
From Requirements Negotiation to Software Architectural Decisions

Hoh In
Dept. of Computer Science

Texas A&M University
College Station, TX 77843

hohin@cs.tamu.edu

Rick Kazman
Software Engineering Institution

Carnegie Mellon University
Pittsburgh, PA, USA 15213

Kazman@sei.cmu.edu

David Olson
Dept. of Info. Operations and Management

Texas A&M University
College Station, TX 77843

dolson@tamu.edu

Abstract

Uncertainty of system properties (e.g., performance,
reliability, security, interoperability, usability, etc.) often
hinders the progress of requirements negotiation. Software
architecture evaluation techniques enable stakeholders to
clarify the uncertainty of system properties. In another
hand, software architecture alternatives cannot be
evaluated in a thorough way without consideration of
different stakeholders’ negotiated requirements. Effective
requirements negotiation is therefore needed to evaluate
architecture alternatives.

This paper proposes an integrated decision-making
framework from software requirements negotiation to
architecture evaluation based on WinWin and CBAM (Cost
Benefit Analysis Method). The integrated framework helps
stakeholders elicit, explore, evaluate, negotiate, and agree
upon software architecture alternatives based negotiated
requirements.

Keywords: ABASs, ATAM, CBAM, conflict resolution,
requirements negotiation, WinWin.

1. Motivation

Many software projects have failed because their
requirements were poorly negotiated among stakeholders
[4]. Several keynote speakers in the International
Conference on Software Engineering (ICSE) emphasized
the importance of requirements negotiation as follows:

• “How the requirements were negotiated is far more
important than how the requirements were specified”
(Tom De Marco, ICSE 96)

• “Negotiation is the best way to avoid “Death March”
projects” (Ed Yourdon, ICSE 97)

• “Problems with reaching agreement were more critical to
my projects’ success than such factors as tools, process
maturity, and design methods” (Mark Weiser, ICSE 97)

The WinWin negotiation model, developed by the USC
Center for Software Engineering, provides a general
framework for successful requirements negotiation. In
WinWin, stakeholders elicit their win conditions, identify
issues/conflicts, generate options to resolve the issues,
negotiate the options and reach agreement [1,2,3].
However, it is not clear which architecture alternatives
should be considered as the options and/or how they should
be explored, evaluated, and negotiated in order to reach
agreement among stakeholders.

As an architecture evaluation technique, the CMU
Software Engineering Institute has developed the Cost
Benefit Analysis Method (CBAM) that explores, analyzes,
and makes decisions regarding software architecture
alternatives (called "architecture strategies") [14]. Still, it is
not clear how the explored architecture strategies satisfy the
initial requirements (goals/constraints) of stakeholders who
have different roles, responsibilities, and priorities. A
general negotiation framework to aid in progressing from
requirements to architectural decisions is needed.

In this paper, we propose an integrated decision-
making framework, based on WinWin and CBAM, that aids
in systematically determining architecture alternatives from
negotiated requirements among stakeholders. WinWin
provides a general negotiation framework to elicit
requirements, explore architecture alternatives, and reach
agreement. CBAM helps stakeholders negotiate architecture
alternatives in a systematic way.

This paper is organized as following: Section 2
describes the context of the work. Section 3 presents and
describes the proposed framework. In Section 4 and 5,
future research challenges and conclusions are presented.

2. Context For the Work
2.1 WinWin Negotiation Model
The WinWin model provides a general framework for
identifying and resolving requirements conflicts by eliciting
and negotiating artifacts such as win conditions, issues,
options, and agreements. The WinWin model uses Theory
W [5], "Make everyone a winner", to generate the



stakeholder win-win situation incrementally through the
Spiral Model. WinWin assists stakeholders to identify and
negotiate issues (i.e., conflicts among their win conditions),
since the goal of Theory W involves stakeholders
identifying their win conditions, and reconciling conflicts
among win conditions.

The dotted-lined box (steps 1,2,3, and 8) shown in
Figure 1 presents the WinWin Negotiation Model.
Stakeholders begin by entering their win conditions (step
1). If a conflict among stakeholders’ win conditions is
identified, an issue schema is composed, summarizing the
conflict and the win conditions it involves (step 2). For each
issue, stakeholders prepare candidate option schemas
addressing the issue (step 3). Stakeholders then evaluate the
options, delay decision on some, agree to reject others, and
ultimately converge on a mutually satisfactory option. The
adoption of this option is formally proposed and ratified by
an agreement schema, including a check to ensure that the
stakeholders’ iterated win conditions are indeed covered by
the agreement (step 8). Experience also indicates that
WinWin is not a panacea for all conflict situations, but
generally increases stakeholders’ levels of cooperation and
trust [4, 11].

