
Expert Systems with Applications 40 (2013) 4172–4182
Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
An approach to reservoir computing design and training

Aida A. Ferreira a,b,⇑, Teresa B. Ludermir a, Ronaldo R.B. de Aquino a

a Federal University of Pernambuco (UFPE), P.O. Box 7851, Cidade Universitria, Cep: 50.740-530 Recife, PE, Brazil
b Federal Institute of Science, Technology and Education of Pernambuco, Av Professor Luis Freire, 500, Cidade Universitria, Cep: 50.740-530 Recife, PE, Brazil

a r t i c l e i n f o
Keywords:
Reservoir computing
Echo state networks
Evolutionary algorithm
0957-4174/$ - see front matter � 2013 Elsevier Ltd. A
http://dx.doi.org/10.1016/j.eswa.2013.01.029

⇑ Corresponding author at: Federal University o
Box 7851, Cidade Universitria, Cep: 50.740-530 Re
21268986.

E-mail addresses: aidaaf@gmail.com (A.A. Ferreira
mir), rrba@ufpe.br (R.R.B. de Aquino).
a b s t r a c t

Reservoir computing is a framework for computation like a recurrent neural network that allows for the
black box modeling of dynamical systems. In contrast to other recurrent neural network approaches, res-
ervoir computing does not train the input and internal weights of the network, only the readout is
trained. However it is necessary to adjust parameters to create a ‘‘good’’ reservoir for a given application.
In this study we introduce a method, called RCDESIGN (reservoir computing and design training). RCDE-
SIGN combines an evolutionary algorithm with reservoir computing and simultaneously looks for the
best values of parameters, topology and weight matrices without rescaling the reservoir matrix by the
spectral radius. The idea of adjust the spectral radius within the unit circle in the complex plane comes
from the linear system theory. However, this argument does not necessarily apply to nonlinear systems,
which is the case of reservoir computing. The results obtained with the proposed method are compared
with results obtained by a genetic algorithm search for global parameters generation of reservoir com-
puting. Four time series were used to validate RCDESIGN.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Theoretically, recurrent neural networks (RNNs) are very pow-
erful tools for solving complex temporal machine learning tasks.
Nonetheless, several factors still hinder the larger scale deploy-
ment of RNNs in practical applications. There are few learning rules
and most suffer from slow convergence rates, thus limiting their
applicability (Verstraeten, Schrauwen, D’Haene, & Stroobandt,
2007). In 2001, a new approach to RNN design and training was
proposed independently under the name of Liquid State Machines
(Maass, Natschlager, & Markram, 2002) and under the name of
Echo State Networks (Jaeger, 2001). This approach, which had pre-
decessors in computational neuroscience (Dominey, 1995) and
subsequent ramifications in machine learning as the Backpropaga-
tion–Decorrelation (Steil, 2004) learning rule, is now often referred
to as reservoir computing (RC) (Lukosevicius & Jaeger, 2009). The
basic concept is to randomly construct an RNN and leave the
weights unchanged. A separate linear regression function is trained
on the reservoir’s response to the input signals using a linear
regression. The underlying idea is that a randomly constructed res-
ervoir offers a complex nonlinear dynamic transformation of the
input signals which allows the readout to extract the desired out-
ll rights reserved.

f Pernambuco (UFPE), P.O.
cife, PE, Brazil. Tel.: +55 81

), tbl@cin.ufpe.br (T.B. Luder-
put using a simple linear mapping. RC offers an intuitive method-
ology for using the temporal processing power of RNNs without
the hassle of training them (Schrauwen, Defour, Verstraeten, &
Campenhout, 2007b).

This study’s proposal is an approach to reservoir computing de-
sign and training using an evolutionary strategy. Although the RC
optimization is a challenge, on the other hand, checking the perfor-
mance of a result system is relatively inexpensive. This makes evo-
lutionary methods, for reservoir pre–training, a natural strategy for
searching the best model for any task (Lukosevicius & Jaeger,
2009). Several evolutionary approaches to ESN reservoir optimiza-
tion have been presented (Bush & Tsendjav, 2005; Ishii, van der
Zant, Becanovic, & Ploger, 2004), however, they used the idea of
separating the topology and reservoir weights in order to reduce
the search space and they also used the condition of search for a
spectral radius smaller than 1 to guarantee the echo state property.

The evolutionary strategy, adopted in this work, simultaneously
searches for the best values of the reservoir global parameters, the
best topology and the reservoir matrix, without the limitation
shown on previous works of reducing the search space and without
rescaling the matrices by the spectral radius. All experiments were
implemented in MATLAB and RCToolbox (Schrauwen, Verstraeten,
& Haene, 2007a). The genetic vector used in the proposed evolu-
tionary algorithm is bigger than the other evolutionary approaches
on ESN reservoir optimization.

This study is organized as follows. In Section 2 we provide an
overview of reservoir computing. The echo state property is
explained in Section 3. Section 4 presents the motivation and the

http://dx.doi.org/10.1016/j.eswa.2013.01.029
mailto:aidaaf@gmail.com
mailto:tbl@cin.ufpe.br
mailto:rrba@ufpe.br
http://dx.doi.org/10.1016/j.eswa.2013.01.029
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


A.A. Ferreira et al. / Expert Systems with Applications 40 (2013) 4172–4182 4173
proposed evolutionary strategy developed for optimizing the
search of global parameters, topology and reservoir weights. Sec-
tion 5 presents four time series that were chosen to test the search
method. The experimental results are presented in Section 6 and
conclusions are described in Section 7.

2. Reservoir computing

In RC, the reservoir is a fixed random dynamical system, such as
a recurrent network used in this work, that receives time-varying
input on which certain computations are to be performed. This
study uses the echo state network (ESN) approach as a learning
system for time series forecasting. The ESN has K input units, N
internal units and L output units (see Fig. 1). All K units are con-
nected to all N internal units which in turn are all connected to
the L output units. The key idea of ESNs consists of teaching only
the weights of the outgoing connections from N to L. The internal
topology and weights remain unchanged during teaching. Also,
the output neurons can be fed back to the reservoir, which leads
to a fast training procedure of the output weights. Furthermore,
the resulting system deals well with time-dependent information
(Ishii et al., 2004).

An ESN is composed of a reservoir and of a linear readout output
layer which maps the reservoir states to the desired output (Anto-
nelo, Schrauwen, & Stroobandt, 2008). The general state update Eq.
(1) and the readout output Eq. (2) are as follows:

xðnþ1Þ¼ fðWinuðnþ1ÞþWxðnÞþWbackyðnÞþWbiasÞ; ð1Þ
yðnþ1Þ¼ foutðWinoutuðnþ1ÞþWoutxðnþ1ÞþWoutoutyðnÞþWbiasoutÞ; ð2Þ

where u(n) denotes the input at time n; x(n) represents the reser-
voir state; y(n) is the output; and f() = tanh() or sign () is the activa-
tion function used for ESNs in this study. All weight matrices to the
reservoir (denoted by Win, W, Wback and Wbias) are randomly initial-
ized, in the traditional method, from a uniform distribution with
mean 0 and variance 1. They are then rescaled by, first, dividing
the matrix by a spectral radius (the largest absolute eigenvalue)
and then multiplying by a factor chosen by the specialist (generally
near 1). In this work we used a new strategy to find these values;
the evolutionary method looks for the best values for the W without
rescaling the matrices by the spectral radius.

