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ARTICLE INFO ABSTRACT

The use of neural network models for time series forecasting has been motivated by experimental results
that indicate high capacity for function approximation with good accuracy. Generally, these models use
activation functions with fixed parameters. However, it is known that the choice of activation function
strongly influences the complexity and neural network performance and that a limited number of acti-
vation functions has been used in general. We describe the use of an asymmetric activation functions
family with free parameter for neural networks. We prove that the activation functions family defined,
satisfies the requirements of the universal approximation theorem We present a methodology for global
optimization of the activation functions family with free parameter and the connections between the
processing units of the neural network. The main idea is to optimize, simultaneously, the weights and
activation function used in a Multilayer Perceptron (MLP), through an approach that combines the advan-
tages of simulated annealing, tabu search and a local learning algorithm. We have chosen two local learn-
ing algorithms: the backpropagation with momentum (BPM) and Levenberg-Marquardt (LM). The overall
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purpose is to improve performance in time series forecasting.
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1. Introduction

Artificial Neural Network (ANN) models are an important class
of models that have attracted considerable attention and have
been deployed in many applications. The use of these models in ap-
plied work is, generally, motivated by a mathematical result stat-
ing that, under mild regularity conditions, a relatively simple
ANN model is capable of approximating any Borel measurable
function from one finite dimensional space into (0,1)" to another
to any desired degree of accuracy (Hornik, Stinchcombe, & White,
1989). Neural networks with a single hidden layer using sigmoid
activation functions are universal approximators, i.e., these func-
tions are capable of approximating any measurable function to
any desired degree of accuracy (Funahashi, 1989; Hornik et al.,
1989; Rumelhart, Hinton, & Williams, 1986).

Input-output mapping can be represented by neural networks
through a combination of weighted connections between neurons
(Rumelhart et al., 1986). Funahashi (1989) proved that any contin-
uous mapping can be performed by a Multilayer Perceptron (MLP)
with differentiable and monotonically increasing activation func-
tions. In the author’s work, sigmoid activation functions were used
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in the hidden layer and linear activation functions were used in the
output layer.

Regarding the time series forecasting problem, many authors
have used for decades different statistical methods ranging from
moving averages and exponential smoothing and linear or nonlin-
ear regressions to modeling and forecasting. Box and Jenkins
(1990) developed autoregressive integrated moving average mod-
els to time series forecasting. To improve time series forecasting
with nonlinear characteristics, several researchers have developed
alternative methods that model such approximations, for example,
Autoregressive Heteroscedastic models (ARCH) (Engle, 1982). De-
spite the improvements of these methods over linear methods,
they tend to be specific to particular applications. The use of neural
network models for forecasting time series is motivated by exper-
imental results that show a high capacity of approximation to
functions with high accuracy. Generally, these models use activa-
tion functions with fixed parameters, as seen in Zhang (2003)
and Ghiassi, Saidane, and Zimbra (2005). As ANN models are used
as universal function approximations (Hornik et al., 1989), many
researchers use them to forecast diverse nonlinear models in a
time series and for evaluating efficacy and performance compared
to traditional forecasting methods (Gomes, Maia, Ludermir, Carv-
alho, & Araujo, 2006; Zhang, 2003).

Generally, the performance of ANNs depends on various factors
such as the number of hidden layers, the number of hidden neurons,
the learning algorithm and the activation function of each neuron.


http://crossmark.dyndns.org/dialog/?doi=10.1016/j.eswa.2013.05.053&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2013.05.053
mailto:gecynaldassg@ufba.br
mailto:tbl@cin.ufpe.br
mailto:tbl@cin.ufpe.br
mailto:teresa.ludermir@gmail.com
http://dx.doi.org/10.1016/j.eswa.2013.05.053
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

G.S. da S. Gomes, T.B. Ludermir/Expert Systems with Applications 40 (2013) 6438-6446 6439

The current emphasis in neural network research is on learning
algorithms and architectures, therefore neglecting the importance
of activation functions. However, the choice of activation functions
can strongly influence complexity and performance of neural net-
works and have been said to play an important role in the conver-
gence of the algorithms (Chandra & Singh, 2004; Duch & Jankowski,
1999; Gomes, Ludermir, & Lima, 2011; Singh & Chandra, 2003).

Several types of activation functions have been proposed. Hor-
nik (1993) and Leshno, Lin, Pinkus, and Schocken (1993) used
non-polynomial activation functions. Leung and Haykin (1993)
used rational transfer functions with very satisfactory results. Ro-
sen-Zvi, Biehl, and Kanter (1998) showed the general results of
ANN models with periodic activation functions. Ma and Khorasani
(2005) used Hermite polynomial activation functions. Gomes and
Ludermir (2008) proposed the use of two new activation functions,
complementary log-log and probit, which performed well in com-
parison to the logit activation function (log-sigmoid activation
function). Gomes et al. (2011) implemented complementary log-
log, probit and log-log activation functions, compared and evalu-
ated their performance available using financial market data sets,
through two learning algorithms. The authors also demonstrated
that these functions are universal approximators of continuous
functions and are suitable for regression problems. One character-
istic of these functions is that they have fixed parameters and can-
not therefore be adjusted to adapt to different problems.

