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ABSTRACT

Extreme Learning Machine (ELM) is a new learning method for single-hidden layer feedforward neural net-
work (SLFN) training. ELM approach increases the learning speed by means of randomly generating input
weights and biases for hidden nodes rather than tuning network parameters, making this approach much
faster than traditional gradient-based ones. However, ELM random generation may lead to non-optimal
performance. Particle Swarm Optimization (PSO) technique was introduced as a stochastic search through
an n-dimensional problem space aiming the minimization (or the maximization) of the objective function of
the problem. In this paper, two new hybrid approaches are proposed based on PSO to select input weights
and hidden biases for ELM. Experimental results show that the proposed methods are able to achieve better
generalization performance than traditional ELM in real benchmark datasets.

Keywords: Artificial Neural Networks, Extreme Learning Machine, Hybrid Systems, Particle Swarm
Optimization, Population Stereotyping, Selection Operator

1. INTRODUCTION

Artificial neural networks (ANNSs) are known
as universal approximators and computational
models with remarkable properties such as
adaptability, capacity of learning by examples
and the ability to generalize data (Haykin, 1998).

Neural networks are of great use in pattern
classification applications, and through a super-
vised learning perspective, they are considered
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a general method for constructing mappings
between a group of sample vectors (training
set) and the corresponding classes, allowing
the classification of unseen data as one of the
classes learned in the training process.

One of the most used ANN models is the
well-known Multi-Layer Perceptron (MLP).
The training process of MLPs for pattern clas-
sification consists of two main tasks: selection
of an appropriate architecture for the problem
and the adjustment of the connection weights
of the network.
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Gradient-based learning strategies, such
as Backpropagation (BP) and its variant
Levenberg-Marquardt (LM-BP), have been
extensively used in the training of MLPs,
but these approaches are usually slower than
required in learning, and may also get stuck in
local minima (Zhu et al., 2005).

Extreme learning machine (ELM) was
proposed as an efficient learning algorithm for
single-hidden layer feedforward neural network
(SLFN) (Huangetal.,2006). ELM increases the
learning speed by means of randomly generating
weights and biases for hidden nodes, differently
from gradient-based approaches, which com-
monly tune iteratively the network parameters.

Although ELM is fast and presents good
generalization performance, as the output
weights are computed based on the prefixed
input weights and hidden biases using the
Moore-Penrose (MP) generalized inverse, there
may exist a set of non-optimal input weights
and hidden biases, and it might suffer from the
overfitting as the learning model will approxi-
mate all training samples well.

Global search techniques, such as Tabu
Search (TS) (Glover, 1986), Evolutionary Al-
gorithms (EAs, like Genetic Algorithm - GA)
(Eiben & Smith, 2003), Differential Evolution
(DE) (Storn & Price, 1995; Storn & Price, 1997),
Particle Swarm Optimization (PSO) (Kennedy
& Eberhart, 1995; Kennedy & Eberhart, 2001;
vanden Bergh, 2002) and Group Search Optimi-
zation (GSO) (He et al., 2006; He et al., 2009),
are widely used in scientific and engineering
problems, and these strategies have been com-
bined with ANNSs to perform various tasks, such
as connection weight initialization, connection
weight training and architecture design.

In this paper, we present two new hybrid
evolutionary approaches based on Particle
Swarm Optimization technique to select input
weights and hidden biases for Extreme Learning
Machine neural network: PSO-ELM-CS, and
GCPSO-CS,. These methods are extensions
from the PSO-ELM-CS, and GCPSO-ELM-CS,
approaches, respectively, presented in Pacifico
and Ludermir (2012). The Particle Swarm
Optimization (PSO) consists of a stochastic

global search originated from the attempt to
graphically simulate the social behavior of a
flock of birds looking for resources.

For the proposed methods, individuals in
the PSO population were divided into groups
by a clustering algorithm, following the idea of
“population stereotyping” presented in Kennedy
(2000). The /best topology was adopted in a
way that PSO particles will update according to
individuals from its neighborhood. A selection
operator was also applied to all strategies, based
on the ideas of Angeline (1999).

Some evolutionary strategies have been
adopted for the ELM context. Zhu et al. (2006)
introduces a hybrid form of differential evolu-
tionary (DE) algorithm to search for optimal
input weights and hidden biases for ELM,
called E-ELM to train SLFN with more com-
pact networks.

Xu and Shu (2006) presented a new evolu-
tionary ELM based on PSO for prediction task.
In Saraswathi et al. (2011) a combination of
Integer Coded Genetic Algorithm (ICGA) and
Particle Swarm Optimization (PSO), coupled
with the ELM has been used for gene selection
and cancer classification, where the ICGA and
PSO-ELM selected an optimal set of genes
which are then used to build a classifier to
develop an algorithm ICGA_PSO_ELM) that
could handle sparse data and sample imbalance.

In Cho and Lee (2007), an optimization
method based on Bacterial Foraging (BF) algo-
rithm was proposed to adjust the input weights
and hidden biases for the ELM.

Lahozetal. (2011) presented abi-objective
micro genetic ELM (uG-ELM) to generate the
hidden weights and biases for ELM, and it also
used a regression based strategy to select the
appropriate number of hidden nodes.

In Silva et al. (2011a), the ELM was com-
bined with Group Search Optimization (GSO)
algorithm (GSO-ELM), and four different forms
of handling individuals (members) that fly out
ofthe search space bounds were used. The GSO
was used to optimize the input weights and
hidden biases for ELM, and also has found a
more compact architecture than ELM for four
of the six tested datasets.
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Silva et al. (2011b) presented four new
hybrid approaches to optimize ELM input
weights, hidden biases and architecture, based
on cooperative PSO variants (van den Bergh
& Engelbrecht, 2004; Carvalho & Ludemir,
2006a; Carvalho & Ludemir, 2006b): Guar-
anteed Convergence PSO (GCPSO-ELM),
Cooperative PSO (CPSO-S-ELM), Hybrid
CPSO (CPSO-H,-ELM) and a combination of
GCPSO and CPSO-H, (GC-CPSO-H,-ELM).

Although Silvaetal. (2011b)also presented
PSO variations using /best neighborhood ap-
proach, the local groups were fixed (i.e., the
individuals do not change groups, keeping the
same group throughout the algorithm execution)
and followed a “divide-and-conquer” strategy,
trying to update only its reduced set of variables
(i.e., a reduced set of the search space dimen-
sions), aiming to give its contribution towards
a global best solution.

In this work, each cluster updates trying
to find its own local best solution, exploring
different regions of the search space, and each
cluster individual has a complete vision of
the search space dimension set, trying to find
only a local best solution. Clusters may also
vary throughout the algorithm execution, with
individuals leaving their former clusters to join
into another ones. In this work, each individual
belongs to one cluster only at each iteration.

