
1

Architecture and Design of
Adaptive Object-Models

Joseph W. Yoder
&

Ralph Johnson

The Refactory, Inc.
University of Illinois
yoder@refactory.com
johnson@cs.uiuc.edu

http://www.adaptiveobjectmodel.com

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 2

Presenter

Joseph Yoder
! e-mail: yoder@refactory.com
! www: http://www.joeyoder.com

! www.refactory.com

2

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 3

Table of Contents

Overview
Adaptive Object-Model Description
Architectural Elements of AOM
Some Examples of AOMs in Practice
Other Issues and Related Architectures
Summary

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 4

What are we doing?

Describing a “new” type of architecture.
Not really “new” but only known
by a few people. Has not been
well described.
Going to describe them with patterns.
Patterns work together to solve
the problem.

3

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 5

Why is this Important?
Need to know different architecture styles so
as to understand them, know the advantages
and disadvantages, when to use them, etc.
Software architects usually reuse
architectures they understand.
Learn through courses, experience, working
with someone else, papers, …
Need to know and catalogue and describe in
detail different types of architectures.

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 6

Meta Collaborators

Ali Arsanjani
Federico Balauger
Krzysztof Czarnecki
Martine Devos
Brian Foote
Martin Fowler
Dragos Manolescu

Jeff Oaks
Nicolas Revault
Dirk Riehle
Reza Razavi
Michel Tilman
Others…

4

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 7

Adaptive Object-Models

Architectures that can dynamically adapt to
new user requirements by storing descriptive
(metadata) information about the business
rules that are interpreted at runtime.
Sometimes called a "reflective architecture"
or a "meta-architecture ".
Highly Flexible – Business people
(non-programmers) can change it too.

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 8

Context of the Style

Requirements change within
application’s domain.

Business Rules are changing rapidly.
Applications have to quickly adapt to

new business requirements.
Changing the application is costly, it

generally includes code and data-storage.
There are cycles of: build-compile-release.

5

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 9

Forces – Shearing Layers

Who (Business Person, Analyst, Developer)
What (Business Rule, Persistence Layer,…)
When (How often, How fast)

There is a different rate of change
on the system.

Foote & Yoder - Ball of Mud PLoPD4

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 10

General Idea
Create an object design (meta-model) that
describes the domain objects which includes
attributes, relationships, and business rules as
instances rather than classes.
The domain objects are instantiated through a
description given by the user or domain expert.
Each new requirement is satisfied by creating a
new description and a new instantiation.
Separate what changes from what doesn’t.
Define Changes without Hand-Coding.
Focus on “What” Not “How”.

6

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 11

Adaptive Object-Model
(Active|Dynamic Object-Model)

! An ADAPTIVE OBJECT-MODEL is an object model
that provides “meta” information about the domain
so that it can be changed at runtime
" explicit object model that it interprets at run-time
" change the object model, system changes its behavior

! ADAPTIVE OBJECT-MODELS usually arise from
domain-specific frameworks

! Business rules are stored as descriptive (meta)
information in ADAPTIVE OBJECT-MODELS

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 12

Represents classes, attributes, relationships,
and behavior as metadata.

Based on instances rather than classes.

Users change the metadata (object model)
to reflect changes in the domain.

Stores its Object-Model in a database or in
files and interprets it (can be XML/XMI).

Adaptive Object-Models

Consequently, the object model is adaptable, when
you change it, the system changes immediately.

7

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 13

Metadata and Adaptive
Object-Models

Metadata: If something is going to vary in
a predictable way, store the description
of the variation in a database so that it
is easy to change….Ralph Johnson

"Anything you can do, I can do Meta"

”Meta is Beta"

Code is Data, Data is Code – Everything is Data

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 14

Architectural Elements of
Adaptive Object Models

• Metadata
• TypeObject
• Properties
• Type Square

• Entity-Relationship
• Strategy/RuleObjects
• Interpreters/Builders
• Editors/GUIs

If you want something to change quickly,
you must push it into the data.