There have been a limited number of studies with emphasis on
activation functions with free parameters, i.e., adaptative activa-
tion functions. Some studies have shown that neural networks
with activation functions of free parameters seems to provide bet-
ter performance than classical architectures, with fixed activation
function nodes. Guarnieri, Piazza, and Uncini (1999) presented a
new activation function called spline adaptive, studied their prop-
erties and showed an improvement both in complexity and perfor-
mance of the neural network in terms of generalization. Networks
with such activation functions seem to provide better fitting prop-
erties than classical architectures, with fixed activation function
neurons (Guarnieri et al., 1999). More recent studies have demon-
strated the importance of activation functions for the learning of
the neural network. For instance, Singh and Chandra (2003) pro-
posed a new class of sigmoid functions and proved that these func-
tions satisfy the requirements of the universal approximation
theorem. Chandra (2003) proposed two parameterization methods
that allow the construction of a class of sigmoid functions based on
any given sigmoid function. It was demonstrated that all members
of the proposed class satisfy the requirements for using an activa-
tion function in neural networks. Chandra and Singh (2004) use
self-adaptive activation functions to assess the best sigmoid func-
tion from the class of sigmoid functions proposed in Singh and
Chandra (2003). These and many other papers, surveyed here,
demonstrate that the choice of activation functions is considered
by some experts to be as important as the network architecture
and learning algorithm.

The logit function assumes a continuous range of values from 0
to 1. It is sometimes desirable to have the activation function range
from —1 to +1, in which case the activation function assumes an
asymmetric form with respect to the origin, the hyperbolic tangent
function is a good choice in such cases (Haykin, 2001). But, when
the probability of a given binary response approaches 0 at a differ-
ent rate than it approaches 1, the symmetric link is inappropriate
(Chen, Dey, & Shao, 1999). Duch and Jankowski (1999) comment
on the importance of symmetry in the activation functions, how-
ever, were not conducted empirical experiments that relate this
with the behavior of the data. Based on these facts, a question re-
mains as to precisely which features of the activation function
determine the properties of the learning network: What is the rel-
evance of symmetries in activation functions?.

To study the relevance of symmetries in activation functions,
we propose the use of new functions as Asymmetric Activation
Functions Family with Free Parameter (AAFFFP), for neural net-
works based on the family of Aranda-Ordaz transformations with
asymmetric alternatives (Aranda-Ordaz, 1981). This family of
Aranda-Ordaz functions was proposed for binary data and is used
as link functions in Generalized Linear Models (GLM), when data
have binomial distribution. For details see (Nelder & Wedderburn,
1972).

To optimize the value of the parameter AAFFFP and the weights
and bias of the neural network, we combine the advantages of sim-
ulated annealing, tabu search and the backpropagation training
algorithm. This approach is based on the paper by Ludermir, Yama-
zaki, and Zanchettin (2006) where is generated automatic process
for producing networks with high classification performance and
low complexity, whose aim is the simultaneous optimization of
MLP network weights and architectures. However, all network
units implemented the hyperbolic tangent activation function. In
our study, the architecture of the neural network is predefined to
be evaluated the actual effect of weights optimization combined
with the activation function optimization with free parameter.

Generally, existing ANN models for time series forecasting use
MLP networks, in which the number of hidden layers, the number
of nodes in the input and hidden layers and activation function
are chosen, often by trial and error in order to find a plausible
model for the specific application. Ghiassi and Saidane (2005)
developed a neural network model - DAN2: architecture for dy-
namic ANNs - which employs a different architecture than tradi-
tional models. To demonstrate the effectiveness of the DAN2
model, the authors compared their performance with the perfor-
mance of the traditional ANN and ARIMA, showing the superiority
of the DAN2 model for time series forecasting. For this reason, we
implemented the model DAN2 to serve as a reference and com-
pare the results of the neural network model with those of
AAFFFP proposal.

Hybrid expert systems have been largely used in many applica-
tions (Sahin, Tolun, & Hassanpour, 2012), as well as in time series
forecasting (Khashei & Bijari, 2012), so the main goal of this paper
is to find a hybrid neural network model that presents a good per-
formance in adjustment and forecasting of time series, which have
different behaviors.

This model combines the techniques of simulated annealing,
tabu search and a local learning algorithm, backpropagation with
the term momentum (BPM) or Levenberg-Marquardt (LM), whose
activation function has a free parameter and whose network archi-
tecture contains a hidden layer and few hidden nodes, thus provid-
ing more reliable in the results of time series forecasting. The
activation functions family to be used has as special cases the logit
function and the complementary log-log function (Aranda-Ordaz,
1981) and satisfies the requirements of the universal approxima-
tion theorem.

This paper is organized in the following way. In Section 2, we
present works on neural network optimization. In Section 3, we
present the mathematical proof according to which the new func-
tions satisfy the universal approximation theorem. The optimiza-
tion methodology is presented in Section 4. In Section 5, we
present the configuration of the experiments and the results. Final-
ly, in Section 6, the conclusion is presented.

2. Neural network global optimization

Various optimization techniques have been used in the litera-
ture, in order, to improve the performance of the ANN, such as sim-
ulated annealing (SA), tabu search (TS), genetic algorithms (GAs)
and others. These techniques are, generally, used as a hybrid
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approach to the training of the neural network. Generally, the goal
is to minimize the main problem of gradient-based algorithms: the
local convergence.

An integration of SA, TS and GAs was proposed by Mantawy, Ab-
del-Magid, Selim, algorithms, and search (1999). In Li, Ong, and
Nee (2002), GAs and SA were combined for the optimization of
processes in the engineering plans. In Ting, Li, and Lee (2003), a
combination between GA and TS was used. Generally, it is known
that global optimization techniques, like SA and TS, are relatively
inefficient for fine tuning in local searches. As a result, it is impor-
tant to investigate whether the generalization performance of net-
works can still be enhanced when the topologies generated by
these techniques are trained with a local search approach, such
as the backpropagation algorithm. In training ANN, these tech-
nique mixtures were used in various applications, simultaneously
or not (Ludermir et al., 2006; Yamazaki & Ludermir, 2003; Zanchet-
tin, Ludermir, & Almeida, 2011).