This paper is organized as follows. The
next section (Section 2) presents the Extreme
Learning Machine (ELM), Particle Swarm
Optimization (PSO), Guaranteed Convergence
Particle Swarm Optimization (GCPSO) (Carv-
alho & Ludemir, 2006a; Carvalho & Ludemir,
2006b) and the clustering scheme for popula-
tion stereotyping adopted. Next, the proposed
hybrid PSO approaches (Section 3) and the
experimental results (Section 4) are shown.
Finally, the conclusions and suggestions for
future works are given (Section 5).

2. PRELIMINARIES
2.1. Extreme Learning Machine

Extreme learning machine (ELM) was proposed
inHuang, et al. (2006). The main concept behind
the ELM lies in the random initialization of the
input weights and hidden biases. Suppose we
are training SLFNs with N hidden neurons and
activation function flx) to learn M distinct
samples (x, t), where x, = [x,, x,, . . ., x,]
eR" and t=1[t,t,..t] €R’. By doing
so0, the nonlinear system has been converted to
a linear system:

H3 =T

where H is the hidden-layer output matrix
denoted by:

f<w1'x1+b1) f<wN'X1+bN>

H= : :
f<W1 Xy, T+ bl) f(W\ Xyt bN)
wherewj=[w/.,,wfz,...,w/_k]r(j=1, ...,N)isthe

weight vector connecting jth hidden neuron and
input neurons, and bj denotes the bias of jth
hidden neuron; W, X, (i=1, ..., M) denotes the
inner product of w, andx; B8 =[8 , B,...,
B 1" is the matrix of output weights and (3 ;
= [ﬁﬂ, ﬂjz,..., ﬁjd]T(j: 1, ..., N) denotes the
weight vector connecting the jth hidden neuron
N
,oee ty, ]Tis the
matrix of targets (desired output). In the case
where the SLEN perfectly approximates the
data, the errors between the estimated outputs

and output neurons; T = t L t

f7 and the actual outputs t, are zero and the
relation is:
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t, = X\}Qf(w] ‘X, —|—va)
j=1

Thus, the determination of the output
weights (linking the hidden layer to the output
layer) is determined by the least-square solution
tothelinear system represented by Equation (1).
The minimum norm least-square (LS) solution
to the linear system is:

B=HT (1)

where H' is the Moore-Penrose (MP) general-
ized inverse of matrix H. The minimum norm
LS solution is unique and has the smallest norm
among all the LS solutions. As analyzed by
Huang, et al. [1], ELM using such MP inverse
method tends to obtain good generalization per-
formance with dramatically increased learning
speed. A pseudocode for the ELM algorithm is
presented in Figure 1.

2.2. Particle Swarm Optimization

The Particle Swarm Optimization (PSO)
technique was introduced by Kennedy & Eb-
erhart (1995) as a stochastic search through
an n-dimensional problem space aiming the
minimization (or maximization) of the objective
function of the problem.

The PSO was built through the attempt
to graphically simulate the choreography of a
flock of birds flying to resources. Later, looking
for theoretical foundations, studies were real-
ized concerning the way individuals in groups
interact, exchanging information and reviewing

Figure 1. Pseudocode for the ELM algorithm

personal concepts improving their adaptation to
the environment (Kennedy & Eberhart, 2001).

The PSO is a population based technique,
where the population is called swarm. Each
individual, called particle, represents a potential

solutiontothetask athand. Eachparticle 1€ R"
(1< i< s, where s is the swarm size) keeps its

position x (), its velocity v, () and its best
position found so far y (). The swarm also
keeps track of its global best position found so
far y(t).

During each iteration, the new velocity of
the ith particle is determined according to its

best position found so far y, () and the global
best position y(t) . The new velocity v (¢ +1)
=[v, (t + 1) R (t + 1) ] and the new posi-
tion x (¢ + 1) forthe ith particle are determined

by equations Equation (2) and Equation (3),
respectively.

22(@](15)
x (t+1)=x (t)+v, (t+1)
I<i<sl<j<n

A3)

where ¢, and c, local and global are accelera-
tion coefficients, respectively, typically set to
equal values usually in the interval
0<e¢,c, <2.0, r, and 7, are random values
taken from an uniform distribution U(0,1) and
w 1is the inertial weight (momentum term),
usually vary linearly from 0.9 to 0.4 during
PSO iterations.

Initialization: Randomly initialize the input weights and hidden biases;
Calculate the hidden-layer output matrix H;

Estimate the H' as the MP generalized inverse obtained from H;

Calculate the output weights matrix ,5’

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



International Journal of Natural Computing Research, 3(3), 1-20, July-September 2012 5

The local best position visited so far for
the ith particle y,(t + 1) is updated according
to Equation (4), and the swarm global best
position visited so far y(¢ + 1) is updated ac-
cording to Equation (5).

y(t+1) = yz(t)’if f(x,(t +1)) > f(Y,(t))
' X.(t +1), otherwise
1<1<s

“

y(t + 1) = arg min f(y,(t +1)) ®)

¥, (t+1).1<i<s

The inertial weight is similar to the momen-
tum term in a gradient descent neural network
training algorithm and to the temperature adjust-
ment schedule found in Simulated Annealing
heuristic (Kirkpatrick et al., 1983).

The pseudocode for the PSO algorithm is
presented in Figure 2.

2.3. Guaranteed Convergence
Particle Swarm Optimization

In PSO, if in iteration ¢ the ith particle reaches
the global best point ever found by the swarm

(ie., x,(t) =y,(t) = y(t)) , the velocity update

Figure 2. Pseudocode for the PSO algorithm

equation (Equation (1)) is entirely dependent
on the inertial term wv, . If the previous veloc-
ity of that particle is very close to zero then the
particle will stop moving, pushing the particles
to that point and causing the premature conver-
gence of the swarm.

The Guaranteed Convergence PSO (GCP-
SO) (Carvalho & Ludemir, 2006a; Carvalho &
Ludemir, 2006b), introduces a modification to
the velocity equation for standard PSO, which
will affect only the particles that reached the
global best position of the search space, making
them avoid the premature convergence of the
swarm and, at the same time, they will look for
better solutions at the vicinity of the current
global best position y(t) . The other particles
ofthe swarm continue to use the standard veloc-
ity update equation, i.e. the Equation (1).

The new velocity equation for the current
best particle x () is given by Equation (6):

Yy (t + 1) = (t) +9, (t)+wvi_7 (t>

+p(t) (1 —2r(t)) ©

where 7(¢) is a random uniform number taken
from U(0, 1) and p(¢) is an adaptive scaling
factor that makes the PSO to perform a random

If f(xa)< f(y;) then
yf' = Kr';

End_If

End_For

y =arg min_‘.“m-ﬂ_K f(y,)

End While

Initialization: Randomly initialize all particles of the swarm;
While the termination conditions are not met do
For each particle of the swarm do

Calculate its fitness function f(x_,.);

Update velocity and position of each particle;
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search surrounding the best particle of the
swarm.