All connections to the output (Winout, Wout, Woutout and Wbiasout)
are trained. Here we have two possibilities: train the readout using
pseudo–inverse or using ridge regress (Lukosevicius & Jaeger, 2009).

The leak rate a, can effectively tune the dynamics of the reservoir.
If the leak state is chosen correctly, the reservoir dynamics can be ad-
justed to match the timescale of the input flow, making it possible to
achieve an enhanced performance (Antonelo et al., 2008). The leak
Fig. 1. The ESN. Dashed arrows indicate connections that are possible but not
required.
rate can be chosen empirically, but we chose to use the evolutionary
strategy in order to find the best value for each data set. This addition
to the basic units is called leaky integrator neurons (Lukosevicius &
Jaeger, 2009) and Eq. (3) shows the changes.

xðnþ 1Þ ¼ fðð1� aÞxðnÞ þ aðWxðnÞ þWinuðnÞ þWbiasÞÞ: ð3Þ

In the RC Toolbox, which we used in our study, the topology of
the system is completely defined by the topology structure. This
structure can be depicted graphically as a single large matrix, it
is possible to connect inputs, reservoir, outputs and bias on the
one hand with reservoir and outputs on the other hand (Schrau-
wen et al., 2007a).

3. Echo state property

Jaeger describes in Jaeger (2001) the conditions necessary for a
reservoir, built with sigmoid neurons and output function tanh,
that has the Echo State Property. The Echo State Property says that
the activation state of an RNN, x(n), is a function of input history
(u(n), u(n � 1),. . .) presented to the network. More specifically, in
certain conditions, there is an echo function E = (e1,. . .,en), where
ei : U�N ! R, in which, for all history entries (. . ., u (n � 1),u(n) 2
U�N), the network state is given by Eq. (4):

xðnÞ ¼ Eð. . . ;uðn� 1Þ;uðnÞÞ: ð4Þ

The conditions described by Jaeger in Jaeger (2001) and in Jae-
ger (2002) are based on the largest singular value, r = rmax(W), and
in the spectral radius, q = jkmaxj(W), of the reservoir matrix (W).
The first condition, considered too restrictive by Jaeger, says that
in order to have the Echo State Property, the largest singular value
(r) must be smaller than 1, r < 1. The second condition, known
as q > 1, says that if the spectral radius (q) is greater than 1, the
network has an asymptotically unstable null state thus, lacking
the Echo State Property for any input set U containing 0 and admis-
sible state sets.

The second condition is described in Verstraeten et al. (2007) as
q < 1, and means that all the eigenvalues of W should be inside a
circle unit in the complex plane. This condition expresses that
the reservoir is locally and asymptotically stable around the origin
and is a necessary but not sufficient to guarantee the Echo State
Property.

The bounds described above supply a measure for the computa-
tional quality of a reservoir and can be deduced from the reser-
voir’s weight matrix, without simulating it explicitly on some
input signals. However, it is not clear how these bounds are related
to the actual network dynamics (Verstraeten et al., 2007).

Only the spectral radius q < 1 was used in Jaeger (2002) to sug-
gest a heuristic method of constructing reservoirs: the idea is to
start with a randomly connected network and to rescale the
weights so that q < 1 is close to, but smaller than 1 (Verstraeten
et al., 2007). Although Jaeger has proposed a heuristic method in
Jaeger (2002), he also highlighted that networks lacking the Echo
State Property can sometimes be transformed into networks with
Echo State Properties through the inputs and useful components
that can be observed in biological neural networks.

The spectral radius is an important parameter that controls the
reservoir dynamics. According to Verstraeten and Schrauwen
(2009), the reservoir can be approximated as a linear time-invari-
ant, discrete-time system:

x½kþ 1� ¼ Ax½k� þ Bu½k�; ð5Þ

y½kþ 1� ¼ Cx½kþ 1� þ Du½kþ 1�; ð6Þ

where x[k] represents the state of the reservoir (the vector of neu-
ron activations) at time k, and u[k] and y[k] represent the input and



4174 A.A. Ferreira et al. / Expert Systems with Applications 40 (2013) 4172–4182
output to the system, respectively. Matrix A contains the internal
weights of the reservoir (W), matrix B contains the input-to-reser-
voir weights (Win), and C and D contain the (trained) reservoir-to-
output (Wback) and input-to-output (Winout) weights respectively.
According to Verstraeten and Schrauwen (2009), matrix D is usually
equal to zero. As we can see in the Eqs. (5) and (6), this model does
not consider the feedback connection and bias connections (Ozturk,
Xu, & Principe, 2007).
4. Motivation and proposed evolutionary strategy

The evolutionary are very efficient in searching optimal solu-
tions (or at least approximately optimal solutions) in a wide vari-
ety of problems because they do not impose many of the
limitations found in the traditional methods (Holland, 1992).
Therefore, we decided to investigate their use in order to optimize
the choice of the best ESN for problem solving. Usually, the search
for those parameters is carried out in an exhausting way or
through random experiments, which in general takes a long time
to be accomplished and uses up a lot of computational resource.

The problem of finding a good ESN, using an evolutionary algo-
rithm, can be approached in three different ways: as an evolution-
ary process that operates directly on the topology of the network;
as an evolutionary operator that works on the stochastic parame-
ters which generate the ESN; or both at the same time. If the evo-
lutionary method operates directly on the connections (first and
third approaches) the search spaces could be very large. For a net-
work with N neurons the genetic string would be in the order of N2

neurons large and specially tailored operators would be necessary
to combine individuals of different sizes (Ishii et al., 2004). The sec-
ond approach, called AG Search in this work, results in a smaller
search space for the evolutionary process. One problem with this
approach could be the imprecise investigation for the global
parameters, specially because the network interconnections and
weights are randomly generated. On the other hand, the strings
and the search space are significantly smaller than in the direct ap-
proach (Ishii et al., 2004).

Ishii et al. used in Ishii et al. (2004) several evolutionary ap-
proaches for optimizing ESNs applied to modeling the motion of
an underwater robot. The first approach was an evolutionary
search of the parameters for reservoir matrix (W) generation: res-
ervoir size, spectral radius and the connection density of W. Then
an evolutionary algorithm was used on individuals consisting of
all the weight matrices of small reservoirs (with 5 neurons). A var-
iant, with a reduced search space, was also tried where the
weights, but not the topology, of W, were explored, i.e., elements
of W that were zero initially always stayed zero. According to Ishii
et al. (2004) the empirical results showed the method’s superiority
over other state-of-art methods, and that the first approach was a
little better than the others.