8

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 15

TypeObject: Problem
Making a class representing similar types of
information will create structural and data
duplication.
Making many different classes can make any
system hard to maintain; each time a new
class is added the system should be updated
with the new class and the database updated
(new releases).

• There are many instances of a particular kind of
element in the domain with minor differences

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 16

Airplane

Boeing767Boeing757Boeing727 Boeing747 ...

Before

+typeOperations() : <unspecified>

-sharedAttributes

AirplaneModel

+someOperations() : <unspecified>

-specificAttributes

Airplane

-type1

*

After
PLoPD3 - Johnson and Woolf

TypeObject: Solution

9

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 17

Properties: Problem
Making subclasses based on their attributes
makes the system static in nature. Each time
a new attribute is required, a new class is
created, and the system updated.
The model will have a prolific hierarchy of
classes representing the same domain
abstraction or many versions that need to be
released to represent the differences.

• Instances of a given class might have different
attributes that may vary at runtime.

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 18

Example: A Store with Catalogue Entries
! Sweaters (size, color, material)

! Canoes (length, material)

! Video Tapes (name, rating, category)

Car

- color : String = Any
- modelNumber : String = Any
- ….

Car
Property

-name : String = color
-type : String = String
-value : String = Any

0..n
attributes

Before After

Properties: Solution

10

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 19

TypeSquare: Problem

Fixing the property types information for each
property forces the system to be changed each
time a property is added or changed on its type.
The system still need to be able to entirely
define new high level Types of Properties.

• The system needs to handle types on dynamic
properties and you want to ensure that the types of
properties are correct.

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 20

Entity

Property

EntityType

PropertyType

-name : String
-type : Type

0..n type

0..nproperties

0..n type

0..n properties

TypeSquare: Solution

Example: A Store with Catalogue Entries
! Sweaters (size=(S,M,L,XL), color=(red,green,blue,yellow,…)

! Canoes (length=float, width=float)

11

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 21

Entity-Relationship: Problem
Elements from the domain can have multiple
relationships between them and the system
may need to keep track of the relationships
including time and other relevant information.

• The application needs to expose the relationships
between domain elements (entities). Each
relationship gives roles to the participants. Roles
can change and the system needs to know what
current roles are being played and are available.

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 22

Newborn Screening

Mother, Infant

Hospital, Lab

Doctor, HealthProf.

Blood Specimen

12

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 23

Infants, Mothers and Doctors...

Newborn Screening

Person

+name : String
-address : String
-phone : String

Infant

+gestetionalAge : Number

Mother Doctor LabTechnician

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 24

Hospital and Lab

Newborn Screening

Hospital

Organization

+name : String
-address : String
-phone : String

Lab

13

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 25

Putting it all together

Newborn Screening

Person

+name : String
-address : String
-phone : String

Infant

+gestetionalAge : Number

Mother DoctorLabTechnician Hospital

Organization

+name : String
-address : String
-phone : String

Lab

n 1..1
n

n

n 1..1n n

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 26

Refugee

Sponsor
VOLAG

Medical Evaluations
Lab Tests

14

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 27

Refugee

-name: String
-address: String
-phone: String

Person

-name: String
-address: String
-phone: String

Organization

+refugees()

Sponsor

-originatingCountry

+familyMembers()

Refugee

+refugees()

Volag

-testDate: aDate

+results()

Screening
Results

*
*

*

*

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 28

Analysis Patterns - Fowler

Accountability Party

Accountability Type Party Type

0..n

1..nresponsible

0..n

1..ncommissioner

1..n

0..n

type

0..n

1..ntype
0..n

1..nlegal responsible

0..n

1..nlegal commissionersupertype supertype

Entity-Relationship: Solution

15

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 29

Party and Accountability
Example

Sue Smith

John Smith

Sue is the mother of John

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 30

Party and Accountability
(instance diagram)

aParty
name <John>

anAccountabilityType
<PARENT>

anAccountabilityType
<CHILD>

aParty
name <Sue>

anAccountabilityType
<PARENT>
anAccountability aPartyType

<MOTHER>

anAccountability aPartyType
<INFANT>

16

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 31

Strategy: Problem

Making methods that implement the different
algorithm for each Type or Property could
require a large case-statement and could be
impractical to maintain.
Instances for the similar types can have
different algorithm depending upon context.