The next p(t) value is determined by the
expression Equation(7), in which numSuc-
cesses and numFailures denote, respectively,
thenumber of consecutive successes and failures
of the search in minimizing the objective func-
tion, and s, and f, are threshold parameters.

Whenever the numSuccesses counter ex-
ceeds the success threshold s, this means that
the area surrounding the best position may be
enlarged leading to the doubling of the p(t)
value. Similarly, when the numFailures coun-
ter exceeds the failure threshold £, it means that
the area surrounding the global best position is
too big and need to be reduced as can be seen
in Equation (7):

2p (t) Jif numSucesses>s,
p(t + 1) 0.5p (t),ifnumFaz’luresZﬁ (7
0 (t), otherwise

Every time that the success or failure
counters exceed their corresponding thresholds,
s, and f,, respectively, the threshold exceeded
is increased. Every iteration that the search
succeeds in minimize the current best position,
the numSuccesses counter is increased and the
numFailures counter is reset to zero; every it-
eration that the best global position y(¢) is not

Figure 3. Pseudocode for the GCPSO algorithm

updated, the numFailures counter is increased
and the numSuccesses counter is reset to zero.

The pseudocode for the GCPSO algorithm
is presented in Figure 3.

A constriction factor was presented (Clerc,
1999; Corne et al., 1999; Clerc & Kennedy,
2002) to help ensure the swarm convergence,
given by the following equation (Equation (8)):

Yy (t t 1) = A, (t) Tan (yzif (t) T (t>)

ey (3,0 ,0) ®

where,

A= Y =c +c,h >4

2
R !

2.4. Population Stereotyping
by Clustering Analysis

In PSO, there are two main behaviors concern-
ing particles’ update according to the influence
of their neighbors: gbest and [best approaches.
Traditional PSO adopts the gbest population
strategy, in which the trajectory of each particle’s
search is influenced by the best point found so
far by any individual of the swarm.

The Ibest population allows each individual
to be influenced by some smaller number of

Initialization: Randomly initialize all particles of the swarm;
While the termination conditions are not met do

For each particle of the swarm do

Calculate its fitness function f(x,) [(x,);
i f(x, )< Sy, ) then

Yo X
End_If;
End_For;

§ =argmin, . £(y))

End_While

Update velocity and position of each particle; For the best particle found so far, update the velocity according to Equation (6).
Update o according to Equation (7), and, if necessary, numSuccesses, numFailures, s, and f.
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adjacent particles belonging to its neighborhood.
In lbest, each neighborhood maintains its own
local best solution. The gbest approach has the
advantage of faster convergence than /best, but
it can be trapped in local minima points, while
Ibest can avoid this problem by exploring dif-
ferent regions of the search space with each of
its subpopulations.

In (Kennedy,2000), the /bestneighborhood
was adopted in such a way that particles were
grouped according to their similarities by a
clustering algorithm, forming “social stereo-
typical groups”. The cluster center g of each
group C was calculated and used to modify the
new velocity equation of ith particle in three
different ways: the individual local best position
found so far was replaced with its cluster cen-
ter (Equation (9)); the global best position found

so far was substituted by its cluster center g,

(Equation (10)); both best terms were replaced
with their cluster centers (Equation (11)). These
substitutions are used to simulate stereotypical
behaviors, so the individual’s behavior is
guided by the average behavior of its group
(cluster center):

v, (t + 1) =y, (t) +cr (gc_, (t) — % (t)) 9)

+e,r, (% (t) -2, (t))

v, (t+1) =wu, (t) +e7 (, (t) —=, (¢)) (10)

te,r, (gm‘ (t) L (t )

Uy (t + 1) =Wy (t) Tan (gca (t) T (t))

e (9, (¢) ==, ()
(1)

Different PSO /best methods can be found
in literature. Suganthan (1999) investigated the
use of spatial topologies for PSO. In Kennedy
and Mendes (2002), neighborhood topologies
were used to improve the performance of PSO.

3. PROPOSED METHODS

This section presents two new hybrid Particle
Swarm Optimization approaches, used to select
input weights and hidden biases for Extreme
Learning Machine neural network: PSO-ELM-
CS, and GCPSO-ELM-CS,. These methods
are extensions from the PSO-ELM-CS, and
GCPSO-ELM-CS,, respectively. All methods
are based on the idea of population stereotyping
(Kennedy, 2000), so each individual will update
its velocity according to its cluster (neighbor-
hood), and each cluster will explore a different
area of the problem search space, looking for a
specific local best position.

The chosen clustering method was the Hard
K-Means algorithm (MacQueen, 1967). The
clustering method was executed only for a few
number of iterations (maxItClust) to reduce the
computational cost added by its execution, so
the final cluster were not necessarily the best
ones, and it was executed only in iterations
where at least one of the local best positions
associated to each particle was changed (Ken-
nedy, 2000). The Hard K-Means pseudocode
is presented in Figure 4.

The proposed strategies also use aselection
operator based on the work of Angeline (1999).
Angeline presented a form of tournament selec-
tion based on the particles’ current fitness, so
that the properties that make some solutions
superior are transferred directly to less effective
individuals of the swarm. The current positions
and velocities of the better half of the swarm
are copied onto the worse half. This way, only
the local best solutions found so far by the worse
half of the population are not changed. The
tournament selection operator performs as
described in Figure 5.

The modifications adopted to this work are
the following. There is no score system, and
the particles are sorted according to their current
fitness value only. The best half of the swarm
replaces the worst one in such a way that the
best particle uses its current position and veloc-
ity to replace the current position and velocity
of the worst particle; the second best particle
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Figure 4. Pseudocode for the Hard K-Means algorithm

t=0;
While t < maxitClust do
t=t+1;

End_For

End_While

Initialization: Pick randomly C particles as the initial cluster centers g_;

For each particle x; of the swarm do
Calculate the distance between X; and each cluster center g_;

Assign x, to the nearest cluster center g_;

Update each cluster center g_ as the mean point of its cluster;

Figure 5. Pseudocode for Angeline s tournament selection operator

For each particle x;, of the swarm do
For k different particles x| of the swarm
(i# ) do
If f(x,)= f(x,) then
score, =score, +1;
End_If

End_For
End_For

and velocities of the best half of the swarm.

Calculate the fitness function for all particles of the swarm, according to their current positions;

Sort all particles according to their scores, having the highest scores appearing at the head of the population;
Replace the current position and velocity for each particle of the worse half of the swarm, using the positions

uses its current position and velocity to replace
the current position and velocity of the second
worst particle; and so on. The pseudocode for
the current selection scheme is presented in
Figure 6.