Bush and Tsendjav presented in Bush and Tsendjav (2005) an-
other approach for optimizing the reservoir matrix through an
evolutionary search applied to predicting the behavior of a mass–
spring–damper system. They used the same idea of separating
the topology and weight sizes of W in order to reduce the search
space, but the search was restricted to the connection topology.
This approach also demonstrated yielding on average 50% less
(and much more stable) error in predicting the behavior of a
mass–spring–damper system with small (20 neurons) reservoirs
than without the genetic optimization.

Ferreira and Ludermir used the evolutionary approach to reser-
voirs optimization in Ferreira and Ludermir (2009). Again the idea
of separating the topology and the weights of the reservoir to re-
duce the search space was used. The genetic algorithm was applied
to search for the best configuration of some ESN generation param-
eters (number of neurons in the reservoir, activation function,
spectral radius, etc.) to predict different sets of average wind
speeds. The results showed that the genetic search spent only
20% of the time needed for an exhaustive search of the same
parameters.

Although the strategy of tracking down interconnections and
weights has been avoided until now due to the large search space
problem, we decided to investigate the third approach and we are
obtaining good results.

Another motivation for our proposed method is based on what
was said by Ozturk and Principe in Ozturk and Principe (2005). In
this work, they claim that the idea to rescale the reservoir matrix
to adjust its spectral radius within a unit circle in the complex plane
comes from the theory of linear systems. To get useful answers in
linear systems this condition is necessary. However, this argument
does not necessarily apply to the nonlinear systems, which is the
case of reservoir computing. Ozturk and Principe also showed that
a nonlinear system can be unstable, due to the condition of the spec-
tral radius greater than 1, and still be able to have its dynamics con-
trolled by the input, when it is applied (Ozturk & Principe, 2005).

Thus, this paper presents a method that simultaneously seeks
by global parameters of reservoir computing, by the reservoir
topology and weights, where the reservoir dynamic is not only
determined by its fixed weights and the input signals influence this
dynamic. The method does not consider the approach of reservoir
computing with linear systems, because it does not rescale the res-
ervoir matrix. The method is called RCDESIGN (reservoir comput-
ing and design training). Ferreira and Ludermir showed in
Ferreira and Ludermir (2010) that the utilization of an evolutionary
method for simultaneous optimization of parameters, topology
and reservoir weights in Echo State Networks was very promising.
They applied the idea in two time series. In this study, we present
the RCDESIGN method and the results of apply it into four bench-
mark time series.

4.1. RCDESIGN–proposed method

The evolutionary algorithm incorporates specific knowledge
about the problem’s domain in order to accomplish the optimiza-
tion process. It tolerates several non–determinant elements which
help the search escape from the local minima. In addition to that, it
has an appropriate cost function for each problem, making it
widely useful. For our study, we created a fitness function which
tries to play the GL criterion presented in Proben1 (Prechelt,
1994), i.e., the fitness function takes into account both the perfor-
mance in the training set and in the validation set. GL criterion
minimizes the chances of overfitting: for two networks trained
on the same problem the one with the larger training set error
may actually be better since the other one has concentrated on
peculiarities of the training set at the cost of losing much of the
regularities needed for good generalization. The fitness that we
choose for our study allows the method to look for the best net-
work (minor error in the training set) which retains its capability
of generalization in the validation set. The fitness function is
shown in Eq. (7).

f ¼ MSETrain þ kMSETrain �MSEValidk; ð7Þ

where f is the value to be minimized by the evolutionary algorithm
and the MSE (Mean-square Error) is calculated as in Eq. (8). Since
RCDESIGN uses 10-fold cross validation, MSETrain is the average of
MSE in training set and MSEValid is the average of MSE in validation
set.

MSE ¼ 100 � 1
P � N

XP

i¼1

XN

j¼1

ðLij � TijÞ2; ð8Þ



A.A. Ferreira et al. / Expert Systems with Applications 40 (2013) 4172–4182 4175
where P is the total number of patterns in the set, N is the number of
output units of the ESN, Lij and Tij are actual and desired (target)
outputs of the i � th neuron in the output layer, respectively.

The search process of the evolutionary algorithm involves a se-
quence of iterations, where a set of solutions passes through the
selection processes and reproduction. To create the next generation,
the algorithm selects certain individuals in the current population,
called parents, and uses them to create individuals in the next gen-
eration, called children. Typically, the algorithm is more likely to se-
lect parents that have better fitness values. The selection function
chooses parents for the next generation based on their scaled values
from the fitness scaling function. An individual can be selected more
than once as a parent, in which case, it contributes its genes to more
than one child. In this study, the selection option was stochastic uni-
form (Baker, 1987). In this case, the parents are chosen by a line in
which each parent corresponds to a section of the line whose length
is proportional to its scaled value. The algorithm moves along the
line in equal sized steps. At each step, the algorithm allocates a par-
ent from the section it lands on. The first step is an uniform random
number, smaller than the step size.

The evolutionary algorithm creates three types of children for
the next generation: Elite children are the individuals in the current
generation with the best fitness values. These individuals automat-
ically survive to the next generation. Crossover children is created
by combining the vectors of a pair of parents. Mutation children is
created by introducing random changes, or mutations, to a single
parent.

Pg is a group (population) of si vectors, where g represents a ge-
netic algorithm generation and si represents an individual in the
population. The maximum value for g is the maximum number
of generations (NG) and the size of set Pg is defined by the TP param-
eter of the algorithm. The si

j notation signals a j characteristic
(gene) for the individual denoted as i.

� si
1 ðgÞ – Size of W, Win, Wbias and Wback, varying between [50;

200].
� si

2 – If 1, there is Winout, 0, there is no connection.
� si

3 – If 1, there is Wbiasout, 0, there is no connection.
� si

4 – If 1, there is Woutout, 0, there is no connection.
� si

5 – If 1, there is Wbias, 0, there is no connection.
� si

6 – If 1, there is Wback, 0, there is no connection.
� si

7 – If 1, the activation function is tanh (); if 2, the activation
function is sign ().
� si

8 – If 1, the readout training function is pseudo–inverse; if 2, it is
ridge regress.
� si

9 – Leak rate value, varying between [0.1; 1].
� si

10 – Regularization parameter value, varying between [10�8;
10�1].
� si

11 . . . si
ðg2þ3gþ10Þ – Weights of W, Wbias, Win and Wback, varying

between [�1; 1].

