 621 adults of an aleatory domi-
cile sample and the analysis of data was made using a statistic
model of logistic regression.
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Algorithm 2. PSO–PSO:WD Algorithm for simultaneous optimiza-
tion of weights and architectures
1: Initialize the swarm - the population of architectures A;
2: while stopping condition is false do
3: for all particle Ai of the swarm A do
4: Initiate PSO:WD Pi;
5: Insert Ai.net into Pi;
6: Execute Pi by t iterations through training set;
7: Ai:net ¼ Pi:ŷ;
8: Evaluate f(Ai.net) trough validation set;
9: end for
10: for all particle Ai of the swarm A do
11: Update the velocity vi(t);
12: Update the position xi(t);
13: Update the Ai.net to the new architecture

represented by Ai;
14: end for
15: end while

The data set has the following variables: age, literacy, migration,
education, house ownership, insertion on the productive process,
housing conditions, gender, marital status, income and possession
of household appliances.

The living conditions were measured from the variables of liter-
acy, education, house ownership, housing conditions and posses-
sion of household appliances. As for the work conditions, the
observed variables were performed by means of insertion in the
productive process and household per capita monthly income.
The total prevalence of the CMDs in the studied sample was 35%,
216 cases.

All variables in the date set are ordinal/categorical and, for the
execution of the experiments with ANNs, were codified with
discrete numbers between 0 and 1. The network output was
defined with two nodes, having the 1 0 value used to represent
those cases with the positive diagnose for the CMDs, and 0 1 for
those cases with the negative diagnose.

Since the basis of the original data there were only 35% (216) of
positive diagnose cases of CMDs, the experiments were performed
ensuring the balance of the data with the same amount of the dis-
order bearer and non-bearer individual in the training, validation
and test sets. That way, it was excluded the exceeding cases that
presented negative diagnose for the CMDs. For the exclusion of
the exceeding patterns, we used the following procedure: (1) it
was taken out the patterns with missing information; (2) after
the mixing of the left data, it was randomly selected 216 patterns
for the composition of the basis.

After the exclusion of the exceeding patterns, a new mixing was
made, at this time with the 432 patterns, willing the division of the
new mixing set in training, validation and test sets. For that divi-
sion it was followed what the Proben1 (Prechelt, 1996) suggests:
50% of the patterns for the training set (216); 25% for the validation
set (108 cases); 25% for the tests set (108 cases).
4. Experimental setup

The experiments included the use of a network MLP, trained
with the PSO–PSO:WD algorithm for the simultaneous optimizing
of the architecture (input nodes, hidden nodes and connections)
and the weights of the network. It was observed the variables that
were mostly used for the results obtaining on every execution of
the algorithm, and with that, to identify those, which presented
grater possibility of being related with the studied problem. This
technique was adapted from Zanchettin, Ludermir, and Almeida
(2011). The obtained results were compared with those presented
by Ludermir and Lewis (2003) applying the statistic model of logis-
tic regression.

The experiments were executed in two distinct stages: (1) in
the beginning the data set was composed with all the data basis
variables, in a total of 11; (2) from the obtained results in first
experiments, it was performed new experiments with the number
of resultants input variables, in a total of 7. These 7 variables were
chosen based on the number of times the algorithm had chosen
such variables. That is the most used variables (in terms of percent-
age) were chosen.

The algorithm was implemented in a way to optimize not only
the units of the network input, but also the nodes of the hidden
layer and connections. Since the PSO–PSO:WD is probabilistic
and on each execution of it by weights initializing it may result
in different topologies, it was necessary the definition of a initial
topology containing one hidden layer with four nodes and having
all the possible feedfoward connections between the adjacent lay-
ers (this initial topology was defined for the two experiment
stages). For definition of the number of nodes of the hidden layer,
several experiments were accomplished varying that parameter.
Topologies were tested containing up to sixteen nodes in the hid-
den layer. The use of more than 4 nodes in the hidden layer did not
influence in improvement results of the experiments. A created
network was valid if it has a minimum of one node at the hidden
layer. If one created solution was not a valid network, a new solu-
tion was created in the neighborhood.

