
Observer Pattern using
Aspect-Oriented Programming∗

Eduardo Kessler Piveta
Laboratório de Banco de Dados e Engenharia de Software (LBDES)

Centro Universitário Luterano de Palmas
Universidade Luterana do Brasil

77054-970, Palmas, TO
piveta@ulbra-to.br

Luiz Carlos Zancanella
Laboratório de Segurança em Computação (LabSEC)

Universidade Federal de Santa Catarina
Campus Universitário

88040-900 Florianópolis, SC
zancanella@inf.ufsc.br

Abstract

This paper discusses the representation and implementation of the
Observer design pattern using aspect-oriented techniques.

1 Introduction

Several object-oriented design techniques have been used to specify and
implement design patterns efficiently. However there are several patterns
that affect system modularity, where base objects are highly affected by the
structures that the pattern requires. In other cases we want to apply a
pattern to classes that already belong to a hierarchy. This could be hard
depending on the pattern.

∗Copyright c© 2003. Permission is granted to copy for the SugarloafPLoP 2003 Con-
ference. All other rights are reserved.



Observer Pattern using Aspect-Oriented Programming 2

Several patterns crosscut the basic structure of classes adding behav-
ior and modifying roles in the classes relationship. As an example you
could see the Observer pattern. When you have to implement the pat-
tern, you should provide implementation to the Subject and Observer roles.
The implementation of this roles adds a set of fields (Subject.observers,
Observer.subject) and methods (Attach, Detach, Notify) to the concrete
classes or to its superclasses, modifying the original structure of the subject
and observer elements. Another example is the Visitor pattern. It’s main
goal is to provide a set of operations to a class hierarchy without chang-
ing the structure of the underlying classes. In order to accomplish that
task, the pattern adds to the Element class a method (Accept) to allow the
Elementinstances to be visited.

Althougth the use of these patterns brings several benefits, they could
”hard-code” the underlying system, making difficult to express changes in
the code. To implement one of the patterns described above in an envolving
system you may have to change several classes, affecting their relationships
and the clients of these classes.

Aspect Oriented Programming [Kiczales et al., 1997],
[Ossher and Tarr, 2001] can help on separating some of the system’s
design patterns, specifying and implementing them as single units of
abstraction.

The main goal of this paper is to show how the Observer
[Gamma et al., 1995] pattern could be implemented using aspect-oriented
programming and how it could be specified using an aspect oriented design
model. We are going to discuss the benefits and disadvantages on using this
approach.

2 Observer Pattern

2.1 Intent

It allows the definition of a ”one to many” relationship between a model
(Subject) and its dependents (Observers) in a way that promotes low cou-
pling. Using aspect-oriented programming you could also attach and dettach
the design pattern in compile-time or runtime (depending upon the choosen
language)



Observer Pattern using Aspect-Oriented Programming 3

2.2 Motivation

The problem that the Observer pattern solves is how to maintain con-
sistency among several objects that depends on a model data in a way that
promotes reuse, keeping a low coupling among classes. In this pattern, every
time the Subject’s state changes, all the Observers are notified.

The main problem with the object oriented Observer pattern is that you
should modify the structure of classes that participate in the pattern. So,
it’s hard to apply the pattern into an existing design as well as remove it
from the system.

2.3 Context

The Observer pattern is used in the following situations, according to
[Gamma et al., 1995]:

• When a change in the state of an object demands modification in un-
known or variable objects

• When an object needs to notify others without knowing whose are the
objects that are going to receive this notification.

2.4 Structure

The design of the Observer pattern is changed in order to represent it as
classes and aspects. It could be seen in the Figure 1, represented as a class
diagram. There are no Observer role neither a Subject one. Both structure
and behavior of these two roles are expressed in the ObserverPattern aspect.

2.5 Participants

Subject Describes the interface that all the concrete subjects must
be in accordance to (enforced by the ObserverPattern and
ConcreteObserverPattern). When implemented, the subject will con-
tain a reference to its observers, and allow the dynamic addition and
deletion of observers.

Observer Describes the interface that all the concrete observers must
be in accordance to (enforced by the ObserverPattern and
ConcreteObserverPattern). They are notified everytime the state
of the subject changes.



Observer Pattern using Aspect-Oriented Programming 4

Figure 1: Observer’s class diagram

ConcreteSubject Store state information to be used by ConcreteOb-
servers. It does not, however, send notifications to its Observers. This
responsibility is part of the ObserverPattern role.[Gamma et al., 1995]

ConcreteObservers Servers as basis to field and method’s introduction
performed by the ObserverPattern.

ObserverPattern The ObserverPattern is an abstract aspect that encap-
sulte the behaviour of the Observer pattern. The ObserverPattern

contains the fields and methods to be included in the classes that are
affected by the ConcreteObserverPattern.

Concrete ObserverPattern This participant specifies in what situations
the ConcreteObservers are going to be notified as well as what is
going to be executed when the ConcreteObservers are notified.