Fig. 2 shows the conceptual division of si.
Fig. 2. Conceptual
4.1.1. Pseudo-code of RCDESIGN
Randomized experiments were conducted to define the param-

eters of genetic algorithm used by RCDESIGN. The configuration
parameters that showed a lower error in the experimental tests
was chosen to be used in our experiments. The number of genera-
tion (NG) is 10, the population size (TP) is 120, the selection option
is stochastic uniform, the number of elite individuals is 2, the cross-
over fraction is 0.8 (which means 96 individuals, and the remaining
22 individuals are the mutation children).

The following outline summarizes the pseudo-code of the pro-
posed evolutionary method used to find the best global parame-
ters, topology and reservoir weights at the same time:

Algorithm 1. RCDESIGN
Algorithm 2. CreateIndividuals
The crossover operator used by RCDESIGN is an adaptation of
the uniform crossover for populations of individuals of different
sizes. For each pair of parents, the vector with the biggest dimen-
sion is defined as sA and the smallest one as sB. The skid elements
are combined from a randomly generated mask, smask. The mask
division of si.



Fig. 3. Crossover of RCDESIGN. (A) Crossover’s first part. (B) Crossover’s second
part.

4176 A.A. Ferreira et al. / Expert Systems with Applications 40 (2013) 4172–4182
indicates which skid characteristics will be inherited from sA and
which characteristics will be inherited from sB. Fig. 3 illustrates
how the crossover operator works.

The mutation operator used by RCDESIGN is also an adaptation
from the mutation to different sized individual populations. For
each selected individual with a parent (sA), an smask mask is created.
The s1 gene is copied to skid. The mutation may occur starting from
the second gene until the last gene with a mutation level defined
by the parameter established as TM.

4.2. AG Search–method for global search

Aiming to compare the results obtained with the RCDESIGN
method, we conducted experiments with genetic algorithm search
for global parameters generation of reservoir computing. AG Search
uses the heuristic method of ESNs creation (Jaeger, 2002) and the
idea of rescaling the W matrix by a spectral radius and a fixed
topology with only the required RC connections. AG Search uses
GA in order to search the principal RC generation parameters,
which are the reservoir size, the spectral radius, and the density
of interconnections of W. Neurons use tanh () and the readout
function is the pseudo-inverse function. The si

j notation signals a j
characteristic (gene) for the individual denoted as i.

For AG Search experiments we used the same parameters of
RCDESIGN, i.e., NG = 10, TP = 120, number of elite individuals equal
2, crossover fraction equal 0.8 and selection option was the sto-
chastic uniform.

� si
1 ðgÞ – Reservoir size, varying between [50; 200].

� si
2 – Spectral radius, varying between [0.7; 1].

� si
3 – Density of interconnections, varying between [10%, 100%].

The pseudo-code for AG Search is equal in Subsection 4.1.1, the
difference is in CreateIndividuals. The following outline summa-
rizes CreateIndividuals used by AG Search:

Algorithm 3. CreateIndividuals
Table 1
Computational Complexity.

RCDESIGN AG search

Creating the initial population O (TiTP) O (Ti TP)
Reproduction O (NGTPTiTop) O (NGTPTi Top)
Rescale Reservoir matrix by spectral radius – O (NGTP n4)
4.3. Comparison of computational complexity

Through the pseudo-code analysis proposed by RCDESIGN and
AG Search method, three basic differences were noted among the
two methods:

� Size of the individuals (Ti).
� Genetic operators’ levels (Top).
� Rescaling of the Reservoir matrix (W) by the spectral radius.
A genetic algorithm’s complexity depends on the size of the
individual (Ti), on the number of generations (NG), on the popula-
tion size (TP) and on the probability of the genetic operators
(Top). The complexity of the population generation procedure can
be defined, in a simplified way, as O (TPTi) and the reproduction
procedure’s complexity as O (NGTPTiTop). The difference in the size
of the individuals in the two methods implies a difference in com-
plexity of the initial population generation procedures and also in
the reproduction operations (crossover and mutation).

Rescaling the Reservoir matrix by the spectral radius incurs a
high computational cost since the process involves the calculation
of all eigenvalues of the Reservoir matrix, the dividing of Reservoir
matrix by the highest absolute value among its eigenvalues and fi-
nally the multiplying of Reservoir matrix by the spectral radius. For
the calculation of all eigenvalues, the complexity is equal to O (n4)
(Anderson et al., 1999). So we defined, in a simplified manner, that
the complexity of rescaling the Reservoir matrix is O (NGTPn4). Ta-
ble 1 presents a summary of the basic differences among the three
methods in terms of time complexity.

According to Table 1, assuming that a weights search method
for RC was less costly in computational terms (Ishii et al., 2004),
due to the large size of the search space, than the cost for RC gen-
erating parameter search methods is misguided. The cost associ-
ated to the large search space is compensated by the lack of cost
associated to the rescaling of the Reservoir matrix by the spectral
radius. The time complexity for each method will be presented
with the average time spent by the method to create each network.
The average time ð�tÞ is calculated by Eq. (9):

�t ¼ 1
NGTP

X
ti

� �
; ð9Þ

where NG stands for the number of all the generations executed by
the algorithm, where TP is the size of the population and ti is the
time spent by the algorithm since its creation until the last individ-
ual’s evaluation.



A.A. Ferreira et al. / Expert Systems with Applications 40 (2013) 4172–4182 4177
4.4. Persistence method

The persistence forecast method was used to compare the re-
sults obtained by the RCDESIGN and AG Search methods. The per-
sistence method assumes that the conditions at the time of
forecasting will not change. For example, if it is sunny and 40 �C to-
day, the persistence method predicts that it will be sunny and
40 �C tomorrow. The persistence method works well when weath-
er patterns change very little and features on the weather maps
move very slowly. It also works well in places like Northeast Brazil,
where summertime weather conditions vary little from day to day.
The persistence forecast method tends to be used as a benchmark
against which all other models are compared (Walson, 2005).
5. Data sets

The Echo State Networks, created in this study, were driven by
input/output sequences. The experiments are performed in four
prediction problems:

� A NARMA system.
� Mackey–Glass chaotic attractor time series (MGS).
� Average hourly wind speeds from the city of Triunfo (TRI).
� Average hourly wind speeds from the city of Belo Jardim (BJD).