For all proposed algorithms, the initial

swarm is randomly generated. Each particle x,

in the swarm is composed of a set of input
weights and hidden biases:

WNI’ W2l’ W

b by b

.oy

All w,_ and b are randomly initialized
within the range of [-1, 1]. For each particle,

the corresponding output weights matrix is
computed using MP generalized inverse. The
fitness function adopted is the root mean squared
error (RMSE) on the validation set (Equation
(12))(Zhu et al., 2005):

S S A X ) -

dx M

RMSE =

(12)

In PSO-ELM-CS, and GCPSO-ELM-CS,
algorithms, the local best position found so far

y, is replaced with the cluster center g _ for
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Figure 6. Pseudocode for the adopted selection operator

the head of the population;
Fori= 1to ]_s ;"QJ do

v

s=i#l — Vi

End_For

Calculate the fitness function for all particles of the swarm, according to their current positions;
Sort all particles according to their current fitness value, having the highest fitness appearing at

the new velocity determination, where x,€c,
like in Equation (8) (Kennedy, 2000).

For the new PSO-ELM-CS, and GCPSO-
ELM-CS, strategies, the local best position
found so far y, is replaced with the local best

position found so far y, by a member of the

cluster ¢ (x, € c) for the new velocity determi-
nation of the ith particle, according to Equation
(13). These approaches also used a modified
scheme, adapted from (Zhu et al., 2005), to

select the local best position y, found so far
by a particle x, (Equation (14)), replacing the
PSO traditional approach, represented by Equa-
tion (4). This scheme uses the output weight
norm (3 to improve the generalization perfor-
mance of the ELM represented by each particle
of the swarm (Bartlett, 1998).

v, (t + 1) =wu, (t) +ean (ybstN_/ (t) T <t))
6T, (17_, (t> T (t)
(13)
xif (£ (v, (1)) = £ (x, (1)
> pf(y, (t)
y,(t+1) = Xi’if(f(yi (t))_ f("z (t+ 1)))
<nf(v. (1))

and B, ... < B,
y,, otherwise

(14)

where 3 ) and 5& () are the output weight

(41
matrixes related to the new position of the ith

particle x (¢ + 1) and the old local best position
y, (t) found so far, respectively, and u is a

tolerance rate (Zhu et al., 2005).

The Guaranteed Convergence approach
for the PSO algorithm is applied to the GCP-
SO-ELM-CS, method, just like in GCPSO-
ELM-CS, (Pacifico & Ludermir, 2012). The
pseudocodes for the PSO-ELM-CS , GCPSO-
ELM-CS, and for the proposed approaches are
presented in Figures 7 to Figure 10.

4. EXPERIMENTAL RESULTS

In this section, the experimental results are
presented. The proposed methods (PSO-ELM-
CS,and GCPSO-ELM-CS,) are compared with
traditional ELM, the Levenberg-Marquardt
Backpropagation (LM-BP), E-ELM (Zhuetal.,
2005), PSO-ELM (Xu & Shu, 2006), GCPSO-
ELM (Silva et al., 2011b) and their predeces-
sors PSO-ELM-CS, and GCPSO-ELM-CS,
(Pacifico & Ludermir, 2012). All programs
run in a MATLAB 6.0 environment, and the
LM-BP algorithm is provided in the neural
networks toolbox of MATLAB. A validation
set is used in all evaluated methodologies to
prevent overfitting.

For evaluating all of these algorithms six
benchmark classification datasets (Diabetes, E.
coli, Glass, Heart, Iris and Wine), obtained from
UCI Machine Learning Repository (Frank &
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Figure 7. Pseudocode for the PSO-ELM-CS, algorithm

While the termination conditions are not met do
For each particle i of the swarm do

If f(x,)<f(y,) then
¥ =X

End_If

End_For

y=argming . f(y,):

If any local best position ¥, has changed
then
Execute the clustering algorithm (Figure 4);
End_If
End_While

Define: The number of clusters € and the maximum number of iterations for the clustering algorithm maxitClust.
all particles of the swarm);
Clustering step: execute the clustering strategy, following the steps described in Figure 4;

Calculate its fitness function f'( x__] as the RMSE obtained by the ELM on the validation set using Equation (11);

Update velocity and position of each particle, according to Equation (8) and Equation (3), respectively;
Selection step: execute the selection operator, according to Figure 6;

Figure 8. Pseudocode for the GCPSO-ELM-CS, algorithm

While the termination conditions are not met do
For each particle i of the swarm do

If £(x,)<f(y,) then

Y= X
End_If
End_For

y=argmin, .. f(y,);

global best particle, the new velocity is given by Equation 6;

If any local best position ¥, has changed
then
Execute the clustering algorithm (Figure 4);
End_If
End_While

Define: The number of clusters C and the maximum number of iterations for the clustering algorithm maxitClust.
Initialization: Randomly initialize all particles of the swarm; initialize o, s_ and .r" numSucesses = 0, numFailures = 0;

Clustering step: execute the clustering strategy, following the steps described in Figure 4;

Calculate its fitness function f(x, } as the RMSE obtained by the ELM on the validation set using Equation 11;

Update velocity and position of each particle, according to Equation (8) and Equation (3), respectively; for the current

Update the o according to Equation 7; update s _, _Jf;.,' numSucesses and numFailures, when needed;

Selection step: execute the selection operator, according to Figure 6;

Asuncion, 2012) are used. These datasets pres-
ent different degrees of difficulties and differ-
ent number of classes. The evaluation metrics
used are an empirical analysis over the average
test accuracies and training times and a paired
hypothesis test of type #-test (DeGroot, 1989),
considering a 95% degree of confidence, over
the test accuracies obtained by each method in
each dataset.

In our experiments, all inputs (attributes)
have been normalized into the range [0, 1],
while the outputs (targets) have been normalize
into [-1, 1]. The input weights and the biases
have been obtained into the range [-1, 1]. The
ELM activation function used was the sigmoid
function g(x) =1/ (1 + exp(-x)).

The tests were divided in two steps. In first
step an evaluation is made aiming to select the
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Figure 9. Pseudocode for the PSO-ELM-CS, algorithm

While the termination conditions are not met do
For each particle i of the swarm do

End_For

y=argmin, ., f(y,);

If any local best position ¥, has changed
then
Execute the clustering algorithm (Figure 4);
End_If
End_While

Define: The number of clusters C and the maximum number of iterations for the clustering algorithm maxitClust.
Initialization: Randomly initialize all particles of the swarm;
Clustering step: execute the clustering strategy, following the steps described in Figure 4;

Calculate its fitness function f/(x,) as the RMSE obtained by the ELM on the validation set using Equation 11;

Update the local best position found so far ¥, according to Equation (13);

Update velocity and position of each particle, according to Equation (12) and Equation (3), respectively;
Selection step: execute the selection operator, according to Figure &;

Figure 10. Pseudocode for the GCPSO-ELM-CS, algorithm

While the termination conditions are not met do
For each particle { of the swarm do

End_For
y=argmin, . f(y,);

If any local best position ¥, has changed
then
Execute the clustering algorithm (Figure 4);
End_If
End_While

Define: The number of clusters C and the maximum number of iterations for the clustering algorithm maxfeClust.
Initialization: Randomly initialize all particles of the swarm; initialize p, 5. and f_; numSucesses = 0, numFailures = 0;

Clustering step: execute the clustering strategy, following the steps described in Figure 4;

Calculate its fitness function .f'(xl ) as the RMSE obtained by the ELM on the validation set using Equation (11);

Update the local best position found so far ¥, according to Equation (13);

Update velocity and position of each particle, according to Equation (12) and Equation (3), respectively; for the
current global best particle, the new velocity is given by Equation (6);

Update the o according to Equation 7; update s_, f; numSucesses and numFailures, when needed;

Selection step: execute the selection operator, according to Figure 6;

best number of hidden nodes (V) for the ELM
and LM-BP algorithms, the maximum number
of iterations (maxIter) and the population size
(s) for the PSO based approaches and E-ELM
method; after that, the final tests were executed
(second step).