2.6 Dynamics

When the classes corresponding to concrete subjects and concrete ob-
servers are weaved together with the concrete ObserverPattern, the follow-



Observer Pattern using Aspect-Oriented Programming 5

ing methods and fields are attached to the concrete subject and concrete
observer:

fields Observer[] observers (Concrete Subject), Subject subject (Con-
crete Observers)

methods void add(Observer obs), void remove(Observer obs)

(Concrete Subject), void setSubject(Subject s), Subject

getSubject() (Concrete Observers)

These attachments are specified in the abstract aspect (the ObserverPat-
tern). The concrete subjects implements the subject interface. The concrete
observers implement the observer interface. The other modifications are done
to the dynamic nature of the observer and subject classes, telling that every
time that the state of the subject changes the update method of the observers
is invocated.

2.7 Consequences

• The use of the Observer pattern allows to reuse subjects and observers
in an independent way, since you can add new observers without change
the subject or the others existing observers.

• Using an aspect-oriented implementation, the ObserverPattern could
be reused without further modifications, as well as the classes affected
by the pattern (that could be reused without considerations about the
pattern).

• The use of aspect-oriented programming helped to separate the code
related to the design pattern from the code of the base program itself.

• The use of an abstract aspect leads to a better reuse of the design
pattern since it can be applied to several cases without changes. The
developer should develop only the concrete aspect (as in this paper) to
apply the pattern to the base code.

• Other consequences of the Observer pattern, as stated in
[Gamma et al., 1995] are: abstract coupling among subjects and ob-
servers and support to a broadcast communication. One disadvantage
on using this pattern is that the subject does not know how much costs
an updating in all its observers.



Observer Pattern using Aspect-Oriented Programming 6

• Another advantage is that the classes do not need to extend the subject
and observer classes in an explicit way. The user attaches the fields and
methods needed to implement the pattern.

2.8 Implementation

Some considerations could be made while implementing the Observer pat-
tern:

• In order to send notification to its observers, the subject usually de-
clares an explicit vector containing all its Observers. You could imple-
ment it as other data structure (such as: hash tables, linked lists etc)
to solve performance or memory problems.

• ObserverPattern and ObserverPatternImpl could be mixed into one
class. The reuse of the pattern in this case is limited.

• Other implementations issues can be found in [Gamma et al., 1995]

2.9 Example

In this section we are going to show an example on using AspectJ

[Kiczales et al., 2001] to implement the Observer design pattern using a tem-
perature domain. Suppose a set of thermometers that gather information
from a temperature source. Each time that the source temperature changes
the thermometers display should be updated.

An Observer interface is defined in order to describe the Observer role.
All Observers must be in accordance to this interface. The idea here is to
allow each Observer to have a corresponding Subject. This example does not
treat multiple Subjects to one Observer.

1 interface Observer {

2 void setSubject(Subject s);

3 Subject getSubject();

4 void update();

5 }

Figure 2: Observer Interface

In a similar way, we have a Subject interface (Figure 3), that all subjects
must be in accordance to.



Observer Pattern using Aspect-Oriented Programming 7

1 import java.util.Vector;

2 interface Subject {

3 void add(Observer obs);

4 void remove(Observer obs);

5 Vector getObservers();

6 Object getData();

7 }

Figure 3: Subject Interface

In Figure 4 we have a class called Celsius which is a source of temper-
ature data. In this class is stored information about current temperature in
Celsius. This information can be modified or retrieved using the setDegrees
and getDegrees methods, respectively. This class is going to perform the
Subject role. Note that there are not references to the Subject class or
interface. Each time that the setDegrees method is invocated, the subjects
are notified about changes in the temperature source state (this is going to
be implemented as aspects).

1 public class Celsius{

2 private double degrees;

3 public double getDegrees(){

4 return degrees;

5 }

6 public void setDegrees(double aDegrees){

7 degrees = aDegrees;

8 }

9 Celsius(double aDegrees){

10 setDegrees(aDegrees);

11 }

12 }

Figure 4: Celsius class - The Subject

Another important class is the class that represents a thermometer
(Figura 5). This class has a field called tempSource that points to a Celsius

instance. This class is the base classe for the thermometers in the examples
and is going to perform the observer role.

Extending the thermometer class we have a Celsius (Figure 6)
and a Fahrenheit thermometer (Figure 7). These classes override the



Observer Pattern using Aspect-Oriented Programming 8

1 public class Thermometer{

2 private Celsius tempSource;

3 public void setTempSource(Celsius atempSource){

4 tempSource = atempSource;

5 }

6 public Celsius getTempSource(){

7 return tempSource;

8 }

9 public void drawTemperature(){}

10 }

Figure 5: Thermometer class - The Observers superclass

drawTemperature() method providing different scales of temperature.