Tsai, Chou, and Liu (2006) used a hybrid Taguchi-genetic algo-
rithm to solve the problem of tuning both network structure and
parameters of a feedforward artificial neural networks. Gepperth
and Roth (2006) used a multi-objective evolutionary process in or-
der to optimize feedforward architectures. In Hamm et al. (2002)
SA was used for optimizing neural network weights. Yamazaki
and Ludermir (2003) made use of SA and TS, simultaneously, in or-
der, to optimize the weights and architecture. In this case, the
problem taken into consideration was the scent detection in an
artificial nose. Ludermir et al. (2006) combined three techniques:
SA, TS and the backpropagation training algorithm, in order, to cre-
ate an automatic process that produces networks with good classi-
fication performance and low complexity. Zanchettin et al. (2011)
present an optimization method that integrates four techniques:
SA, TS, GA and the backpropagation training algorithm in order
to find weights and architecture for a neural network. Ferreira,
Ludermir, and Aquino (2013) propose an approach to reservoir
computing design and training using an evolutionary strategy.

In most approaches, the authors use these techniques in order
to optimize parameters and initial values for weight connections
between processing units and network architecture, fixating an
activation function commonly used in the literature, such as sig-
moid logistic or hyperbolic tangent. For example, in Ludermir
et al. (2006), Yamazaki and Ludermir (2003), Zanchettin et al.
(2011) the activation function used in all the problems was a
hyperbolic tangent with a fixed parameter. There are works where
free parameter activation functions are used, though some authors
employ an adaptation of the backpropagation algorithm as a search
method for the best value of the parameter (Chandra & Singh,
2004). However, this type of approach continues facing problems
with local optimization. Other authors use optimization methods
like the line search (Chandra & Singh, 2004; Gomes, Ludermir, & Al-
meida, 2009). Thus arises the idea of optimizing, simultaneously,
the activation function and the weights of the network.

3. Asymmetric activation function family
A sigmoid function can be defined as Chandra (2003).

Definition 1. : A real function, f(x),f : R — R, with the properties
X — *oo.

limfe)=a; limf(x)=b, (1)

where a and b are real numbers and a > b. The usual values are a =1
and b=0or —1.

The general class of sigmoid functions includes discontinuous
functions such as the Heaviside’s theta function, the step function
and the sign function, as well as continuous functions such as the

arctangent function, the hyperbolic tangent function and the logit
function. Any function that is non-constant, bounded and mono-
tonically increasing, satisfies (1) and therefore belongs to the set
of all sigmoid functions. For sigmoid functions, including the
family of asymmetric activation functions (F,), the universal
approximation theorem (UAT) can be summarized as Haykin
(2001).

The UAT gives a mathematical justification for the approxima-
tion of an arbitrary continuous function opposed to its exact repre-
sentation (Haykin, 2001). The UAT provides a set of conditions that
an activation function should satisfy so that any neural network
using them has the universal approximation property. The condi-
tion that the inputs belong to the unit hypercube can be general-
ized to any bounded hypercube. There may be additional
algorithmic and efficiency requirements for the activation func-
tions to be distinguishable and satisfy a simple differential equa-
tion for the evaluation of weight increments.

The Aranda-Ordaz asymmetric function is defined by Aranda-
Ordaz (1981)

L= ]og u} , (2)
)

where m € (0,1) and /> 0. The inverse of (2) takes the form

m=1-(1+7e) " (3)

Therefore, for neural network models, we will utilize the func-
tion (3) in order for it to be an AAFFFP (7). Hence, in our context,
we have

Fil=1-(1 429",

Fig. 1 presents the f;(x) behavior as a function of x for the activation
function for different values of /. Observe that the sigmoid logistic
functions and complementary log-log functions are special cases
of the sigmoid family F;, when 41=1 and . — 0, respectively. For
values of /1 > 1, f,(x) approximates more slowly to one than in the lo-
gistic sigmoid function.

For every member of the family F,, the propositions below
establish that they are non-constant, bounded and monotonically
increasing.

2> 0. (4)

Proposition 3.1. . Every member of the class F, is a monotonically
increasing (MI) function.

Proof (See Gomes et al. (2009)). O

Proposition 3.2. Every member f;(x) of the family F, is bounded
above by 1 and below by 0, that is, the following relations are true:

Jimf,(x) =1;  lim f(x) = 0. (3)

Proof (See Gomes et al. (2009)). O

Proposition 3.3. . Every member of the family F,, i.e., f;(x), satisfies
the generalized equation given by equation (1 + 4 *)~(1*"V/eX,

Proof (Differentiate Eq. (4)). From the Propositions 3.1, 3.2, 3.3,
we can see that every member of F, is non-constant, limited
and monotonically increasing. So, every member of the family
F; satisfies the properties required by the UAT, and therefore
they can be wused as activation functions of a neural
network. O



G.S. da S. Gomes, T.B. Ludermir/Expert Systems with Applications 40 (2013) 6438-6446 6441

(a)

1.0

0.8
!

(%)
0.4

0.2
!

0.0
1

(b)

dfy(x)/dx

0.1

0.0
|

Fig. 1. (a) Activation function for the different values of /1 and (b) the corresponding derivatives.