• The model has to implements a defined set of
interchangeable algorithms that customize the
behavior of the system.

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 32

Strategies/RuleObjects Solution
(Behavior/Methods)

Design Patterns - GOF95

SomeStrategy

+sharedInterface()
-sharedAttributes : someType

Strategy1 Strategy2 StragegyN

...

Entity

+someOperations()
-specificAttribues : type

Strategy2.1 Strategy2.2

*

*

1

1

17

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 33

RuleObject:
Configurable Strategies

RuleObject

PrimitiveRule CompositeRule

ANDCondition ORCondition NOTCondition

*

1

PLoP 2000 - Arsanjani

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 34

Entity

+valueUsing:()

Attribute

EntityType

+name
+type

AttributeType

-type

1 1

-attributes *

1

1

-type

*

-children *

1

-attributeTypes1

*

+valueUsing:()

Rule

TableLookup BinaryOperation

+value

Constant

1

-rules

*

1 *

*

*

1

*

CompositeRule

Accountability AccountabilityType-type

1 1

1

-children*-children *

1

-accountabilities1

* -children *

1

-accountabilitieTypes1

*

Adaptive Object Model
“Common Architecture”

Classes with
Attributes and
Relationships

Behavior

Operational Knowledge (meta)

18

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 35

Interpreters / Builders: Context

• Adaptive Object-Models need to implement ways
for describing the types of entities, properties, and
relationships as well as ways to create them from
this description.

• The system also needs a way to interpret the
dynamic behavior at runtime such as the
strategies or rules.

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 36

Interpreters / Builders: Problem

Creating methods in each class for
instantiating the required metadata defeats
the purpose of taking the AOM approach.
The system has to be able to read the
metadata any time, and configure itself.
The metadata is based on the knowledge of
domain experts rather than developers.
Rules are based upon descriptive (meta)
information

19

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 37

Interpreters / Builders
“Virtual Machine”

Database

XML

Persistence
Mechanism

XML Parser
Interpreter/

Builder

Metadata
Repository/Namespace

Domain
Objects

Application

A
O
M

A
r
c
h
I
t
e
c
t
u
r
e

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 38

Adaptive Object-Model
Examples

20

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 39

Medical Observation - First Model

What happens when a new observation is required?

PhysicalMeasure Blood

Observation Person

Measurement

 convertTo:

Trait
 traitValue Quantity

 unit
 amount
 expressOnUnit:
expressOnUnits:

EyeColor HairColor Gender

Height Weight …

…

FeedingType Hearing Vision

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 40

Observation Design

Person

+address()
+phone()
+name()

Observation

+phenomenon()

-recordedDate : Date
-observedDate : Date
-duration : TimePeriod

Measurement

+observationValue()

Trait

+observationValue()

ObservationType

-phenomenon : Symbol

Quantity

+expressOnUnit(aUnit : Unit)
+expressOnUnits(unitCollection : Collection)

-unit : Unit
-amount : Number

21

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 41

Observation Design
Example

Name: John Smith
Mother: Sue Smith
Father:
Address:
Phone:

Height: 3 feet

Eyes Color: Blue

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 42

Observation Design
(instance diagram)

 aPerson
 name <John Smith>
obsCollection

 aMeasurement
 type
 value

 anObservationType
 #height

 aQuantity
 value <3>
 unit <ft>

 aTrait
 type
 value <blue>

 anObservationType
 #eyeColor

22

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 43

Composing Observations

Observations can be more complex

Cholesterol
! Components: HDL, LDL

Blood Pressure
! Components: Systolic, Diastolic

Vision
! Components: Left Eye, Right Eye

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 44

Composite Observation Design

Composite Pattern (GOF)