For LM-BP algorithm, the maximum
number of epochs was set to 200. The remain-
ing parameters for all tested algorithms were
obtained from the literature (Carvalho &
Ludermir, 2006a; Kennedy, 2000; Zhu et al.,
2005). Table 1 shows the list of parameters for
all tested algorithms.

Each dataset was divided in training,
validation and testing sets, as specified in Table
2.Forallalgorithms, 50 independent executions
were done with each dataset. Table 3 to Table
8 show the average training time and average
testaccuracy obtained for each method for each
dataset. The training, validation and testing sets
were randomly generated at each trial of simu-
lations. The best results (according to the em-
pirical analysis) are emphasized in bold.
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Table 1. List of parameter for all tested methodologies

Method Parameter Value
LM-BP & ELM N 15
LM-BP Number of Epochs 200
E-ELM & PSO K 50
maxlter 100
Crossover Rate 0.8
E-ELM F 1.0
H 0.02
¢ 2.0
PSO c, 2.0
w 091t00.4
p 1.0
GCPSO s, 5
L 5
C 5
Hard K-Means
maxlItClust 5

Table 2. Dataset specifications

Classes | Attrib. | Train. | Validat. | Test.
Diabetes:
2 E | 252 | 258 | 258
E. coli:
8 | 7 | 180 | 78 | 78
Glass:
6 E | 114 | 50 | 50
Heart:
2 |13 | 130 | 70 | 70
Iris:
3 E | 70 | 40 | 40
‘Wine:
3 | 13 | 78 | 50 | 50
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Table 3. Results for diabetes dataset

Method Training Time (s) Test Accuracy (%)
LM-BP 0.51358 71.44+5.81
ELM 0.00092 76.63+2.25
E-ELM 39.5844 75.07+2.21
PSO-ELM 44.1723 76.56+2.24
GCPSO-ELM 43.9440 76.83+2.34
PSO-ELM-CS, 44.4792 76.74+2.47
GCPSO-ELM-CS, 45.8464 77.13+2.01
PSO-ELM-CS, 43.2369 77.08+2.28
GCPSO-ELM-CS, 45.1401 76.83+1.87

4.1. Diabetes Dataset

This dataset consists of two possible diagnos-
tics (classes) given to a sample of 768 females
at least 21 years old of Pima Indian heritage,
concerning about when a patient shows signs of
diabetes according to World Health Organiza-
tion criteria or not.

The classes (1 for a healthy patient, and
2 for a patient interpreted as “tested positive
for diabetes”) have, respectively, 500 and 268
instances (Frank & Asuncion, 2012). Each class
is described by eight real-valued attributes:
number of times pregnant, plasma glucose
concentration a 2 hours in an oral glucose tol-
erance test, diastolic blood pressure (mm Hg),
triceps skin fold thickness (mm), 2-Hour serum
insulin (mu U/ml), body mass index, diabetes
pedigree function and age (in years).

In an empirical analysis (Table 3), all
proposed methods (PSO-ELM-CS,, GCPSO-
ELM-CS , PSO-ELM-CS, and GCPSO-ELM-
CS,) obtained better results than traditional
ELM, E-ELM, PSO-ELM and LM-BP, but
the GCPSO-ELM-CS, performed similarly to
GCPSO-ELM. The worst result was achieved
by LM-BP algorithm, which showed a high
degree of instability.

The hypothesis tests (paired t-tests with
a 95% degree of confidence) showed that all
ELM-based strategies achieved a better result

than LM-BPalgorithm, and the traditional ELM
and all PSO-based methods achieved a better
result than E-ELM.

4.2. E. Coli Dataset

This dataset gives characteristics of each ORF
(potential gene) inthe E. coli genome, providing
their sequence, homology (similarity to other
genes), structural information, and function (if
known) (Frank & Asuncion, 2012).

The dataset is divided in eight classes,
representing the localization site of each gene:
cytoplasm (1), inner membrane without signal
sequence (2), perisplasm (3), inner membrane,
uncleavable signal sequence (4), outer mem-
brane (5), outer membrane lipoprotein (6), inner
membrane lipoprotein (7) and inner membrane,
cleavable signal sequence (8).

The classes (1, 2, 3, 4, 5, 6, 7 and 8) have,
respectively, 143, 77, 52, 35, 20, 5, 5 and 2
instances. Each instance is described by seven
real-valued attributes: mcg (McGeoch’s method
for signal sequence recognition), gvh (von Hei-
jne’s method for signal sequence recognition),
lip (von Heijne’s Signal Peptidase I consensus
sequence score), chg (Presence of charge on N-
terminus of predicted lipoproteins), aac (score of
discriminant analysis of the amino acid content
of outer membrane and periplasmic proteins),
alm1(score of the ALOM membrane spanning
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region prediction program) and alm2 (score
of ALOM program after excluding putative
cleavable signal regions from the sequence).

In an empirical analysis (Table 4), all
PSO-based methods performed better than
traditional ELM, LM-BP and E-ELM, and
the PSO-ELM-CS , GCPSO-ELM-CS, and
GCPSO-ELM-CS, algorithms achieved the
better results for this dataset.

The paired t-tests (95% degree of confi-
dence showed that all ELM-based approaches
performed better than LM-BP algorithm. All
PSO-bases approaches and the traditional ELM
performed better than E-ELM method, accord-
ing to the hypothesis tests.

4.3. Glass Dataset

This dataset consists in a study of the classifica-
tion of types of glass motivated by criminologi-
cal investigation. This dataset consists of seven
types (classes) of glasses: building windows
float processed (1), building windows non-float
processed (2), vehicle windows float processed
(3), vehicle windows non-float processed (4,
none in this database), containers (5), tableware
(6) and headlamps (7).