4. Optimization methodology

The solution to an optimization problem can be characterized as
a local or global search process. The local search process aims to
find the best solution within a set of solutions in a restricted space,
taking into consideration that this solution depends on the starting
point of the search process. In the global search process, the objec-
tive is to find the best possible solution, no matter what are the ini-
tial conditions of the search process. When there is an enumerable
universe of possible combinations of elements, one intends to min-
imize or maximize, there is a class of combinational optimization
characterized by the search strategy employed, use of information
on the problem domain and complexity. The GAs (Goldberg, 1997),
SA (Kirkpatrick, Jr, & Vecchi, 1983) and TS (Glover & Laguna, 1997)
are iteractive algorithms that, in general, are used to solve combi-
national optimization problems.

Algorithm 1. Optimization methodology for MLP neural
networks with AAFFFP

1: sp« initial solution

2: To+ initial temperature

3: Update spes; With sq (best solution found so far)
4:fori=0tol,.x—1do

5: if i+ 1 is not a multiple of I then

6: Ti1 < T;

7: else

8: Ti+1+ new temperature

9: if stopping criteria is satisfied then
10: Stop execution

11: end if

12: end if

13: Generate a set of K new solutions from s;
14: Choose the best solution s’ from the set
15: if f(s') < f(s;) then

16: Sis1 —

17: else

18: Siy1 — s'with probability elf(s)=f(s0l/Ti
19: end if

20:  Update Spegt (if fsi1) < fiSpest))

21: Keep the parameter of the AAFFFP contained in Spes;
constant and use the weights and bias as initial ones for
training with the backpropagation learning algorithm with
momentum and Levenberg-Marquardt learning algorithm.

22: endfor

The SA algorithm can be defined as a global search techniques,
which approximates the maximum or minimum of an object func-
tionf :S — R, over a finite set S. This algorithm was introduced in
the literature by Kirkpatrick et al. (1983), which in turn was based
on the ideas of Metropolis, Rosenbluth, Rosenbluth, Teller, and
Teller (1953) about simulation of a system of particles experienc-
ing temperature changes. Under perturbation, the system tries to
find a balance point which minimizes the total energy.

To escape the local minima, the SA algorithm differentiates it-
self from the other search methods, by accepting a new solution
that increases the cost (Dowsland, 1993). The search process con-
sists of a sequence of iterations. Each iteration consists in randomly
changing the current solution in order to create a new solution in
its neighborhood. Once a new solution is created, the correspond-
ing alteration in the cost function is calculated in order to deter-
mine if the new solution can be accepted. If the cost of a new
solution is less than the cost of the current solution, the new solu-
tion is accepted. If the contrary occurs, the Metropolis criterion is
verified (Metropolis et al., 1953), based on the Boltzmann probabil-
ity. This probability is regulated by a parameter called tempera-
ture, which decreases during the optimization process. In this
manner, the parameter T is referred to as the temperature and
the temperature reduction process is called a cooling process.

In this paper, the cooling strategy chosen is the logarithmic
cooling rule obtained in Belisle (1992). According to this rule, the
new temperature equals the current temperature multiplied by a
reduction factor given by 1/log (|(i — 1)/If] x Ir+exp (1)) where
|a| represents the whole part of the division. The initial tempera-
ture Ty, the number of functions evaluated at each temperature,
I, and the maximum number of iterations, I.x, are parameters
of the implementation. In many cases, the method may take a very
long time to converge if the temperature reduction rule is too slow.
However, a slow rule is often necessary, in order to allow an effi-
cient exploration in the search space.

Tabu search tries to avoid this limitation by evaluating many
new solutions in each iteration, instead of only one solution, as
performed by simulated annealing. The best solution (i.e., the
one with lower cost) is always accepted as the current solution.
This strategy makes tabu search faster than simulated annealing,
but it demands implementing a list containing a set of recently vis-
ited solutions (the tabu list) in order to avoid the acceptation of
previously evaluated solutions. Using the tabu list for comparing
new solutions to the prohibited (tabu) solutions increases the com-
putational cost of tabu search when compared to simulated
annealing (Glover & Laguna, 1997).
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The pseudo-code of the methodology is presented in the Algo-
rithm 1. A set of new solutions is generated each iteration, and
the best one is selected according to the cost function, as per-
formed by tabu search. However, the best solution is not always
accepted since this decision is guided by a probability distribution,
which is the same used by simulated annealing. During the execu-
tion of the methodology, the activation function and the weights
are optimized, and the best solution found so far is stored. At the
end of this process, the MLP architecture contained in is kept con-
stant, and the weights are taken as the initial ones for training with
the local learning algorithm, in order to perform a fine-tuned local
search. Two algorithms were chosen: backpropagation with term
momentum and the Levenberg Marquardt. The backpropagation
with term momentum (Rumelhart et al.,, 1986) was chosen for
being one of the connecting models most used in the literature
(Haykin, 2001) and the Levenberg-Marquardt was chosen for
being an algorithm designed for rapid training without using a
Hessian matrix (Hagan & Menhaj, 1994). The original description
of the Levenberg—Marquardt learning algorithm is given in Marqu-
ardt (1963).

An important factor is the definition of the network topology.
For these reasons, several studies are being carried out for network
architecture optimization. Nevertheless, in this study, in order to
be able to evaluate the real effects of the activation function opti-
mization combined with the weights, we opted for setting an
architecture with few hidden nodes, thus decreasing the complex-
ity of the network.

In this study, the MLP architecture has only one hidden layer,
containing all the possible connections between adjacent layers,
without any connections between non-adjacent layers. As a result,
the quantity of connections is yielded by

N =pq+qm

where p is the number of input nodes, g is the number of hidden
nodes and m is the number of output nodes.