1 public class CelsiusThermometer extends Thermometer{

2 public void drawTemperature(){

3 System.out.println("Temperature in Celsius:"+

4 getTempSource().getDegrees());

5 }

6 }

Figure 6: The CelsiusThermometer class

In this example the Celsius class has the subject role and the ther-
mometers classes are the observers. The reader could have already noted
that Celsius class neither thermometers classes have explicit connection
with the observer and subject classes.

The use of AspectJ allows the developer to separate the code related to
the Observer pattern from the classes that use it.

In Figure 8 we have an abstract aspect called ObserverPattern that im-
plements the basic functionality of the design pattern. This abstract aspect
was retrieved from the AspectJ 1.1 examples and small modifications were
made in the original structure.

This abstract aspect creates an abstract pointcut called stateChanges

that will be extended in the concrete aspect to tell in what situations the
observers are going to be notified. It implements an after advice that notifies
all the observers when these points (situations) are reached.

It also create some fields (Subject.observers and Observer.subject)
and methods (Subject.add(..), Subject.remove(..),



Observer Pattern using Aspect-Oriented Programming 9

1 public class FahrenheitThermometer extends Thermometer{

2 public void drawTemperature(){

3 System.out.println("Temperature in Fahrenheit:"+

4 (1.8 * getTempSource().getDegrees())+32);

5 }

6 }

Figure 7: The FahrenheitThermometer class

Subject.getObservers(), Observer.setSubject(..),
Observer.getSubject() ) in the classes that implements the Subject and
Observer interfaces as implemented in Figure 8;

Here we extend the abstract aspect in order to tell to the compiler which
classes are going to be treated as observers, as subjects and in which cases
observers will be notified (the methods that are going to be executed when
the notification happens are specified too). The sentences in lines 3 and 5

bellow tells the compiler that the Celsius class implements the Subject inter-
face and the Thermometer class implements the Observer interface. In line

4 the method getData() is implemented in accordance with the Subject in-
terface and in line 6 the update() method is defined in order to accomplish
the Observer interface.

The abstract pointcut defined in the ObserverPattern aspect is extended
here defining that the observers are going to be notified every time the
setDegrees() method is called.

2.10 Known Uses

Some common uses of this pattern (in the object-oriented form) could
be found in [Gamma et al., 1995]. All the GoF patterns was already imple-
mented in AspectJ and discussed in [Hannemann and Kiczales, 2002] with
different levels of success.

3 Future Work

Future work will focus on finding common patterns in aspect-oriented
programming that do not appear in object-oriented ones and on defining
refactorings to aspect-oriented code.



Observer Pattern using Aspect-Oriented Programming 10

1 import java.util.Vector;

2 abstract aspect ObserverPattern {

3 abstract pointcut stateChanges(Subject s);

4 after(Subject s): stateChanges(s) {

5 for (int i = 0; i < s.getObservers().size(); i++)

6 ((Observer)s.getObservers().elementAt(i)).update();

7 }

8 private Vector Subject.observers = new Vector();

9 public void Subject.add(Observer obs) {

10 observers.addElement(obs);

11 obs.setSubject(this);

12 }

13 public void Subject.remove(Observer obs) {

14 observers.removeElement(obs);

15 obs.setSubject(null);

16 }

17 public Vector Subject.getObservers() { return observers; }

18 private Subject Observer.subject = null;

19 public void Observer.setSubject(Subject s) { subject = s; }

20 public Subject Observer.getSubject() { return subject; }

21 }

Figure 8: Observer/Subject Protocol from AspectJ 1.1 examples

1 import java.util.Vector;

2 aspect ObserverPatternImpl extends ObserverPattern {

3 declare parents: Celsius implements Subject;

4 public Object Celsius.getData() { return this; }

5 declare parents: Thermometer implements Observer;

6 public void Thermometer.update() {

7 drawTemperature();

8 }

9 pointcut stateChanges(Subject s): target(s) &&

10 call(void Celsius.setDegrees(..));

11 }



Observer Pattern using Aspect-Oriented Programming 11

References

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design patterns: Elements of reusable object-oriented software.

[Hannemann and Kiczales, 2002] Hannemann, J. and Kiczales, G. (2002).
Design pattern implementation in java and aspectj. In Ibrahim, M., editor,
Proc. 17th Annual Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA-2002). ACM Press.

[Kiczales et al., 2001] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M.,
Palm, J., and Griswold, W. G. (2001). An overview of AspectJ. In Knud-
sen, J. L., editor, Proc. ECOOP 2001, LNCS 2072, pages 327–353, Berlin.
Springer-Verlag.

[Kiczales et al., 1997] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J.-M., and Irwin, J. (1997). Aspect-oriented program-
ming. In Akşit, M. and Matsuoka, S., editors, 11th Europeen Conf. Object-
Oriented Programming, volume 1241 of LNCS, pages 220–242. Springer
Verlag.

[Ossher and Tarr, 2001] Ossher, H. and Tarr, P. (2001). Hyper/J: Multi-
dimensional separation of concerns for Java. In Proc. 23rd Int’l Conf. on
Software Engineering, pages 729–730. IEEE Computer Society.