5.1. A NARMA system

The NARMA (Nonlinear Autoregressive Moving Average) task
was described in Jaeger (2003). A NARMA system is a discrete time
system of the following configuration, showed in Eq. (10)

yðnÞ ¼ f ðyðn� 1Þ; yðn� 2Þ; . . . ; yð0Þ;uðnÞ;uðn� 1Þ; . . . ; uð0ÞÞ; ð10Þ

where y(n) is the system output at time n,u(n) is the system input at
time n, and f is an arbitrary vector-valued, possibly non-linear func-
tion. The distinctive property of these systems is that the current
output depends both on the input and output history. Modeling
these systems is, in general, quite difficult due to the arbitrary
non-linearity and the possibility that the long memory (i.e. y(n)
might depend on many former inputs and outputs) (Liebald,
2004). As inputs we use u(n) as random samples drawn from a uni-
form distribution over the interval [0, 1].
5.2. The Mackey–Glass chaotic attractor time series

The Mackey–Glass time series (MGS) is a standard benchmark
test in the time series prediction community. This system has no
inputs and only one output, which is computed as in Eq. (11):

yðnþ 1Þ ¼ yðnÞ þ d
0:2y n� s

b

� �
1þ y n� s

b

� �� �10 � 0:1yðnÞ

0
B@

1
CA; ð11Þ

where d is a stepsize parameter that arises from the discretization of
the original continuous-time MG equation, and s is a delay param-
eter that influences the degree of chaos the MGS features. We used
the standard choice, s = 17, which produces a ’’mildly chaotic’’
behavior, and d = 0.1 with subsequent sub sampling by 10. It is
important to note that the evolution of the MGS depends on the ini-
tial values of y yð0Þ; . . . y s

b

� �� �
(Liebald, 2004). These were simply

random samples drawn from a uniform distribution. Although the
MGS output does not depend on any input sequence, we created a
bias input of equal length, which is simply used by the network
in its update procedure state.
5.3. Average hourly wind speeds from Triunfo and Belo Jardim Cities

In this research real data from the project SONDA (system of na-
tional organization of ambient data – http://sonda.ccst.inpe.br/)
have been used in order to create the model. SONDA is a project
from the National Institute of Space Research (INPE) for the imple-
mentation of physical infrastructure and human resources in order
to gather and improve the resources database of solar and wind en-
ergy in Brazil.

The wind power model in energy planning is based on statisti-
cal operation of the wind farms, considering the wind regime. For
the Northeast Region of Brazil, the most important characteristic is
the wind speed, as shown in Aquino et al. (2010). We chose two
wind speed time series to carry out the experiments. The series
were used previously in Ferreira and Ludermir (2009); Ferreira,
Ludermir, de Aquino, Lira, and Neto (2008); Ferreira and Ludermir
(2008). The first series consists of the average hourly wind speeds
obtained by the wind headquarters in Triunfo. This series is made
up of the average hourly wind speeds in the period from January
01, 2006 to April 30, 2007, which amounts to 11,640 patterns.
The second series consists of the average hourly wind speed ob-
tained by the wind headquarters of Belo Jardim in the period from
July 31, 2004 to August 31, 2005, which amounts to 10,248
patterns.

Before creating the system, the base was preprocessed and the
values of the average hourly speeds was transformed. The values
were transformed as in Eq. (12):

xnorm ¼
ðymax � yminÞ � ðx� xminÞ

ðxmax � xminÞ
þ ymin; ð12Þ

were, xnorm is the value transformed in a limited range [0,1]; ymax, is
the maximum value of the interval, 1; ymin is the minimum value of
the interval, 0; xmax and xmin are the maximum and minimum val-
ues of the series and; x is the original value. Through statistical anal-
ysis of the average hourly wind speed, we observed a high standard
deviation of this variable, so we decided to apply an increase of 20%
to the maximum value of the series, like we did in previous works
Ferreira and Ludermir (2010); Ferreira and Ludermir (2009); Ferre-
ira et al. (2008). Thus, the maximum value accepted by the model is
equal to the maximum value found in the database increased by
20% and the minimum value accepted by the model is zero. The
aim of the increase in speed supported by the forecasting model
of average wind speeds is to make it more robust to support speeds
higher than the speed shown by the historical series.

As in previous works Ferreira and Ludermir (2009); Ferreira
et al. (2008); Ferreira and Ludermir (2008), a twenty-four-step-for-
ward predictor of the average hourly wind speed was chosen. Since
the series presented a good correlation index, it can be concluded
that 24-step-forward is a good interval for the operation system
planning. A twenty-four-step-forward predictor is actually 24 h
predictor and thus predicting 1 day into the future.
6. Experimental results

In this section, we present experimental results that provide an
overview of the proposed RCDESIGN efficiency. Four time series
were used for evaluating the RCDESIGN method. We used the AG
Search and Persistence Method to compare with the RCDESIGN re-
sults. All series were normalized to lie within the interval [0, 1]
and divided in three sets: training set, validation set (which to-
gether make up 75% of the points), and test set (25% of the points).
Because of the random characteristics of the methods, we per-
formed 30 initializations the same in all data sets, so, we consider
that an experiment consists of 30 initializations. The following out-
line summarizes the pseudo-code that controls the experiments:

http://sonda.ccst.inpe.br/


Table 3

4178 A.A. Ferreira et al. / Expert Systems with Applications 40 (2013) 4172–4182
Algorithm 4. Experiment

Test – MSE, NRMSE and NMSE – 30 initializations.

RCDESIGN AG search

MSE
Narma 0.00009201(0.0001) 0.00229437(0.0009)
MGS 0.00000001(0.0000) 0.00000161(0.0000)
TRI 0.00099199(0.0000) 0.00357787(0.0001)
BJD 0.00396731(0.0000) 0.01137915(0.0001)

NRMSE
Narma 0.08462155(0,0354) 0.42436505(0.0438)
MGS 0.00050628(0,0001) 0.00584469(0.0006)
TRI 0.43600947(0,0016) 0.82799176(0.0103)
BJD 0.49230377(0,0025) 0.83375926(0.0039)

NMSE
Narma 0.00837240(0.0089) 0.18194143(0.0395)
MGS 0.00000028(0.0000) 0.00003454(0.0000)
TRI 0.19010669(0.0014) 0.68567226(0.0170)
BJD 0.24236893(0.0024) 0.69516923(0.0065)

Table 4
Test – MAPE and MAE – 30 initializations.

RCDESIGN AG search Persistence Method

MAPE (%)
TRI 9.86(0.04) 20.63(0.24) 22.46(0.23)
BJD 12.08(0.11) 20.27(0.11) 23.99(0.25)

MAE (m/s)
TRI 0.87(0.00) 1.71(0.02) 1.92(1.61)
BJD 0.62(0.00) 1.08(0.01) 1.22(0.96)
Table 2 presents the average number of generations, the aver-
age spectral radius and the average number of neurons in the res-
ervoir for the two methods in all data sets for the test set. The
values presented in the table is the average of each 30 initialization
for each data set and the standard deviation is shown in
parentheses.