Agreement is not always guaranteed. There are
often tradeoffs among win conditions that need to be
balanced. CBAM provides a means to balance these
tradeoffs, and a framework for discussion that can lead to
resolution.

2.2 CBAM (Cost-Benefit Analysis Method)
The ATAM [13] uncovers the architectural

decisions made in a software project and links them to
business goals and QA (quality attribute) response
measures. The CBAM [14] builds on this foundation by
additionally determining the costs, benefits, and
uncertainties associated with these decisions.

Given this information, the stakeholders can then
decide how to address their important QA response
measures. For example, if they felt that the system’s
reliability was not sufficiently high they could use the
ATAM/CBAM methods to decide whether to use redundant
hardware, checkpointing, or some other architectural
decision addressed at increasing the system’s reliability. Or
the stakeholders can choose to invest their finite resources
in some other QA—perhaps believing that higher
performance will have a better benefit/cost ratio. A system
always has a limited budget for creation or upgrade and so
every architectural choice is, in some sense, competing with
every other one for inclusion.

The CBAM is a framework and it does not make
decisions for the stakeholders; it simply aids them in the
elicitation and documentation of costs, benefits, and
uncertainty and gives them a rational decision-making
process.

When an ATAM is completed, we expect to have a set
of artifacts documented as follows:

• a description of thebusiness goalsthat are crucial
to the success of the system

• a set of architectural viewsthat document that
existing or proposed architecture

• a utility tree which represents a decomposition of
the stakeholders’ goals, for the architecture. The
utility tree starts with high-level statements of QAs
and decomposes these into specific instances of
performance, availability, etc. requirements and
realizes these as scenarios

• a set ofrisks that have been identified

• a set ofsensitivity points(architectural decisions
that affect some QA measure of concern)

• a set oftradeoff points(architectural decisions that
affect more than one QA measure, some positively
and some negatively)

The CBAM builds upon this foundation of information by
probing the architectural strategies (ASs) that are proposed
in response to the scenarios, risks, sensitivity points, and
tradeoffs. The steps of the CBAM are as follows. Each of
these steps can be executed in the first (triage) and second
(detailed examination) phases:

1. Choose Scenarios and Architectural Strategies
2. Assess QA Benefits
3. Quantify the Architectural Strategies’ Benefits
4. Quantify the Architectural Strategies’ Costs and

Schedule Implications
5. Calculate Desirability
6. Make Decisions

3. The Steps of the Integrated Framework

The integrated framework shown Figure 1 begins with the
WinWin process, which elicits what stakeholders need,
identifies conflicts in these needs among the stakeholders,
and explores the conflict-resolution options. CBAM is
proposed here as a means to supplement the WinWin
process of systematically evaluating and negotiating
software architecture alternatives (as conflict-resolution
options) by eliciting stakeholders’ benefits and costs. The
process may lead to agreement by itself (although this is not
guaranteed). Reviewing each stakeholder' win conditions at



this final stage may further aid the next cycle of
reconciliation or compromise in the WinWin Spiral Process
model.

Figure 1: The Integrated Framework

The steps shown in Figure 1 are elaborated in the
following subsections.

Step 1: Elicit Win Conditions
Each stakeholder identifies their win conditions. This step
provides the basis for identification of ideal project features
by stakeholders.

Step 2: Identify Quality Attribute Conflicts/Issues
The lists of win conditions are then reviewed to identify
quality attribute conflicts. The identified conflicts are then
categorized as being either a direct conflict or a potential
conflict. This step may be accomplished manually, but
future work may be able to incorporate software agents.

Step 3: Explore Architecture Strategies as Conflict-
Resolution Options
Based upon the conflicts/issues generated in step 2, the
stakeholders can now generate conflict-resolution options.
It is best to generate a list of options which may emphasize
those characteristics preferred by each stakeholder, but that
include some balance representing needed conditions of all
stakeholders. These options are called Architectural
Strategies (ASs) in the CBAM. Where do such ASs come
from? They can come from any number of areas: from the
architects’ experience, by borrowing from systems that
have experienced similar problems in the past, or from
repositories of design solutions, such as Design Patterns
[10] or ABASs [15].

Step 4. Assess Quality Attribute (QA) Benefits
To aid in decision making, the stakeholders now need to
determine both the costs and benefits that accrue to the
various ASs. Determining costs is a well-established
component of software engineering. This is not addressed
directly by the CBAM—we assume that some methods of
doing this exists in the organization. Determining benefits
is less well-established and this is the province of the
CBAM. As a means of determining the benefit of an
individual AS, a benefit evaluation function is created.
Benefit must be correlated with the degree to which an
Architectural Strategy supports QA goals, which in turn
relates back to the business goals for the system. These
goals are both outputs of the ATAM.