The classes (1, 2, 3, 4, 5, 6 and 7) have,
respectively, 70,17,76,0, 13,9 and 29 instances.
Each instance is described by nine real-valued

Table 4. Results for e. coli dataset

attributes: RI (refractive index), Na (Sodium),
Mg (Magnesium), Al (Aluminum), Si (Silicon),
K (Potassium), Ca (Calcium), Ba (Barium) and
Fe (Iron) (Frank & Asuncion, 2012).

In an empirical analysis (Table 5), the
LM-BP learning algorithm achieved the worst
result and the highest degree of instability than
alltested methods. All proposed methods (PSO-
ELM-CS,, GCPSO-ELM-CS,,PSO-ELM-CS,,
PSO-ELM-CS, and GCPSO-ELM-CS)) per-
formed better than traditional ELM, E-ELM,
PSO-ELM and GCPSO-ELM according to the
empirical analysis.

The hypothesis test showed that all ELM-
based approaches achieved better results than
LM-BP and only the GCPSO-ELM-CS, per-
formed better than E-ELM algorithm.

4.4, Heart Dataset

This dataset consists of two possible diagnoses
(classes) concerning the absence (class 1) or
presence (class 2) of heart disease in a group
of 270 individuals.

The classes (1 and 2) contain 150 and
120 individuals, respectively. Each individual
is described by thirteen real-valued variables:
age, sex, chest pain type, resting blood pressure,
serum cholestoral (in mg/dl), fasting blood
sugar (>120mg/dl), resting electrocardiographic

Method Training Time (s) Test Accuracy (%)
LM-BP 3.41676 50.23+22.3
ELM 0.00094 85.54+3.76
E-ELM 24.7448 81.38+4.56
PSO-ELM 26.6807 85.8243.96
GCPSO-ELM 26.4952 85.95+3.41
PSO-ELM-CS, 26.3323 86.69+4.04
GCPSO-ELM-CS, 26.4923 86.13+3.72
PSO-ELM-CS, 27.5780 85.92+3.11
GCPSO-ELM-CS, 26.7100 86.33+3.93
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Table 5. Results for glass dataset

Method Training Time (s) Test Accuracy (%)
LM-BP 0.00716 41.08+18.63
ELM 0.00000 61.20+6.89
E-ELM 18.8546 61.84+6.66
PSO-ELM 18.9793 62.88+6.63
GCPSO-ELM 17.2143 62.40+£5.95
PSO-ELM-CS, 17.7372 63.48 £5.94
GCPSO-ELM-CS, 18.0371 63.92 +£5.38
PSO-ELM-CS, 17.6573 63.44+£5.61
GCPSO-ELM-CS, 18.2136 63.28 £6.18

results, maximum heart rate achieved, exercise
induced angina, oldpeak (ST depression induced
by exerciserelative to rest), the slope of the peak
exercise ST segment, number of major vessels
colored by flourosopy and thal value (Frank &
Asuncion, 2012).

In an empirical analysis (Table 6), the
proposed PSO-ELM-CS, achieved the bet-
ter results, followed by the PSO-ELM-GS ,
GCPSO-ELM-CS, and GCPSO-ELM methods.
The worse results were achieved by the LM-BP
and E-ELM algorithms.

The paired hypothesis tests of type #-test
(95% of confidence) were executed over the

Table 6. Results for heart dataset

results, and showed that all methods achieved
better results than LM-BPand E-ELLM methods.

4.5. Iris Dataset

This dataset consists of three types (classes)
of iris plants: iris setosa, iris versicolour and
iris virginica. The three classes each have 50
instances. One class is linearly separable from
the other two; the latter two are not linearly sepa-
rable from each other. Each classis described by
four real valued attributes: sepal length, sepal
width, petal length and petal width (Frank &
Asuncion, 2012).

Method Training Time (s) Test Accuracy (%)
LM-BP 0.28960 68.69+14.50
ELM 0.00064 81.46+4.28
E-ELM 18.8052 79.09+4.06
PSO-ELM 19.0143 81.3143.76
GCPSO-ELM 21.6880 82.57+3.65
PSO-ELM-CS, 19.7496 82.57+2.89
GCPSO-ELM-CS, 20.2834 82.57+4.36
PSO-ELM-CS, 22.3084 82.63+3.61
GCPSO-ELM-CS, 20.5506 82.49+4.18
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Table 7. Results for iris dataset

Method Training Time (s) Test Accuracy (%)
LM-BP 0.16442 74.55+24.25
ELM 0.00094 95.45+3.30
E-ELM 11.0290 95.60+3.22
PSO-ELM 10.9440 96.10+3.24
GCPSO-ELM 10.9846 96.25+3.20
PSO-ELM-CS, 12.2531 96.80+3.03
GCPSO-ELM-CS, 11.2857 96.45+2.82
PSO-ELM-CS, 11.6463 96.55+3.06
GCPSO-ELM-CS, 11.5195 97.00+2.42
Table 8. Results for wine dataset
Method Training Time (s) Test Accuracy (%)
LM-BP 0.520320 79.96+23.29
ELM 0.00032 96.56+3.16
E-ELM 11.7101 91.60+4.66
PSO-ELM 11.7262 97.24+2.02
GCPSO-ELM 12.1815 97.324+2.67
PSO-ELM-CS, 12.2304 97.08+2.29
GCPSO-ELM-CS, 12.8079 97.00+2.60
PSO-ELM-CS, 11.9664 97.3242.08
GCPSO-ELM-CS, 12.8676 97.84+1.89

Inan empirical analysis (Table 7), all PSO-
based methods outperformed the traditional
ELM, E-ELM and LM-BP methods. The pro-
posedmethods (PSO-ELM-CS , GCPSO-ELM-
CS,, PSO-ELM-CS, and GCPSO-ELM-CS,)
outperformed all others PSO-based approaches.
The t-tests pointed that all ELM-based meth-
ods were better than LM-BP approach (95%
degree of confidence), and PSO-ELM-CS  and
GCPSO-ELM-CS, outperformed the traditional
ELM algorithm. The proposed GCPSO-ELM-
CS, also outperformed the E-ELM method.

4.6. Wine Dataset

This dataset consists of three types (classes)
of wines grown in the same region in Italy, but
derived from three different cultivars.

The classes (1, 2 and 3) have, respectively,
59,71 and 48 instances. Each wine is described
by 13 real valued attributes representing the
quantities of 13 components found in each of
the three types of wines. These attributes are:
(1) alcohol; (2) malic acid; (3) ash; (4) alkalin-
ity of ash; (5) magnesium; (6) total phenols;
(7) flavonoids; (8) non-flavonoid phenols; (9)
proanthocyanins; (10) color intensity; (11) hue;
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(12) OD280/0OD315 of diluted wines and (13)
proline (Frank & Asuncion, 2012).

Inanempirical analysis (Table 8), the PSO-
ELM-CS, and GCPSO-ELM-CS, achieved
better results for this dataset. The PSO-ELM-
CS, and GCPSO-ELM-CS, were worse than
PSO-ELM and GCPSO-ELM. All PSO-based
methods achieved better results than traditional
ELM, E-ELM and LM-BP.