Person

+address()
+phone()
+name()

Observation

+phenomenon()

-recordedDate : Date
-observedDate : Date
-duration : TimePeriod

Measurement

+observationValue()

Trait

+observationValue()

ObservationType

-phenomenon : Symbol

Quantity

+expressOnUnit(aUnit : Unit)
+expressOnUnits(unitCollection : Collection)

-unit : Unit
-amount : Number

CompositeObservation

-observations : Collection

1..n

23

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 45

Observation Design
Example

Name: John Smith
Mother: Sue Smith
Father:
Address:
Phone:

Height: 3 feet

Eyes Color: Blue

Blood Pressure:
 Systolic: 120 mmHg
 Diastolic: 80 mmHg

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 46

Composite Observation Design
(instance diagram)

anObservType
<#BloodPressure>

aMeasurement
<120 mmHg>

aCompObs

anObserType
<#SYSTOLIC>

anotherMeasurement
<80 mmHg>

anObser-Type
<#DIASTOLIC>

24

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 47

Composite and Primitive
Observation Design
What we know about John?

 aPerson
 name <John Smith>
obsCollection

Height: 3 feet EyesColor: Blue

Diastolic: 80 mmHg

Systolic: 120 mmHg

 BloodPressure: 120/80

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 48

Validating Observations

Each Observation has its own set
of legal values.
! Baby’s Weight: [0 30] pounds
! HepatitisB: {positive, negative}
! Left/Right Vision: {normal, abnormal}
GUI can enforce legal values
! but we want business rules in domain

objects

25

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 49

Validating Observation Design

ObservationType

-phenomenon : Symbol
-validator : Validator

Validator

DiscreteValidator

-descriptorSet : Collection

NullValidator RangedValidator

-intervalSet : Collection
-validUnit : Unit

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 50

ObservationType
 type

Party

Measurement
 value
 value
 value:
 convertTo:

Trait
 value
 value
 value:

Quantity

CompositeObservation
 values

Observation
 recordedDate
 comments

Validator

DiscreteValidator
 descriptorSet

RangedValidator
 intervalSet
 validUnit

NullValidator

Is everything an Observation?
How does the model specify the structure of the Composite?
What is the relationship between Trait and DiscreteValidator?

Overall Framework’s Design

26

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 51

 ObservationType
 phenomenonType
 isValid: obsValue

Party

Primitive Observation
 observationValue

CompositeObservation

Observation
 recordedDate
 comments
 isValid

Validator
 validatorName
 isValid: obsValue

DiscreteValidator
 descriptorSet

RangedValidator
 intervalSet
 validUnit

PrimitiveObservation
Type

CompositeObservation
Type

NullValidator

Quantity
 unit
 quantity
 convertTo:

DiscreteValues

Current Design

Framework’s Design

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 52

Framework’s Design

 ObservationType
 phenomenonType
 isValid: obsValue

Party

Primitive Observation
 observationValue

CompositeObservation

Observation
 recordedDate
 comments
 isValid

Validator
 validatorName
 isValid: obsValue

DiscreteValidator
 descriptorSet

RangedValidator
 intervalSet
 validUnit

PrimitiveObservation
Type

CompositeObservation
Type

NullValidator

Quantity
 unit
 quantity
 convertTo:

DiscreteValuesOperational level

Current Design

27

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 53

Framework’s Design

 ObservationType
 phenomenonType
 isValid: obsValue

Party

Primitive Observation
 observationValue

CompositeObservation

Observation
 recordedDate
 comments
 isValid

Validator
 validatorName
 isValid: obsValue

DiscreteValidator
 descriptorSet

RangedValidator
 intervalSet
 validUnit

PrimitiveObservation
Type

CompositeObservation
Type

NullValidator

Quantity
 unit
 quantity
 convertTo:

DiscreteValues

Knowledge level

Current Design

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 54

anObserv-Type
<#COMP-GAL>

aMeasurement
<aQuantity>

aCompObs

anObser-Type
<#GAL>

anObser-Type
<#UDT>

anotherMeasurement
<anotherQuantity>

aRangedValidator

anotherRangedValidator

Framework’s Design
(instance diagram)

28

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 55

 anotherRangedValidator

 anInfant
 name
obsCollection

 aMeasurement
 type
 value

 anObservationType
 #GestationalAge

 aQuantity
 value <36>
 unit <weeks>

anObserv-Type
<#COMP-GAL>

aMeasurement
<aQuantity>

aCompObs

anObser-Type
<#GAL>

anotherMeasurement
<anotherQuantity>

anObser-Type
<#UDT>

 aDiscreteValidator

 aRangedValidator

Framework’s Design
(instance diagram)

aRangedValidator

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 56

Medical Observation Example

1 descriptor

elements 1..*

1..*
instance

 ObservationType
 phenomenonType
 isValid: obsValue

Party

Primitive Observation
 observationValue

CompositeObservation

Observation
 recordedDate
 comments
 isValid

Validator
 validatorName
 isValid: obsValue

DiscreteValidator
 descriptorSet

RangedValidator
 intervalSet
 validUnit PrimitiveObservation

Type
CompositeObservation

Type

NullValidator

Quantity
 unit
 quantity
 convertTo:

DiscreteValues Operational level

1..* elements

guard 1 1..* type

PartyType

1 descriptor

properties
1..*

1..*

value 1..*

dvalue 1..*

Knowledge level

1..* varType

contDescr 1

29

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 57

User Defined Product – Example
“Hartford Insurance Policies”

Component

+valueUsing:()

Attribute

ComponentType

+name
+type

AttributeType

-type

1 1

-attributes *

1

1

-type

*

1

-children*-children *

1

-attributes1

*

+valueUsing:()

Rule

TableLookup BinaryOperation

+value

Constant

1

-rules

*

1 *

*

*

1

*

CompositeRule

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 58

Argos Meta-Architecture
(document workflow example)

30

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 59

Argos Business Rule
(document workflow example)

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 60

Objectiva Business Entities
(telephony example)

31

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 61

Objectiva Attributes
(telephony example)

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 62

Objectiva Entity Relationships
(telephony example)

32

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 63

Top Level
Dupont Model

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 64

Inventories Drilldown
“Show calculation for Value”

33

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 65

Vehicles By Marketing Co.
“Summary of Selected Transactions”

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 66

Detailed Transactions
“Access the individual transactions”

34

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 67

Graphing Framework
“Graphs of existing reports or new queries”