Considering a set of solutions S and a real cost function f, the
methodology used seeks the global minimum s, so that f(s) <
f(s'), Vs’ € S. The initial solution sg is a MLP network with a prede-
fined MLP architecture with a maximum of 4 hidden nodes. The
activation function in the initial solution of FFAAPL is the function
with the parameter 1 =1 which represents the logit function. The
initial weights are randomly extracted from a uniform distribution
U(0,1). The cost function is defined by f(s) = %Z]’-Llej (s), where e; = -
tj — y; tj and y; represent, respectively, the desirable output value
and the output value of the network associated with the j-ith out-
put unit and the training pattern i. The process ends after I, iter-
ations or if the stopping criterion based on the validation set is
satisfied. Accordingly, the best solution sy found is returned.
The cooling scheme refreshes the temperature T; of the iteration i
at each Iy iteration of the algorithm. At each iteration, K new solu-
tions are generated from the current one. Each solution contains
information about the weights of the network MLP and, in the case
of the AAFFFP, the parameter value is A.

5. Experiment results

In these experiments, we used a combination of the global opti-
mization techniques SA and TS in order, to optimize the parameter
/. of the AAFFFP family (F,) and the weights and bias of the neural
network. Subsequently, we will present the description of the data
sets, the parameters chosen for the optimization methodology
experiments and the results found in these experiments.

5.1. Description of data sets

In order, to show evidence of the efficacy of the neural network
models, that have an asymmetric activation functions family with
free parameter, we used six time series data sets with non-linear
behaviors. In the time series presented, there are characteristics
(a priori) important for the modeling, such as seasonality and con-
stant trend. There are also time series with behaviors irregular
behaviors, in other words, non-stationary, non-seasonal or an addi-
tive and multiplicative seasonal, non-Gaussian and time series that
do not present a stochastic trend. These examples have been used
as benchmarks in the literature for time series forecasting. Table 1
shows the descriptive statistics for the time series used in the
experiments.

5.1.1. Airline passenger data set

The first series corresponds to the logarithm of the total of pas-
sengers in an international airline from January, 1949 to December,
1960 (Airline series). The Airline series corresponds to the classic
data used by Box and Jenkins (1990) and by Ghiassi, Saidane, and
Zimbra (2005) in the DAN2 models. The Airline series in it is origi-
nal form displays non-linear behavior and exhibits a multiplicative
seasonal behavior. For this reason, the data is transformed through
logarithmic transformation to convert the multiplicative seasonal-
ity to an additive one. This series has 144 observations and, as in
various researches involving this time series, we used data from
the first 11 years (132 observations) in order to adjustment the
model (training set) and the last 12 observations for forecasting
(test set).

5.1.2. USAccDeaths data set

The second series corresponds to the monthly quantity of
death-resulting accidents in the United States in the period be-
tween January, 1973 and December, 1978 (USAccDeaths series).
These data were used by Brockwell and Davis (1986). The USAcc-
Deaths series displays a similar behavior to the transformed Airline
series, though it does not demonstrate an increasing trend. Conse-
quently, performing alterations in the data is unnecessary. This
series has 72 observations. For the network training, we used the
first 5 years (60 observations) and for the network testing, the last
12 observations.

5.1.3. WWWousage data set

The third series corresponds to the number of users connected
to the Internet through a server every minute (WWWusage series),
in relation to 100 min (100 observations). In the analysis of these
data by the authors Makridakis, Wheelwright, and Hyndman
(2005), this series is non-stationary. For the network training we
used the first 88 min (88 observations) and for network testing,
the last 12 observations.

5.1.4. Lynx data set

The fourth series corresponds to the number of Canadian lynx
trapped per year in the Mackenzie River district of Northern Can-
ada, for the period 1821 to 1934 (114 observations). This series
can be obtained in Brockwell and Davis (1991) and was studied
by Zhang (2003). For the network training, we used the first 102
observations and for testing it, the last 12 observations.

5.1.5. Nile data set

The fifth series corresponds to the measurements of the annual
flow of the river Nile at Ashwan in the period between 1871 and
1970 (100 observations). This series was used by Balke (1993).
For training the network, we used the first 88 measurements and
for testing the network, the last 12 measurements.
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Table 1
Descriptive statistics of time series.
Time series N Minimum Maximum Mean Std. deviation Skewness
Airline 144 4.64 6.43 5.54 0.44 -0.12
USAccDeaths 100 83.00 228.00 137.08 40.00 0.39
Lynx 72 6892.00 11317.00 8788.79 957.75 0.35
WWWousage 100 456.00 1370.00 919.35 169.23 0.33
Nile 114 39.00 6991.00 1538.02 1585.84 1.37
PetroPrice 192 0.08 0.13 0.10 0.01 -0.13

5.1.6. PetroPrice data set

Finally, the sixth and last series corresponds to the petrol price
in Great Britain in the period from January, 1969 to December,
1984 (PetroPrice series). This series has 198 observations. The first
168 observations were used to adjustment the models and the
remaining 12 observations for forecasting. This series was used
by Gomes et al. (2006).

5.2. Lag selection

For the Airline, USAccDeaths, WWusage, Lynx and PetroPrice
time series, we executed autoregressive models (AR) (Box & Jen-
kins, 1990) in order to select the lags. The quantity selected was
used as input nodes in all the evaluated models. For the Nile series,
the lag number selected by the AR model was insufficient for the
adjustment and the forecasting of the DAN2 model. For this reason,
the number of lags chosen is eight. The selected values are:
lag={5,3,4,4,8,3} for the time series Airline, USAccDeaths,
WWWusage, Lynx, Nile, PetroPrice, respectively.