The paired #-tests showed that all ELM-
based approaches achieved better results than
LM-BP, which still presented a high degree
of instability. All PSO-based approaches and
the traditional ELM performed better than E-
ELM. The GCPSO-ELM-CS, achieved better
results than traditional ELM according to the
paired #-test.

5. CONCLUSION AND
FUTURE WORKS

In this paper, two new hybrid methods were
proposed, based on Particle Swarm Optimiza-
tion (PSO) strategy to select the input weights
and hidden biases to ELM algorithm, named
PSO-ELM-CS, and GCPSO-ELM-CS,, as
extensions from the PSO-ELM-CS, and
GCPSO-ELM-CS, respectively, presented
in a previous work. These approaches use the
concept of population stereotyping, to group
the particles of the swarm in different clusters,
so that each cluster searches for a specific local
best solution, exploring different regions of the
problem search space.

The performance of the tested methods was
evaluated with well known benchmark classifi-
cation datasets (Diabetes, E. coli, Glass, Heart,
Iris and Wine), obtained from UCI Machine
Learning Repository.

Experimental results show that the new
hybrid PSO-ELM-CS, and GCPSO-ELM-
CS, approaches obtained better generaliza-
tion performance than Levenberg-Marquardt
Backpropagation (LM-BP), traditional ELM,
E-ELM and PSO-ELM for all datasets, and

the former PSO-ELM-CS and GCPSO-ELM-
CS, outperformed LM-BP, ELM, E-ELM and
PSO-ELM for five of the six tested datasets,
in an empirical analysis over the average test
accuracies.

The paired ¢-test hypothesis test was
executed for all datasets. For all datasets, the
LM-BP was outperformed by all ELM-based
approaches, and for four of the six datasets the
E-ELM was outperformed by all PSO-based ap-
proaches and traditional ELM. GCPSO-ELM-
CS, achieved superior results than traditional
ELM for two datasets (Iris and Wine) according
to this test. All proposed approaches achieved
equivalentresults to ELM for Diabetes, E. Coli,
Glass and Heart datasets.

The computational costs demanded by the
new strategies were relevant when compared
with the execution time achieved by traditional
ELM algorithm, because of their evolutionary
nature (i.e., they need a considerable number of
evaluations throughout the method execution),
but the execution time achieved by these meth-
ods is according to evolutionary approaches
used to optimize ELM found inrecent literature,
such as the E-ELM, PSO-ELM and GCPSO-
ELM. As can be observed from Table 3 to Table
8, the clustering and selection steps did not
influence the computational costs considerably.

Although the local best approaches pre-
sented in this work showed better results than
ELM only for two cases according to f-test
hypothesis test, the empirical analysis showed
that these approaches are slightly better than
traditional ELM and PSO-ELM for most of
the cases, fact that encourages the study and
exploration of local PSO methods for ELM
optimization.

As future works, a deeper investigation
will be done to evaluate the influence of popu-
lation clusters in performance of the hybrid
PSO-ELM-based approaches, using a broader
number of problems, so the effective power
of local approaches could be measured. Also,
different selection operators and topologies for
the PSO population will be tested.

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



18 International Journal of Natural Computing Research, 3(3), 1-20, July-September 2012

ACKNOWLEDGMENT

The authors would like to thank FACEPE, CNPq
and CAPES (Brazilian Research Agencies) for
their financial support.

REFERENCES

Angeline, P. J. (1999). Using selection to improve
particle swarm optimization. In Proceeding of the
1999 IEEE International Joint Conference on Neural
Networks (IJCNN’99), Washington, DC (pp. 84-89).
Los Alamitos, CA: IEEE Computer Society.

Bartlett, P. L. (1998). The sample complexity of
pattern classification with neural networks: The size
of the weights is more important than the size of the
network. /[EEE Transactions on Information Theory,
44(2), 525-536. doi:10.1109/18.661502.

Carvalho, M., & Ludemir, T. B. (2006a). An analysis
of PSO hybrid algorithms for feed-forward neural
networks training. In Proceedings of the Ninth Bra-
zilian Symposium on Neural Networks (SBRN’06),
Ribeirdo Preto, Brazil (pp. 6-11). Los Alamitos: IEEE
Computer Society.

Carvalho, M., & Ludemir, T. B. (2006b). Particle
swarm optimization of feed-forward neural networks
with weight decay. In Proceedings of the Sixth Inter-
national Conference on Hybrid Intelligent Systems
(HIS’06), Auckland, New Zealand. Los Alamitos,
CA: IEEE Computer Society.

Cho, J.-H., & Lee, D.-J. (2007). Parameter optimi-
zation of extreme learning machine using bacterial
foraging algorithm. Korea Electrical Engineering
and Science Research Institute (pp. 742—747). South
Korea: EESRI.

Clerc, M. (1999). The swarm and the Queen: To-
wards a deterministic and adaptive particle swarm
optimization. In Proceedings of the Congress on
Evolutionary Computation, Washington, DC (pp.
1951-1957). Piscataway, NJ: IEEE Service Center.

Clerc, M., & Kennedy, J. (2002). The particle
swarm: Explosion, stability and convergence in a
multi-dimensional complex space. [EEE Transac-
tions on Evolutionary Computation, 6(1), 58-73.
doi:10.1109/4235.985692.

Corne, D. W., Dorigo, M., & Glover, F. (1999). New
ideas in optimization. New York, NY: McGraw-Hill.

M. H. DeGroot (Ed.). (1989). Probability and sta-
tistics. Boston, MA: Addison Wesley Publishing
Company.

Eiben, E., & Smith, J. E. (2003). Introduction to
evolutionary computing. Berlin, Germany: Springer-
Verlag. doi:10.1007/978-3-662-05094-1.

Frank, A., & Asuncion, A. (2013). UCI machine
learning repository. University of California, School
of Information and Computer Science, Irvine, CA.
Retrieved March 15, 2013, from http://archive.ics.
uci.edu/ml

Glover, F. (1986). Future paths for integer program-
ming and links to artificial intelligence. Computers
and Operation Research - Special Issue. Applications
of Integer Programming, 13(5), 533-549.

S. Haykin (Ed.). (1998). Neural networks: A
comprehensive foundation. Englewood Cliffs, NJ:
Prentice-Hall, Inc..

He, S., Wu, H., & Saunders, J. R. (2006). A novel
group search optimizer inspired by animal behav-
ioural ecology. In Proceedings of the 2006 IEEE
Congress on Evolutionary Computation (CEC’2006),
Vancouver, Canada (pp. 1272-1278). Los Alamitos,
CA: IEEE Computer Society.