Ten aleatory weights initializing were done, and for each initial-
izing, thirty executions of the PSO–PSO:WD algorithm was made.
The weights were randomly initialized between 1.0 and +1.0. The
established criterion for the training interuption was the GL5 from
Proben1 (which it is based in the sum of the squared error in the
validation set) (Prechelt, 1996), willing in that way, minimize the
overfitting risk. The error was measured based on the classification
error for the validation set after 300 interactions. The maximum
number of allowed interactions was 5000, being also used as the
criteria of the training interruption in case the GL5 was not
satisfied.

The representation of MLP networks adopted for the inner
PSO (optimization of weights) is based on vectors of real values
corresponding to each of the network weights. For the outer
PSO algorithm (optimization of architectures) we used integer
scalar variables to represent the number of hidden units of the
considered hidden layer and a vector of real values (net) to
record the best network found so far for the underlying
architecture.

The observed aspects for analyzing the results at the end of the
experiments were the classification error in the test set, the per-
centage of correct classification of individuals with positive and
negative diagnosis for the CMDs and the average number of vari-
ables used by the PSO–PSO:WD algorithm in the obtaining of
results.

It was necessary to establish a criteria for the choice of the PSO–
PSO:WD performance that had to be considered in the analysis,
that way, the executions with the classification error greater than
28.13% had to be excluded. This percentage was obtained with
the classification error average presented in the experiments per-
formed with the Backpropagation and PSO–PSO:WD algorithms.
The definition of this criterion, in our experiments, was necessary
to avoid a super adjusting of the model.

For the definition of the variable amount that presented most
relation with the CMDs, it was observed the average of variables
used for the diagnostic classification (input nodes) in the analyzed
executions of the PSO–PSO:WD algorithm.



Table 1
Experimental results.

Input variable Experiment1 Experiment2

Age 62.07 52.00
Literacy 58.62
Migration 51.72
Education 89.65 72.00
House ownership 65.52 20.00
Insertion productive proc. 65.52 72.00
Housing conditions 51.72
Gender 65.52 60.00
Status marital 79.61 40.00
Income 62.07 72.00
Possession household app. 48.27

Classification error 23.07 21.37
Positive diagnose 89.08 90.59
Negative diagnose 64.75 66.66
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5. Results

The experiments were done in two stages: (1) initially the input
set was composed with all the data base variables, in a total of 11;
(2) from the obtained results in the initial experiments, it was per-
formed new experiments with only resultants variables, in a total of
7. Table 1 presents the experimental results in the following way:
Experiment1 with 11 inputs, Experiment2 with 7 inputs. The table
contains the use percentage of each variable, an average classifica-
tion error, the percentages of the correct classification of the cases
with positive/negative diagnose for the CMDs. The bold face values
in experiment1 are for the input variables which were most used in
the experiment. The Students t-test with a significance level of 5%
was used to perform the statistical analysis in the results.

We obtained in the experiments with 11 inputs an average clas-
sification error of 23.08%, the percentage of the correct classifica-
tion of the cases with positive diagnose for the CMDs was of
89.08% and the percentage of correct classification of the negative
diagnose cases was 64.75%. The average of the resultant input vari-
ables of these experiments was seven, and among those, which
were stood out are: age, education, house ownership, insertion in
the productive process, gender, status marital and income.

Comparing the results of 7 inputs with 11 inputs, in relation to
the classification error, there was a reduction, in average, in 1.71%.
The correct classification percentage in the cases with positive
diagnose was increased in 1.51%. As for the correct classification
percentage of the cases with negative diagnose for the CMDs pre-
sented, however, there was an increase in 1.91%.