The AR model was chosen by convenience, although a linear
model. Therefore, the lag does not reflect the nonlinear structure.
A better way is to use the NN to select these lags. However, main
focus in this paper is not on the best lag structure.

5.3. Experimental parameters

In the global optimization technique, which combines SA and TS
(SA +TS), the initial temperature equals 1 and the temperature de-
creased at each ten iterations of the optimization algorithm
according to equation (10). The maximum number of iterations
permitted equals 10,000. These values were chosen empirically.
100 executions of the algorithm were carried out with different
random initializations of a uniform distribution U(0,1) for weights
and bias. The lambda value was initialized with 1, which repre-
sents the logit function. For each initialization, 10 executions of
SA + TS were carried out and average values were obtained from
these 10 executions. The stopping criterion GL5 defined in Proben1
(Prechelt, 1994) was also used.

The performance of SA algorithm is influenced by the choice of
the cooling scheme and by the choice of mechanism for new solu-
tions generations. Yet, there are no objective rules to adjustment
the configuration in order to obtain the best possible results. Nor-
mally, different configurations of the parameters for evaluating
performance are employed (Sexton, Dorsey, & Johnson, 1999).
Hence, the configuration used in this work was empirically chosen
and may not be optimal for the problem approached. The purpose
of this approach is demonstrating that the SA algorithm reached
good results for the optimization problem presented, despite its
difficulty for parameter adjustment.

To verify if the performance of the final networks generated by
SA + TS could be improved, the values of the final connections and
of the parameter 4 were used in the MLP networks. They were
trained through the backpropagation with term momentum and
Levenberg-Marquardt algorithms, which correspond to the follow-
ing configurations SA+TS+BPM and SA +TS + LM, respectively.
The training is concluded when 10,000 epochs are reached, or if

the validation error increases by 5 consecutive epochs. The learn-
ing rate and the term momentum used were of 0.001 and 0.9,
respectively. All MLP topologies have a single hidden layer, con-
taining only connections between adjacent layers. The experimen-
tal parameters used in this paper, which were chosen after some
preliminary experiments, may not have been optimal for the prob-
lem. A more rigorous parameter exploration may have generated
better results, but this paper does not intend to present an exhaus-
tive exploration of the adjustable parameters. This paper aims to
show that good results have been achieved by SA + TS with the
addition of a training phase with a learning algorithm. For further
details on the architecture of the networks used in the different
data sets and of the average value found for the optimized param-
eter (4) of each series, refer to Table 2.

As an evaluation criterion of the models, we used the mean
square error (MSE) and mean absolute percentage error of forecast
(MAPE).

The results and discussions will be presented next. These results
will be discussed in a general and also in blocks organized in the
following manner:

o first block: SA + TS (Aranda), SA + TS (Logit) and SA + TS (Clog-
log) models;

e second block: SA+TS+BPM (Aranda), SA + TS + BPM (Logit)
and SA + TS + BPM (Cloglog) models; and

o third block: SA+TS+LM (Aranda), SA+TS+LM (Logit) and
SA + TS + LM (Cloglog) models.

5.4. Results and discussions

We present summary data, only for the test set, due to the vol-
ume of data. In Table 3, we present the results of the average per-
formances of the ARIMA, AR and DAN2 models and the average
performances and the respective standard deviations referring to
the 100 initializations of the SA + TS models, SA + TS + BPM models
and the SA +TS + LM models. The latter three models were exe-
cuted with the Aranda activation function with / free parameter,
with the 4 =1 parameter (which corresponds to the logit function)
and /. — 0 (which corresponds to the complementary log-log func-
tion). The ARIMA, AR and DAN2 models do not display standard
deviations because they do not possess random initialization.

For the ARIMA model, we tried different models of the ARIMA
(p,1,q) kind, varying p=0,1,2,3,4and q = 0,1,2,3,4. The best model
of each time series was selected through the smallest AIC (Akaike
Information Criterion), which is the most commonly used criterion
(Mills, 1990). There are other criteria, for example, information cri-
teria BIC (Bayesian Information Criterion). Unlike Akaike Informa-
tion Criteria, BIC is derived within a Bayesian framework as an
estimate of the Bayes factor for two competing models. However,
main focus in this paper is not on the best information criteria.

In Table 4, we present the p-values of the t-Student tests! for the
MSE and MAPE measures. These tests compare the average perfor-