The system performance was measured by the percentage of
the MSE specified in Eq. (8), the NRMSE (normalized root mean
squared error) specified in Eq. (13), the NMSE (normalized mean-
square error) specified in Eq. (14), and for the wind speed data sets
by the MAPE (mean absolute percentage error) specified in Eq. (15)
and the MAE (mean absolute error) specified in Eq. (16):

NRMSE ¼ 1
N � P

XP

i¼1

XN

j¼1

sqrt
ðTij � LijÞ2

varðTÞ

 !
; ð13Þ

NMSE ¼ 1
N � P

XP

i¼1

XN

j¼1

ðTij � LijÞ2

varðTÞ ; ð14Þ

MAPE ¼ 100 � 1
P � N

XP

i¼1

XN

j¼1

Tij � Lij

Tij

����
����; ð15Þ

MAE ¼ 1
P � N

XP

i¼1

XN

j¼1

ðTij � LijÞ; ð16Þ

where P is the total number of patterns in the set; N is the number
of output units of the ESN; Tij and Lij are actual and desired output
(target) of the i � th neuron in the output layer; and var(T) is the
variance of the values in the target data set.

Table 3 presents MSE, NRMSE and NMSE of the two methods in
all data sets for the test set. The values presented in the table is the
average of each 30 initialization for each data set and the standard
deviation is shown in parentheses. The errors obtained by RCDE-
SIGN were much smaller than the errors obtained by the AG Search.

Table 4 shows the MAPE and MAE in the test for RCDESIGN, AG
Search and Persistence Method only to data sets of average hourly
Table 2
Method’s Parameters.

Data set Generations Spectral radius Reservoir size

RCDESIGN
NARMA 8.5 1.15(0.08) 174(16.72)
MGS 4 1.59(0.28) 82(31.20)
TRI 4.5 1.59(0.26) 86(25.91)
BJD 7.4 1.53(0.22) 79(23.09)

AG search
NARMA 11 0.97(0.05) 196(3.50)
MGS 4 1.00(0.00) 189(8.15)
TRI 10.5 1.00(0.00) 173(21.46)
BJD 10.4 1.00(0.00) 177(23.11)
wind speeds. The performance of RCDESIGN was well above the
performance of the other two methods.

6.1. Narma

The Narma database has been used as a benchmark task of time
series forecasting. Fig. 4 presents the topology and poles of the res-
ervoir to reservoir connection matrix, in complex planes, for one of
the systems created by RCDESIGN for the NARMA data set. In the
topology matrix, the white square indicates the existence of a con-
nection, on the one hand, between bias (b), inputs (i), reservoir (r)
and outputs (o), on the one hand, to reservoir and, on the other
hand, to outputs. The black square indicates the absence of a con-
nection. As we can see in this figure, the network has connections
(white rectangle) between bias and reservoir, input and reservoir,
reservoir and reservoir, input and output, reservoir and output
and feedback connection in the output layer, which makes this sys-
tem very non-linear. Although RCDESIGN does not perform a
search of the spectral radius, we can see it in this figure, from
the view of the poles of the reservoir weights in the complex plane.
The spectral radius was equal to 1.1311, staying above the limit
suggested by Jaeger (2001). In spite of that, the created system
has an excellent performance.

Table 5 presents the performance of networks created by RCDE-
SIGN and a summary of the results obtained by other authors with
the same data set. Comparisons between these methods must be
made with caution, as the results are obtained with different exper-
imental model setups. This table shows the best results in the test set
in bold. Jaeger (2003) used a scheme to perform the online adapta-
tion of output weights (readout), for NARMA data set, based on the
RLS algorithm, and obtained a NMSE equal to 0.0081 in the test set
in a network with a reservoir of 400–neuron reservoir. Steil (2004)
performed experiments with APRL and BPDC algorithms for training
systems for this base. The best result achieved by him in the test set
was NMSE equal to 0.142 in a network with a 40–neuron reservoir,
trained by BPDC. Verstraeten et al. presented in Verstraeten et al.



Fig. 4. RCDESIGN – NARMA. (A) Poles of the matrix W matrix. (B) Topology (white square indicates the existence of a connection and the black square indicates the absence).

Table 5
NARMA: method’s performance.

NMSE Spectral radius Reservoir size

RCDESIGN 0.0084 1.15(0.08) 174(16.72)
Jaeger (2003) 0.0081 – 400
Steil (2004) 0.1420 – 40

NRMSE Spectral radius Reservoir size

RCDESIGN 0.085 1.15(0.08) 174(16.72)
Verstraeten et al. (2007) 0.400 1 200

Table 6
MGS: method’s performance.

NMSE Spectral radius Reservoir size

RCDESIGN 0.00000028 1.59(0.28) 82(31.20)
Steil (2004) 0.0340 – 40

NRMSE Spectral radius Reservoir size

RCDESIGN 0.00051 1.59(0.28) 82(31.20)
Jaeger and Haas (2004) 0.000063 – 1.000

A.A. Ferreira et al. / Expert Systems with Applications 40 (2013) 4172–4182 4179
(2007) a study on the relationship between the parameters of reser-
voir computing and its dynamics. They performed many different
configurations of reservoir computing for the task of predicting the
base NARMA. The best system created by them, obtained a NRMSE
of approximately 0.4, in a network with a 200–neuron reservoir, lin-
ear active function and spectral radius close to 1. The RCDESIGN per-
formance may not have been the best for the problem, but the result
shows that it is possible to build ESNs with different recipes from the
traditional ones which use spectral radius to rescale the reservoir’s
weight matrix.

6.2. Mackey–Glass

The task of predicting the Mackey–Glass base is also used as a
benchmark in several studies and systems created with reservoir
computing have produced excellent results for this base. Fig. 5
shows the architecture and the weights distribution for one of
the systems created by RCDESIGN for this data set. The spectral ra-
dius of this system is equal to 1.651, which means it is well above
the limit suggested by in Jaeger (2001)].

Table 6 presents the performance of networks created by RCDE-
SIGN and a summary of the results obtained by other authors with
the same data set. Comparisons between these methods must be
made with caution, as the results are obtained with different
experimental model setups. This table shows the best results in
the test set in bold.

Steil (2004) performed experiments with APRL and BPDC algo-
rithms in order to train systems for this base. The best result he
achieved in the test set was NMSE equal to 0.034 in a network
trained by BPDC and with 40 neurons in the reservoir. In Jaeger
and Haas (2004) Jaeger and Haas performed experiments with this
series and obtained a NRMSE of 0.000063 for reservoirs with 1000
neurons.
Fig. 5. RCDESIGN – Mackey–Glass. (A) Poles
6.3. Triunfo

We also applied the proposed method in two real data sets (the
average hourly wind speeds from the cities of Triunfo and Belo Jar-
dim) in order to verify the feasibility of the proposed method ap-
plied to real data. Fig. 6 presents the architecture and the
weights distribution for one of the systems created by RCDESIGN
for this data set. The spectral radius is equal to 1.57.