He, S., Wu, H., & Saunders, J. R. (2009). Group
search optimizer: An optimization algorithm inspired
by animal searching behaviour. [EEE Transactions
on Evolutionary Computation, 13(5), 973-990.
doi:10.1109/TEVC.2009.2011992.

Huang, G. B, Zhu, Q. Y., & Siew, C. K. (2006).
Extreme learning machine: Theory and applica-
tions. Neurocomputing, 4, 489-501. doi:10.1016/j.
neucom.2005.12.126.

Kennedy, J. (2000). Stereotyping: Improving par-
ticle swarm performance with cluster analysis. In
Proceedings of the 2000 Congress on Evolutionary
Computing, Washington, DC (Vol. 2, pp. 1507-1512).
Los Alamitos, CA: IEEE Computer Society.

Kennedy, J., & Eberhart, R. (1995). Particle swarm
optimization. In Proceedings of the 1999 IEEE In-
ternational Conference on Neural Networks, Perth,
Australia (pp. 1942-1948). Los Alamitos, CA: IEEE
Computer Society.

Kennedy, J., & Eberhart, R. (2001). Swarm intel-
ligence. San Francisco, CA: Morgan Kaufmann
Publishers, Inc..

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



International Journal of Natural Computing Research, 3(3), 1-20, July-September 2012 19

Kennedy, J., & Mendes, R. (2002). Population struc-
ture and particle swarm performance. In Proceed-
ings of the 2002 World Congress on Computational
Intelligence, Honolulu, HI (pp. 1671-1676). Los
Alamitos, CA: IEEE Computer Society.

Kirkpatrick, S., Gellat, C. D. Jr, & Vecchi, M.
P. (1983). Optimization by simulated anneal-
ing. Science, 220, 671-680. doi:10.1126/sci-
ence.220.4598.671 PMID:17813860.

Lahoz, D., Lacruz, B., & Mateo, P. M. (2011). A bi-
objective micro genetic extreme learning machine.
In Proceedings of the 2011 IEEE Workshop on
Hybrid Intelligent Models and Applications (HIMA)
(pp. 68-75).

MacQueen, J. (1967). Some methods for classifica-
tion and analysis of multivariate observations. In
Proceedings of the Fifth Berkeley Symposium on
Mathematics, Statistics and Probability, Berkeley,
CA (Vol. 1, pp. 281-296). Berkeley, CA: University
of California Press.

Pacifico, L. D.S., & Ludermir, T. B. (2012). Improv-
ing ELM neural networks through PSO with selection
(in Portuguese). Anais do IX Encontro Nacional de
Inteligéncia Artificial (ENIA 2012), Curitiba, Brazil
(pp. 1-11). Porto Alegre, Brazil: Sociedade Brasileira
de Computagio.

Saraswathi, S., Sundaram, S., Sundararajan, N.,
Zimmermann, M., & Nilsen-Hamilton, M. (2011).
ICGA-PSO-ELM approach for accurate multiclass
cancer classification resulting in reduced gene
sets in which genes encoding secreted proteins are
highly represented. /EEE Transactions on Compu-
tational Biology and Bioinformatics, 8(2),452—463.
doi:10.1109/TCBB.2010.13 PMID:21233525.

Silva, D. N. G., Pacifico, L. D. S., & Ludermir, T. B.
(2011a). An evolutionary extreme learning machine
based on group search optimization. In Proceedings
of the 2011 Congress on Evolutionary Computing
(CEC 2011),New Orleans, FL (pp. 2297-2304). Los
Alamitos, CA: IEEE Computer Society.

Silva, D. N. G., Pacifico, L. D. S., & Ludermir, T.
B. (2011b). Extreme learning machine based on
cooperative PSO (in Portugues). In Proceedings
of the 10th Brazilian Congress on Computational
Intelligence (CBIC2011), Fortaleza, Brazil.

Storn, R., & Price, K. (1995). Differential evolution
— A simple and efficient adaptive scheme for global
optimization over continuos spaces (Tech. Rep.
TR-95-012). Berkerley, CA: International Computer
Science Institute.

Storn, R., & Price, K. (1997). Differential evolution
—Asimple and efficient heuristic for global optimiza-
tion over continuos spaces. Journal of Global Optimi-
zation, 11,341-359.d0i:10.1023/A:1008202821328.

Suganthan, P. N. (1999). Particle swarm optimizer
with neighborhood operator. In Proceedings of
the 1999 Congress on Evolutionary Computing
(CEC’99), Washington, DC (pp. 1958-1962). Los
Alamitos, CA: IEEE Computer Society.

van den Bergh, F. (2002). An analysis of particle
swarm optimizers. Unpublished Doctoral disserta-
tion, Faculty of Natural and Agricultural Sciences,
University of Pretoria, Pretoria, South Africa.

van den Bergh, F., & Engelbrecht, A. P. (2004). A
cooperative approach to particle swarm optimization.
IEEE Transactions on Evolutionary Computation,
8(3), 225-239. doi:10.1109/TEVC.2004.826069.

Xu,Y.,& Shu, Y. (2006). Evolutionary extreme learn-
ing machine - Based on particle swarm optimization.
InJ. Wang, Z. Yi, J. M. Zurada, B.-L. Lu, & H. Yin
(Eds.), Lecture Notes in Computer Science: Vol.
3971. Advances in neural networks - ISNN 2006
(pp. 644-652). Berlin, Germany: Springer-Verlag.
doi:10.1007/11759966_95.

Zhu,Q.Y.,Qin,A. K., Suganthan, P.N., & Huang, G.
B. (2005). Evolutionary extreme learning machine.
Pattern Recognition, 38,1759—-1763. doi:10.1016/j.
patcog.2005.03.028.

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



20 International Journal of Natural Computing Research, 3(3), 1-20, July-September 2012

Luciano D. S. Pacifico received the bachelor degree in computer science (fuzzy partitioning
dynamic clustering analysis) and M. Sc. degree in computer science (clustering analysis with
self-organizing maps) from Federal University of Pernambuco, Pernambuco, Brazil, in 2009 and
2012, respectively. He is currently a PhD student (neural networks optimization with evolution-
ary strategies) from Federal University of Pernambuco, Pernambuco, Brazil. He maintains an
active interest in the field of evolutionary computing, focusing on numerical and neural networks
optimization. Further research interests include pattern recognition, clustering analysis, computer
vision, interaction design, game design and gamification, with publications in some of those fields.

Teresa Ludermir received the PhD degree in Artificial Neural Networks in 1990 from Imperial
College, University of London, UK. From 1991 to 1992, she was a lecturer at Kings College
London. She joined the Center of Informatics at Federal University of Pernambuco, Brazil, in
September 1992, where she is currently a Professor and head of the Computational Intelligence
Group. She has published over a 200 articles in scientific journals and conferences, three books
in Neural Networks and organized two of the Brazilian Symposium on Neural Networks. Her
research interests include weightless Neural Networks, hybrid neural systems and applications
of Neural Networks.

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