In general, in the performed experiments with only the 7 vari-
ables mostly used by the PSO–PSO:WD algorithm, the network
classification error as well as the correct classification percentage
of the cases with positive diagnose for the CMDs were improved.
Those results suggest that the exclusion of the input variables that
did not present relationship with CMDs in the data basis used con-
tributed to the improvement of the results obtained in the experi-
ments. Therefore, the process of variable and feature selection
improved the performance of the system, provided faster and more
cost-effective systems and provided a better understanding of the
underlying process that generated the data.

6. Final considerations

In this work, we have analyzed the feed-forward neural net-
works weights and architecture optimization problem with the
use of a methodology entirely based on the Particle Swarm Optimi-
zation algorithm. The results obtained by this methodology are sit-
uated between the results presented by other well studied
techniques such as Genetic Algorithms or Simulated Annealing.
This methodology was inspired by a similar process described in
Zhang and Shao (2000), where two PSO algorithms are interleaved
in the optimization of architectures (outer PSO) and connection
weights (inner PSO) of MLP neural networks. A small modification
made in this work concerning generalization control improve-
ments was the use of the weight decay heuristic in the inner
PSO, i.e. the process of weights adjustment.

Even though the logistic model is the methodology normally used
when the purpose is to identify the factors of risk that have associa-
tion with the variable answer, where the coefficients of regression
may be interpreted by the odds-ratios, it was possible to observe
good results in the experiments with MLP with relation to the pre-
diction of the positive cases for the studied problem. The obtained
average in our experiments around the correct classification of the
individuals with positive diagnose for the CMDs was of 90.59%.

We may observe that the presented results in the experiments
with neural networks were similar to those obtained with the sta-
tistic technique of logistic regression applied by Ludermir and Le-
wis (2003), when it is compared with the analysis made with
simple odds-ratios, where the variables education, income, gender
and insertion in the productive process were statistically signifi-
cant, with the values of p < = 0.0001. After the adjustment of the
odds-ratios in the results obtained by Ludermir and Lewis (2003),
education and income presented relationship with CMDs. It is
important to remind that those variables, in all the experiments
with ANNs, they were present in the obtained results, standing
out among the variables that presented larger percentage of use
for the algorithm, in other words, larger possibility of they being
related with CMDs.

With the optimizing network architecture (input node, hidden
nodes and connections) it was possible to establish which variables
presented greater probability of being related with the studied
problem. That is, the applied methodology in the experiment, is
presented as an interesting alternative for problems application
when the purpose is the identification of factors related to the var-
iable response (network output).

Initially, experiments were accomplished with other neural net-
works, for example RBF (Radial Basis Function), however the ob-
tained results were not satisfactory when compared to the
results obtained in experiments accomplished with a MPL net-
work. Besides, experiments were also accomplished with a MPL
network trained with the Backpropagation algorithm, however,
the obtained results were inferior to the results presented by the
MLP network trained with the PSO–PSO:WD algorithm.

From the results presented in this work, we may conclude that a
trained MLP network with the PSO–PSO:WD algorithm, with
simultaneous optimizing of its architecture and weights, may be
an interesting alternative to the statistic model of logistic regres-
sion, to the analysis of the factors related with the CMDs, because
the neural network is able to detect all the possible interactions
among the many explaining variables.

It is possible to observe also that, this automatic and simulta-
neous optimizing of the network architecture may be an interest-
ing alternative for the process of variables selection, eliminating
from the network input set the variable that is not so important
to the problem. The permanence of variables that are not impor-
tant to the patterns classification may aggravate distortions in
the result presented by the network [12].

As future work possibility we pointed out: (1) to measure the
performance of new experiments, applying the same methodology,
with the use of others data set; (2) the use of other optimizing
techniques, as for example Group Search Optimization; (3) the fu-
sion of the two interleaved tasks (inner PSO and outer PSO) in a
single PSO searching for weights and architectures as a truly simul-
taneous optimization process; (4) the addition of a connectivity
pattern optimization process to the PSO–PSO algorithm.
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