Tables 3 and 4 show the performance for forecasting the Triunfo
data set. These tables show the results in the tests sets. As we can
see in these tables, the MSE, the NRMSE, the NMSE, the MAPE and
the MAE of the systems created by RCDESIGN were much lower
than all of the sets in the system created by the AG Search. They
were also smaller than the errors of the Persistence Method.

If we compare the results obtained by the model created by
RCDESIGN with the results obtained by Ferreira et al. in Ferreira
and Ludermir (2008), for the same data set, we can conclude that
the RCDESIGN method was better than the one adopted in this
study. The model created in Ferreira and Ludermir (2008) pre-
sented MSE and MAE equal to 0.95 and 0.88 in the test set. The
model created in Ferreira and Ludermir (2008) used a network
with 400 neurons. The model created in Ferreira and Ludermir
(2009) presented MSE equal to 0.96 in the test set, with 547 neu-
rons and spectral radius equal to 0.947.
6.4. Belo Jardim

The Fig. 7 presents the architecture and the weights distribution
for one of the systems created by RCDESIGN for this data set. The
spectral radius is equal to 1.5986.

Tables 3 and 4 show the performance for forecasting the Belo
Jardim data set. These tables show the results in the tests sets.
of the matrix W matrix. (B) Topology.



Fig. 6. RCDESIGN – Triunfo. (A) Poles of the matrix W matrix. (B) Topology.

Fig. 7. RCDESIGN – Belo Jardim. (A) Poles of the matrix W matrix. (B) Topology.

Fig. 8. Test patterns of Triunfo database. (A) Actual (solid) � RCDESIGN (dashed) and (B) Actual (solid) � AG Search(dashed). The vertical axis represents the average hourly
wind speeds and the horizontal axis the sequence of the last 200 patterns.

Fig. 9. Test patterns of Belo Jardim database. (A) Actual (solid) � RCDESIGN (dashed) and (B) Actual (solid) � AG Search(dashed). The vertical axis represents the average
hourly wind speeds and the horizontal axis the sequence of the last 200 patterns.

4180 A.A. Ferreira et al. / Expert Systems with Applications 40 (2013) 4172–4182
Again, as we can see in these tables, the MSE, the NRMSE, the
NMSE, the MAPE and the MAE of the systems created by RCDESIGN
were much smaller than those in the systems created by the AG
Search. They were also smaller than the errors of Persistence Meth-
od. The model created in Ferreira et al. (2008) presented, in the test
set, MSE, MAE and MAE respectively equal to 4.11, 18.21 and 0.71



Fig. 10. Comparison of the fitness evolution for the Belo Jardim data set. RCDESIGN � AG Search. The vertical axis represents the fitness of the best individual in each
generation and the horizontal axis represents the sequence of each generation.

Table 7
Average generating time for each network (in seconds) in each method.

RCDESIGN AG search

Narma 4.54(0.43) 5.83(0.45)
MGS 3.89(0.21) 5.58(0.47)
TRI 5.94(0.17) 7.76(0.16)
BJD 2.57(0.09) 3.62(0.11)

A.A. Ferreira et al. / Expert Systems with Applications 40 (2013) 4172–4182 4181
in a network with 200 neurons. The performance of the model cre-
ated by RCDESIGN was much higher in the test sets with MSE,
MAPE and MAE equal to 0.00396731, 12.08 and 0.62 in a much
smaller network containing approximately 79 neurons.

Figs. 8 and 9 present the last 200 patterns, in the test set, refer-
ring to the prediction made by the RCDESIGN created model and
the AG Search created model for the Triunfo and Belo Jardim data-
base respectively. The solid line refers to the actual data, while the
dashed line is the data predicted by the RCDESIGN created model
or by the AG Search created model. As we can see, the model cre-
ated by RCDESIGN was able to learn and identify most of the back-
ground presented in this series, while the model created by the AG
Search had a much lower performance.

As we can see in Fig. 10 the best individual evolution in the
RCDESIGN method is decreasing, but this decreasing behavior is
not seen in the AG Search. The irregular behavior presented by
the AG Search reinforce what Ozturk et al. demonstrated in Ozturk
et al. (2007). In this article they proved that the reservoir dynamics
is not determined by its fixed weights and that the input signals
influence this dynamic. They showed that there are various weight
matrices with the same spectral radius, and unfortunately, they do
not display the same performance when the MSE is calculated. The
same behavior was observed in the NARMA, Mackey–Glass and Tri-
unfo bases.

6.5. Results of time complexity

Table 7 presents the average generating time for each network
(in seconds) in each method. The values presented in the table is
the average of each 30 initialization for each data set and the stan-
dard deviation is shown in parentheses. The average generating
time for the RCDESIGN networks was consistently lower compared
to the average AG Search, which means that the strategy of search-
ing the Reservoir matrix weights has a lower computational cost
than the strategy of searching the RC generation parameters, when
this involves the rescaling of the Reservoir matrix by the spectral
radius.
7. Conclusion

The RCDESIGN method combines the advantages of an evolu-
tionary strategy with reservoir computing in order to generate an
automatic process for producing ESNs. The most encouraging re-
sult proves which method is the best option since the choice does
not depend on the analyst’s experience. Through this method, it’s
possible to investigate a different topology, as well as evaluate
many parameter combinations. Furthermore, the task’s time–con-
sumption and the computational effort in finding the parameters,
topology and reservoir weights, were reduced.

According to Lukosevicius and Jaeger (2009), separating the
RNN reservoir and readout provides a good platform for trying
out several kinds of RNN methods in the reservoir. It is also useful
for observing how much they can actually improve the perfor-
mance on created RNNs. This is particularly well–suited for testing
various biology-inspired RNN adaptation mechanisms, on how
they can improve learning of a supervised task. Considering this,
we developed the RCDESIGN method in order to analyze the effect
that the search, for various parameters of the ESN in a single step,
for a given task, could have on the system’s final performance.

We showed that it is possible to optimize reservoir global
parameters, topology and reservoir weights simultaneously, with-
out the limitation (shown in previous works) of reducing the
search space and without the spectral radius rescaling of the reser-
voir matrix. The proposed method displays very good performance
in two real time series and good results in two benchmarks series.
The search with RCDESIGN takes less time than AG Search in all the
bases studied.

The results presented by the RCDESIGN created systems show
that there is not a need for uniform distribution of the poles of
the weights within a unit circle in the complex plane in order for
the reservoir to perform well, since the real dynamics of the reser-
voir can only be found with the system in use. This is in line with
what had been said previously in Ozturk and Principe (2005). Oz-
turk and Principe introduced in Ozturk and Principe (2005), a com-
putational model for nonlinear systems with sigmoidal
nonlinearity, which does not require global stability. In this model,
although the autonomous system is unstable, the input signal
forces the system dynamics to become ‘‘transiently stable’’.

We verified that the proposed method is good for forecasting
four distinct time series. In future works, we plan to investigate
the method in different kinds of data sets and analyze in more de-
tail the effect of not rescaling the weight matrix by the spectral
radius.