To do this we have each of the stakeholders assign
a Quality Attribute Score(QAScore) to each QA system
goal. We let the customer determine which stakeholders
should be in a decision-making capacity. The stakeholders
are instructed to choose these scores such that they total
100. For example:

Performance: 15
Security: 15
Modifiability: 30
Reliability: 25
Interoperability: 15

We also ask each stakeholder to describe the particular
aspect of the quality attribute that caused them to make this
score. For example, modifiability has a score of 30 and
above, but it isGUI modifiability that is the primary
determinant of this score.

Step 5: Quantify the Architecture Strategies’ Benefits
We then use these scores to evaluate each of the ASs. Very
rarely does an AS only affect a single QA. ASs will have
effects on multiple QAs, some positive and some negative,
and to varying degrees. To capture this, we ask the
stakeholders to rank each AS in terms of itscontribution
(Cont) to each QA on a scale of –1 to +1. A +1 means that
this AS has a substantial positive effect on the QA (for
example, an AS under consideration might have a
substantial positive effect on performance) and a -1 means
the opposite. Based upon this information each ASi can
now be assigned a computed benefit score from –100 to
+100 “Benys” using the following formula:

Benefit(ASi) = Sum (Contij * QAScorej)

For example, given the QAscores listed above, we can
calculate benefit scores for two hypothetical ASs as follows

Elicit Win
Conditions

Identify
Conflict Issues

Explore Options/
Architecture

Strategies (ASs)

Reach
Agreement

CBAM Steps
4. Assess QA Benefits
5. Quantify the ASs’ Benefits
6. Quantify the ASs’ Cost and Schedule Implications
7. Calculate Desirability

Step 1 Step 2

Step 3
Step 8

WinWin Spiral Model



(note that we only consider the QAs for which there is a
non-zero contribution):

AS5: Performance (-0.2), Modifiability (0.6),
Interoperability (0.3)

Benefit(AS5) = -0.2 * 15 + 0.6 * 30 + 0.3 * 15
= 20.5

AS6: Performance (0.8), Reliability(-0.2),
Security(-0.4)

Benefit (AS6) = 0.8 * 15 + -0.2 * 25 + -0.4 * 15
= 1

This score allows us to rank the benefit of every archi-
tectural change that has been contemplated. But clearly this
evaluation is fraught with uncertainty. We can capture this
uncertainty by recording the variations in stakeholder
judgements.

In the CBAM we use Kendall’s concordance
coefficient for the group as a whole as a measure of the
uncertainty of the group, as described in [14]. The more
highly correlated the group, the higher the concordance
coefficient and hence the lower the uncertainty.

Step 6: Quantify the Architecture Strategies’ Cost and
Schedule Implications

Now that the benefits have been estimated by the
stakeholders, we must capture two other crucial pieces of
information about the various ASs: their costs and their
schedule implications. We propose no special cost
estimation technique here (although we do think that cost
estimation methods that take architecture into account are a
desirable and inevitable improvement to existing methods).
We assume that an organization has some method (even if it
is ad hoc) of estimating the costs of implementing new
services and features. We simply need to capture these
estimates, as they are associated with each AS.

In addition we need to capture any schedule
implications of the ASs. For example, do several ASs
require the use of the same critical resource (personnel,
hardware, software)? If so then attempting to implement
them simultaneously might be impossible even if their
cost/benefit numbers indicate that this is the strategy that
brings the organization the greatest profit. Similarly, we
want to note cases where ASi depends upon ASj and so
implementing ASj first actually reduces the cost of
implementing ASi.

Step 7: Calculate Desirability
Given this information we are in a position to calculate a
“Desirability” metric, as follows:

Desirability(ASi) = Benefit(ASi) / Cost (ASi)

This metric indicates ASs that will bring high benefit to the
organization at relatively low cost. In addition to
calculating this metric, the absolute benefit and cost
numbers need to be considered as does the uncertainty
surrounding all of these numbers, as discussed in [14].

Step 8: Reach Agreement
At this point the negotiating among the stakeholders can
begin in earnest. This negotiation will be informed, rather
than simply a matter of opinion. The costs, benefits, and
uncertainty of each of the ASs will be plain for each
stakeholder to see, as well as the schedule implications and
dependencies (if any). These ASs can be tied back to the
business goals, and hence the win conditions of each of the
stakeholders.

What results is much less an argument than a
discussion about priorities, risk averseness, and the
assumptions underlying the model. Stakeholders may still
disagree about what direction to take the architecture and
the system, but they will do so based upon a large base of
facts and accumulated evidence and such disagreements can
be more easily moderated than those which are simply
based upon opinion and prejudice.