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 68

What Happens

A p p l i c a t i o n R e p o r t V a l u e s

N e tS a le s
R e p o r t / V a l u e s V a r ia b le C o s t s

R e p o r t /V a lu e s

R e p o r t M o d e l
a n d V a lu e s

D e t a i l e d
G r o s s S a le s

D e ta i l e d
W a r r a n ty

1 s t
Q tr

2 n d
Q tr

3 r d
Q tr

4 th
Q tr

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 s t
Q tr

2 n d
Q tr

3 r d
Q tr

4 th
Q tr

E a s t
W e s t
N o r th

1 s t
Q tr

2 n d
Q tr

3 r d
Q tr

4 th
Q tr

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 s t
Q tr

2 n d
Q tr

3 r d
Q tr

4 th
Q tr

E a s t
W e s t
N o r th

D e t a i l e d
V C O S

V e h ic le
S u m m a r y

V e h ic l e
S u m m a r y

1 s t
Q tr

2 n d
Q tr

3 r d
Q tr

4 th
Q tr

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 s t
Q tr

2 n d
Q tr

3 r d
Q tr

4 th
Q tr

E a s t
W e s t
N o r th

D e t a i l e d
V a lu e s

V e h ic l e
S u m m a r y

B u s in e s s U n i t S p e c i f i c D a t a

G U I D e s c r ip t io n s B u s in e s s L o g ic

35

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 69

Value Model
arithmetic

Report Values
Reports

Menu Specs

Element Specs

Window Specs

Queries

State

Query Expression Query Object

FM State
Windows

Values

App Info

Seletion

Report Model
Report Values

Editor Type

Table Interfaces

…

Dupont Model

Selection Criteria

Summary Report

Graph Report

Detailed Report

Modeling Layer

GUI Layer

Composition Layer

User View Architecture

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 70

Builder View Architecture

Value Model
arithmetic

Report Values
Reports

Menu Specs

Element Specs

Window Specs

Queries

State

Query Expression Query Object

FM State
Windows

Values

App Info

Seletion

Report Model

Dupont Model

Selection Criteria

Summary Report

Graph Report

Detailed Report

Modeling Layer

GUI Layer Composition Layer

36

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 71

Precautions

Avoid using the metadata for storing:
• Error and warning messages to the user.
• Relationships between classes of the model

(example: ObservationType-Validator)
• Variables that are inherent to the design

(example: RangeValidator::unit)
• Over design…

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 72

Other Issues

Consistency (versions)
Dynamic GUIs
Managing Releases
Editors
Optimizers

37

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 73

Maintaining consistency
(versions)

It is important to maintain consistency
between the metamodel and any changed
instances of TypeObject or other object
associated with them.
! Example: changing the legal range of a Validator

can make existing observations invalid.

May have to keep version of the metadata
available and apply the rules based upon the
timeframe the rule applies.

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 74

Metamodel and GUI

38

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 75

Metamodel and GUI

The metadata can simplify building user
interfaces. Special GUI components can be
developed for using the metadata.
Example: The Observation model includes
widgets that display list of values from the
DiscreteValidators and also EntryBoxes that
use RangeValidator.
A Mediator and Adaptor layer was developed
for managing the interactions between the
domain objects and the GUIs.

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 76

Metamodel and GUI

Generating Dynamic GUIs is Hard!

Can generate GUIs using metadata.

Special GUI components can be
developed for using the metadata.

39

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 77

Managing releases

The system has releases because of changes
in the metadata not only the code.
Changes in the metadata should be checked
by running test cases. Use of testing tools is
recommended.
Versions of the metadata has to be kept.
May have effective dates for the rules which
are represented by the metadata along with
other related history patters.

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 78

Related Approaches
and Technologies

Generative Techniques
Black-box Frameworks
Metamodeling Techniques
Reflection Techniques
Domain Specific Languages
Table-driven Systems
UML Virtual Machine
Model Driven Architecture (OMG)

40

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 79

Black-box frameworks

These frameworks are instantiated by means
of parameterization and object creation.
They don’t need to have a meta-level.
They don’t need to have interpreters and
builders.
They both use very similar patterns (type-
objects, properties, strategies, …)

AOMs can be Black-box frameworks
but don’t have to be--and vice-versa

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 80

Code Generators

It provides infrastructure for transforming
descriptions of a system into code.
Descriptions are based on provided primitive
structures or elements.
Code generators produce either executable-
code or source-code.
Can use metadata and editors for describing
code to generate.

41

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 81

Metamodeling techniques
It focus on manipulating the model and meta-
model behind a system as well as supporting
valid transformations between different
model representations.
The attention is on the meta-model, or a
model or generating a model, rather than the
final application that will reflect the business
requirements.
This technique is used for describing the
domain-specific language.

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 82

Domain Specific Languages
DSLs can be a scripting language and work
by means of parameterization.
They don’t need to have a meta-level but
they often do.
They don’t need to have interpreters and
builders.
They both use solving similar patterns, they
just might do it in different ways.