! The t-Student test is a parametric test used in statistics in order to compare two
or more independent samples aiming at verifying the existence of statistically
significant difference between the metric averages of these samples (Lehman, 1986).
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Table 2
Architectural details of the networks used.
Activation function A Architecture No. of adjustable parameters Activation function A Architecture No. of adjustable parameters
Airline series Lynx series
Aranda 2.11 5-2-1 16 Aranda 1.76 4-4-1 26
Logit 1 5-2-1 15 Logit 1 4-4-1 25
Cloglog -0 5-2-1 15 Cloglog -0 4-4-1 25
USAccDeaths series Nile series
Aranda 1.97 3-3-1 17 Aranda 1.87 8-4-1 42
Logit 1 3-3-1 16 Logit 1 8-4-1 41
Cloglog -0 3-3-1 16 Cloglog -0 8-4-1 41
WWWousage series PetroPrice series
Aranda 3.94 4-4-1 26 Aranda 1.15 3-4-1 22
Logit 1 4-4-1 25 Logit 1 3-4-1 21
Cloglog -0 4-4-1 25 Cloglog -0 3-4-1 21
Table 3
Results of the average performance to forecasting (test set) for the six time series.
Model Airline series USAccDeaths series
MSE MAPE MSE MAPE
Average SD Average SD Average SD Average SD
A - ARIMA (4,0,2) 0.02634 - 2.31566 - 942386 - 9.47 -
B - AR (5) 0.03067 - 2.38605 - 1109648 - 10.22 -
C - DAN2 0.00957 - 1.36551 - 406723 - 6.25 -
D - SA +TS (Aranda) 0.01669 1.46E-03 1.87142 1.42E-02 301938 4.90E + 02 5.06 4.87E-03
E - SA+TS + BPM (Aranda) 0.01243 1.34E-04 1.46304 1.09E-02 273074 7.17E + 04 4,70 8.66E-01
F - SA+TS +LM (Aranda) 0.01065 3.15E-04 1.38931 2.83E-02 251394 9.78E + 04 4.55 1.03E + 00
G - SA +TS (Logit) 0.01376 5.13E-05 1.56788 2.53E-03 321085 6.27E + 02 535 4.28E-03
H - SA+TS + BPM (Logit) 0.01552 4.61E-04 1.59407 2.17E-02 314162 2.99E + 04 5.19 4.90E-01
I - SA+TS + LM (Logit) 0.01109 2.00E-04 1.43849 1.68E-02 308305 4.27E+04 499 4.27E-01
J - SA+TS (Cloglog) 0.01388 7.08E-05 1.57521 2.73E-03 377373 2.58E + 02 5.75 2.97E-03
K - SA + TS + BPM (Cloglog) 0.01733 3.32E-04 1.75207 1.58E-02 335508 4.91E + 04 534 4.97E-01
L - SA+TS + LM (Cloglog) 0.00962 3.95E-04 1.30864 2.42E-02 324220 6.64E + 04 5.26 5.63E-01
WWWausage series Lynx series
MSE MAPE MSE MAPE
Average SD Average SD Average SD Average SD
A - ARIMA (4,0,1) 375.61 - 7.55 - 1631166 - 77.24 -
B - AR (4) 3661.64 - 2431 - 1638461 - 77.95 -
C - DAN2 12.43 - 1.51 - 146393 - 21.77 -
D - SA +TS (Aranda) 109.13 8.65E-01 411 1.62E-02 118519 2.66E + 03 18.35 3.01E-01
E - SA+TS + BPM (Aranda) 25.17 8.88E + 00 2.05 1.65E-01 112365 1.33E+03 17.48 9.02E-02
F - SA+TS +LM (Aranda) 12.06 2.69E + 00 1.47 9.07E-02 59414 8.87E + 02 15.09 2.91E-02
G - SA +TS (Logit) 228.96 2.57E+00 5.40 3.06E-02 175619 1.68E + 03 22.67 2.29E-01
H - SA +TS + BPM (Logit) 50.37 4.12E+01 3.00 3.14E-01 161573 1.08E + 03 18.83 6.73E-02
I - SA+TS +LM (Logit) 17.25 1.33E+ 01 1.53 2.04E-01 148846 1.96E + 03 17.20 9.49E-02
J - SA+TS (Cloglog) 62.78 5.96E-01 3.07 1.44E-02 172587 1.64E + 03 20.01 2.27E-01
K - SA + TS + BPM (Cloglog) 13.83 2.63E +01 1.46 3.45E-01 165572 1.22E+03 18.02 9.42E-02
L - SA+TS +LM (Cloglog) 16.37 1.31E+01 1.52 2.46E-01 115527 1.22E+03 17.05 5.43E-02
Nile series PetroPrice series
MSE MAPE MSE* MAPE
Average SD Average SD Average SD Average SD
A - ARIMA (3,0,2) 25948 - 13.58 - 0.00794 - 0.65 -
B - AR (4) 21880 - 13.77 - 0.19507 - 3.29 -
C - DAN2 14601 - 12.10 - 0.00016 - 0.78 -
D - SA +TS (Aranda) 19759 1.29E + 01 13.53 4.46E-03 0.00013 9.20E-08 0.75 3.73E-04
E - SA +TS + BPM (Aranda) 17005 5.80E + 01 12.85 4.24E-02 0.00013 9.90E-08 0.70 8.97E-04
F - SA+TS +LM (Aranda) 13062 1.64E + 02 11.75 9.41E-02 0.00012 3.00E-08 0.69 9.18E-05
G - SA + TS (Logit) 18894 5.71E + 00 13.53 6.78E-04 0.00014 9.50E-08 0.79 3.41E-04
H - SA + TS + BPM (Logit) 19050 7.67E + 01 13.12 5.15E-02 0.00014 1.67E-07 0.73 9.14E-04
I - SA+TS +LM (Logit) 16994 2.38E + 02 12.43 6.80E-02 0.00013 1.27E-07 0.65 5.55E-04
J - SA+TS (Cloglog) 19113 5.86E + 00 13.56 1.46E-03 0.00013 2.22E-07 0.72 8.16E-04
K - SA + TS + BPM (Cloglog) 17360 4.09E + 02 12.98 1.70E-01 0.00013 2.99E-07 0.72 9.27E-04
L - SA+TS + LM (Cloglog) 13341 2.52E + 02 11.83 1.03E-01 0.00013 6.10E-08 0.70 3.43E-04

SD - Standard deviation.
* Values multiplied by 10* for better visualization.
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Table 4
Results of the p-values of t-Student tests with significance level of 5% for the MSE and
MAPE measures.