4182 A.A. Ferreira et al. / Expert Systems with Applications 40 (2013) 4172–4182
Acknowledgments

The authors thank CNPq, CAPES and FACEPE (Brazilian Research
Agencies) for their financial support.

References

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., et al. (1999).
LAPACK user’s guide. SIAM<http://www.netlib.org/lapack/lug/>.

Antonelo, E. A., Schrauwen, B., & Stroobandt, D. (2008). Event detection and
localization for small mobile robots using reservoir computing. Neural Networks,
21(6), 862–871.

Aquino, R. R. B., Junior, M. A. C., Lira, M. M. S., Neto, O.N., Almeida, G.J., & Tiburcio, S.
N. N. (2010). Recurrent neural networks solving a real large scale mid-term
scheduling for power plants. In Proceedings of the international joint conference
on neural networks – IJCNN 2010, Barcelona (pp. 3439–3444).

Baker, J. E. (1987). Reducing bias and inefficienry in the selection algorithm. In
Proceedings of the 2nd international conference on genetic algorithms, Cambridge,
MA, USA (pp. 14–21).

Bush, K., & Tsendjav, B. (2005). Improving the richness of echo state features using
next ascent local search. In Proceedings of the artificial neural networks in
engineering conference (pp. 227–232).

Dominey, P. F. (1995). Complex sensory-motor sequence learning based on
recurrent state representation and reinforcement learning. Biological
Cybernetics, 73(3), 265–274.

Ferreira, A. A., & Ludermir, T. B. (2008). Using reservoir computing for forecasting
time series: brazilian case study. In Proceedings of the international conference on
hybrid intelligent systems – HIS 2008,Los Alamitos, CA, USA (pp. 602–607).

Ferreira, A.A., & Ludermir, T.B. (2009). Genetic algorithm for reservoir computing
optimization. In Proceedings of the international joint conference on neural
networks – IJCNN 2009, Atlanta (pp. 811–815).

Ferreira, A. A., & Ludermir, T. B. (2010). Evolutionary strategy for simultaneous
optimization of parameters, topology and reservoir weights in echo state
networks. In Proceedings of the international joint conference on neural networks –
IJCNN 2010, Barcelona (pp. 1870–1876).

Ferreira, A. A., Ludermir, T. B., de Aquino, R. R. B., Lira, M. M., & Neto, O. N. (2008).
Investigating the use of reservoir computing for forecasting the hourly wind
speed in short-term. In Proceedings of the international joint conference on neural
networks – IJCNN 2008, Hong Kong (pp. 1950–1957).

Holland, J. H. (1992). Adaptation in natural and artificial systems: An introductory
analysis with applications to biology control and artificial intelligence. Cambridge,
MA, USA: MIT Press.

Ishii, K., van der Zant, T., Becanovic, V., & Ploger, P. (2004). Identification of motion
with echo state network. In Proceedings of the OCEANS 2004 MTS/IEEE–TECHNO-
OCEAN 2004 conference (Vol. 3, pp. 1205–1210).
Jaeger, H. (2001). The echo state approach to analyzing and training recurrent
neural networks., Tech. rep., GDM 148, German national resource center for
information technology.

Jaeger, H. (2002). Tutorial on training recurrent neural networks, covering bptt, rtrl,
ekf and the echo state network approach., Tech. rep., GDM 159, German
national resource center for information technology.

Jaeger, H. (2003). Adaptive nonlinear system identification with echo state
networks. Advances in Neural Information Processing Systems, 15, 593–600.

Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless telecommunication. Science, 308,
78–80.

Liebald, B. (2004). Exploration of effects of different network topologies on the ESN
signal crosscorrelation matrix spectrum, Master Dissertation, Jacobs University
Bermen, 2004.

Lukosevicius, M., & Jaeger, H. (2009). Reservoir computing approaches to recurrent
neural network training. Computer Science Review, 3(3), 127–149.

Maass, W., Natschlager, T., & Markram, H. (2002). Real-time computing without
stable states: A new framework for neural computation based on perturbations.
Neural Computation, 14(11), 2531–2560.

Ozturk, M. C., & Principe, J. C. (2005). Computing with transiently stable states. In
Proceedings of the international joint conference on neural networks, IJCNN 2005
(Vol. 3, pp. 1467–1472).

Ozturk, M. C., Xu, D., & Principe, J. C. (2007). Analysis and design of echo state
networks. Neural Computation, 19(1), 111–138.

Prechelt, L. (1994). Proben1 – a set of neural network benchmark problems and
benchmarking rules., Tech. rep., 21/94, Fakultt fr Informatik, Universitt
Karlsruhe, Germany.

Schrauwen, B., Verstraeten, D., & Haene, M. D. (2007a). Reservoir computing toolbox
manual, http://reslab.elis.ugent.be/rctoolbox.

Schrauwen, B., Defour, J., Verstraeten, D., & Campenhout, J. V. (2007). The
introduction of time-scales in reservoir computing, applied to isolated digits
recognition., Proceedings of the 17th international conference on artificial
neural networks. In Lecture notes in computer science (Vol. 4668, Part I 471–
479).

Steil, J. J. (2004). Backpropagation–decorrelation: Online recurrent learning with
o(n) complexity. In Proceedings of the international joint conference on neural
networks, IJCNN 2004 (Vol. 2, pp. 843–848).

Verstraeten, D., & Schrauwen, B. (2009). On the quantification of dynamics in
reservoir computing, Proceedings of the 19th International Conference on
Artificial Neural Networks. In Lecture notes in computer science (Vol. 5768, pp.
985–994).

Verstraeten, D., Schrauwen, B., D’Haene, M., & Stroobandt, D. (2007). An
experimental unification of reservoir computing methods. Neural Networks,
20(3), 391–403.

Walson, S. (2005). Fresh forecasts [wind power forecasting]. Power Engineer, 19(2),
36–38.

http://www.netlib.org/lapack/lug/
http://reslab.elis.ugent.be/rctoolbox

	An approach to reservoir computing design and training
	1 Introduction
	2 Reservoir computing
	3 Echo state property
	4 Motivation and proposed evolutionary strategy
	4.1 RCDESIGN–proposed method
	4.1.1 Pseudo-code of RCDESIGN

	4.2 AG Search–method for global search
	4.3 Comparison of computational complexity
	4.4 Persistence method

	5 Data sets
	5.1 A NARMA system
	5.2 The Mackey–Glass chaotic attractor time series
	5.3 Average hourly wind speeds from Triunfo and Belo Jardim Cities

	6 Experimental results
	6.1 Narma
	6.2 Mackey–Glass
	6.3 Triunfo
	6.4 Belo Jardim
	6.5 Results of time complexity

	7 Conclusion
	Acknowledgments
	References