AOMs can be a Domain Specific Language
but don’t have to be--and vice-versa

42

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 83

Table-driven Systems

Business rules can be parameterized and
stored in a database.
The running system can either interpret these
rules from a database table or the
appropriate function can be called with the
differing values from the database.
Sometimes these are implemented with
triggers and stored procedures.

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 84

Model Driven Architecture

MDA is highly related to AOMs

UML Virtual Machine is an AOM

UML Virtual Machine is an MDA approach

Focuses more on the modeling perspective

43

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 85

Copyright by ECOOP’ 2000 workshop on Adaptive Object-Model. --- http://www.adaptiveobjectmodel.com/ECOOP2000/description.html

An execution of that software

A language for defining domain specific software

A specific software

language
for

defining languages

Dimensions of abstraction in Adaptive Object-Models, Reflection
and OMG ’s metamodeling Architecture

L3

L2

L1

L0

Dimensions of Abstraction

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 86

Successfully Used For:
(some can be found in papers)

www.adaptiveobjectmodel.com

Representing Insurance Policies
Telephone Billing Systems
Workflow Systems
Medical Observations
Banking and Trading
Validate Equipment Configuration
Documents Management System
Gauge Calibration Systems
Simulation Software

44

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 87

Advantages of
Adaptive Object-Models

Can more easily adapt to new business
requirements.
Smaller in terms of classes so possibly
easier to maintain by experts.
Changes do not require recompiling
the system.
Business People can make changes.
Time to market can be reduced.

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 88

It demands having infrastructure for
storing, building, interpreting metadata.
Developing AOM can be expensive.
Can be hard to understand and
maintain.
It requires skilled human resources.
Can have poor performance.

Disadvantages of
Adaptive Object-Models

45

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 89

Process for Developing AOMs

Developed Iteratively and Incrementally.
Get Customer Feedback early and often.
Add flexibility only when and where needed.
Provide Test Cases and Suites for both the
Object-Model and the Meta-Model.
Develop Support Tools and Editors for
manipulating the metadata.

Very similar to Evolving Frameworks
by Roberts and Johnson PLoPD3

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 90

Entity

+valueUsing:()

Attribute

EntityType

+name
+type

AttributeType

-type

1 1

-attributes *

1

1

-type

*

-children *

1

-attributeTypes1

*

+valueUsing:()

Rule

TableLookup BinaryOperation

+value

Constant

1

-rules

*

1 *

*

*

1

*

CompositeRule

Accountability AccountabilityType-type

1 1

1

-children*-children *

1

-accountabilities1

* -children *

1

-accountabilitieTypes1

*

Adaptive Object Model
“Common Architecture”

Classes with
Attributes and
Relationships

Behavior

Operational Knowledge (meta)

46

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 91

Summary
Adaptive Object-Models can take time to develop
-- but the payoff can be enormous!
Adaptive Object-Models work based upon domain
expert knowledge.
Adaptive Object-Model architectural style
exposes the elements of the domain and
business rules.
Applying well-known design principles (e.g.
TypeObject, Properties, Entity-Relationship,
and Strategies/RuleObjects) works well for
developing systems that can dynamically adapt
to your changing business environment.

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 92

Summary

AOMs Separates what changes quickly
from what changes slowly (hot-spots).
Takes into account who changes what,
when, and where.
AOM Objects constitute a domain
specific language.
Building languages out of objects can
be good…reflection guys say this!

47

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 93

Where to Find More
Information

http://www.adaptiveobjectmodel.com
http://st-www.cs.uiuc.edu/users/droberts/evolve.html

http://www.joeyoder.com/papers/patterns

http://hillside.net

http://st-www.cs.uiuc.edu/

http://www.refactory.com

Architecture and Design of Adaptive Object-Models – August 2003, Brazil. Copyright 2003, The Refactory, Inc. 94

That’s All