Time series Me=HH  HE=Hk  HH=Uk  WF= i HF= [ M=
MSE

Airline 0.0000  0.0000 0.0000 0.0000 0.0000  0.0000
USAccDeaths  0.0000  0.0000  0.0003 0.0000 0.0000 0.0452
WWWousage 0.0000  0.0001 0.0000 0.0002 0.0015 0.6374
Lynx 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000
Nile 0.0000  0.0000  0.0000 0.0000 0.0000  0.0000
PetroPrice 0.0000  0.0000  0.0000 0.0000  0.0000  0.0000
MAPE

Airline 0.0000  0.0000  0.0000 0.0000 0.0000  0.0000
USAccDeaths  0.0000  0.0000  0.0261 0.0001  0.0000  0.0002
WWWousage 0.0000  0.0000  0.0000 0.0083 0.0589 0.7622
Lynx 0.0000  0.0000  0.0000 0.0000  0.0000  0.0000
Nile 0.0000  0.0000  0.0000 0.0000 0.0000  0.0000
PetroPrice 0.0000  0.0000  0.0000 0.0000 0.0000  0.0000

mances between the models of the second block and between the
models of the third block, shown previously. Therefore, the compar-
ison between the SA + TS + BPM (Aranda) and SA + TS + BPM (Logit)
models will be represented by the null hypothesis pg = uy, between
the SA+ TS+ BPM (Aranda) and SA + TS + BPM (Cloglog) models it
will be represented by the null hypothesis ug= g, between the
SA + TS + BPM (Logit) and SA + TS + BPM (Cloglog) models it will be
represented by the null hypothesis puy=pux, between the
SA + TS + LM (Aranda) and SA + TS + LM (Logit) it will be represented
by the null hypothesis ur= p;, between the SA + TS + LM (Aranda)
and SA + TS + LM (Cloglog) models, it will be represented by the null
hypothesis  ur=p;, between the SA+TS+LM (Logit) and
SA+TS+LM (Cloglog) models, it will be represented by the null
hypothesis y; = y;. In order, to verify if the difference between the
averages is statistically significant, the p-value must be lower than
the relevance level o. In this paper, the value of o is equal to 5%
(or 0.05).

For the Airline series, we can observe that the performance im-
proves with the employment of the SA+TS+BPM and
SA + TS + LM models, independently the activation function. How-
ever, the SA + TS + LM (Aranda) model presented the best result in
relation to the other models, except in comparison to the DAN2
model, in which the results were equivalent (Table 3).

For the USAccDeaths series, all the SA + TS, SA + TS + BPM and
SA+TS+LM models display average performances superior in
relation to the ARIMA, AR and DAN2 models. We can see that the
models that combine the global and local optimization techniques
show improvements in their average results, in relation to the
models that utilize only global optimization techniques. The
SA +TS + LM (Aranda) model showed the best result (Table 3).

For the WWWusage series, we can observe that the models that
combine global and local optimization techniques demonstrate
improvements in their average results, when compared to the
models that only use global optimization techniques. The DAN2
model surpassed all the models in question, except the
SA+TS +LM (Aranda) model. Therefore, the performance of the
SA + TS + LM (Aranda) model was superior in relation to the perfor-
mance of all other models (Table 3).

For the Lynx series, the SA+TS+BPM and the SA+TS+LM
models presented substantial improvement in their average re-
sults, when compared to the models that only use global optimiza-
tion techniques (SA + TS). We observe that only the models with
Aranda activation function demonstrated better performances
than the ARIMA, AR and DAN2 models. The SA + TS + LM (Aranda)
model displayed the best result in relation to the other models
(Table 3).

For the Nile series, only the SA+TS+LM (Aranda) and
SA + TS + LM (Cloglog) models presented superior average perfor-
mances than those presented by the DAN2 model. It is worth men-
tioning that the models that combine global and local optimization
techniques display improvements in their average results, when
compared to the models that use only global optimization tech-
niques. It is also worth mentioning that the performance of the
SA + TS + LM model was better than the performance of the other
models (Table 3).

Finally, for the PetroPrice series, we observed that the
SA+TS+BPM and the SA+TS+LM models display substantial
improvements in their average performances, when compared to
the SA + TS models. We further noticed that all the average perfor-
mances obtained by the models with the used methodology were
superior in relation to the performances obtained by the ARIMA,
AR and DAN2 models. The performance of the SA + TS + LM model
was better to the performance of all other models (Table 3).

6. Conclusions

The results presented show that the models, which combine
global and local optimization techniques, display improvements
in their average results compared to the models that use only glo-
bal optimization techniques. Results also show that the
SA + TS + LM (Aranda) model performance, in the six examples of
time series studied, was superior to the performance of all other
models, including the DAN2 models, which are extremely efficient
in the time series forecasting.

For all the problems approached, when comparing the models
per block, we observe that the models with an Aranda activation
function displayed better average performances than the models
with logit and complementary log-log activation functions, and
this difference is statistically significant since all the p-values in
Table 4 are lower than 0.05.

Therefore, it is reasonable to conclude that the employment of a
methodology combining the main favorable characteristics of the
SA and TS algorithms, using a local learning algorithm, is capable
of producing very satisfactory results for optimization of the acti-
vation function and of the weights of the MLP networks, for the
time series problems approached. It is worth mentioning that all
the results exhibited may not have been optimal for each problem,
in other words, it is possible that the ARIMA, AR and DAN2 models
reach better results than the ones presented in this study, by sim-
ply changing the lag numbers. However, the aim of this paper is to
show that it is possible to improve the results for time series fore-
casting on using SA and TS for the optimization of MLP connection
weights and activation functions simultaneously, generating net-
works with low complexity and high generalization performance.

As future work, the methodology to optimize, simultaneously,
the weights, the activation function and neural network architec-
tures could be used to improve the cost function.
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