4. Further Research Challenges

The integrated decision-making framework offers useful
tools to aid the stakeholder negotiation process from
requirements to architecture evaluation. However, there are
a number of challenges involved in its process. These
challenges are given briefly here due to lack of space, but
provide a great deal of fruitful scope for future research.

Exploration of Architecture Strategies: An important
issue is how to sort these issues/conflicts (shown in Step 2)
in order to explore Architecture Strategies as conflict-
resolution options (shown in Step 3) reflecting the win
conditions of the different stakeholders. That is, should
several Architecture Strategies be explored for each
issue/conflict, or per a set of issues/conflicts, or for all
issues? Our feasible solution approach could be to classify
(cluster) conflicting issues and identify a small set of
Architecture Strategies for each set of the clustered
issues/conflicts. One possible solution would use a cross-
impact (or dependency) analysis technique, which would
identify clusters of stakeholder positions. An ideal solution
for each cluster could be used as the basis of an
Architecture Strategy. This would imply the need to
consider the entire set of criteria.



Determining Detailed Benefit-Cost Criteria: Agreeing on
detailed criteria of benefits and costs among stakeholders is
a challenging problem [7, 8, 9, 12, 15, 20]. An initial,
complete list of criteria can be generated first. This long list
of micro-criteria can then be reviewed and grouped by
theme, yielding the macro-criteria. The identification of the
macro-criteria is usually a natural grouping of micro-
criteria representing a common theme.

Sensitivity to Uncertainty in Benefit, Cost Values:
Objectively quantifying the benefits and costs of
Architecture Strategies (shown in Step 5 and 6) is another
challenging problem. Even though we can quantify them
with popular cost and/or benefit models, the accuracy of the
estimates is limited. Thus, the inherent uncertainty in the
models must be taken into account [14].

Reaching Agreement from Desirability Results:
Reaching agreement is a difficult task. One way to
accomplish agreement is to let an arbitrator (e.g., the
responsible manager) make the decision. Use of a group
support system lets all stakeholders have the opportunity to
provide their inputs. That alleviates some of the apparent
arbitrariness usually perceived in dictatorial decisions. At
the opposite extreme, the decision could be made by voting.
As in political decision-making, this does not guarantee
complete acceptance. Quite the contrary, all of the
mechanisms that have been applied to reaching a decision
can be applied in the proposed system. Hopefully, the
opportunity to express win conditions, the use of group
support systems, and objective cost-benefit evaluation
modeling will create a decision-making environment that
gains broader support from participating stakeholders.

5. Conclusions

In this paper, we have introduced an integrated framework
for coordinating architectural decisions with requirements
negotiation framework. This integrated framework has the
following synergy compared to the requirements
negotiation models [16, 17, 18, 19, 21] or to software
architecture evaluation work (e.g., [13, 14, 15]):

• Enabling a more powerful multi-viewpoint analysis
of architecture evaluation. Architecture alternatives
(e.g., "Architecture Strategies") can be evaluated
based on requirements elicited, explored, and
negotiated from and by multiple stakeholders who
have different roles, responsibilities, and priorities.

• Facilitating requirements negotiation in a more
systematic way. Uncertainty in requirements
negotiation can be clarified through the exploration,

evaluation, and negotiation of architecture
alternatives.

As a logical step, we will examine a real-world case study
to obtain more insight of better way to overcome the future
research challenges presented in Section 4.

In conclusion, we expect that the integrated
framework provides a systematic, yet practical method for
stakeholders to negotiate from requirements to architecture
alternatives.

ACKNOWLEDGEMENTS

This work is partially supported by funding from NASA
JPL under the contract C00-00443 with Texas A&M
University. We would like to thank Drs. Barry Boehm,
Robert Briggs, and Tom Rodgers for the helpful discussion
on this topic.

REFERENCES
[1] Boehm, B., Bose, P., Horowitz, E., and Lee, M.,

“Software Requirements as Negotiated Win
Conditions”, in First International Conference on
Requirements Engineering (ICRE94). Colorado
Springs: IEEE Computer Society Press, 1994.

[2] Boehm, B., Bose, P., Horowtiz, E., and Lee, M.,
"Software Requirements Negotiation and
Renegotiation Aids: A Theory-W Based Spiral
Approach”, in 17th International Conference on
Software Engineering (ICSE-17). Seattle: IEEE
Computer Society Press, 1995.

[3] Boehm, B., Egyed, A., Port, D., Shah, A., Kwan, J.,
and Madachy, R., "A Stakeholder Win-Win Approach
to Software Engineering Education”,Annals of
Software Engineering, 1999.

[4] Boehm, B. and In, H., "Identifying Quality-
Requirement Conflicts", IEEE Software, Vol. 13, No.
2, pp. 25-35, March 1996.

[5] Boehm, B. and Ross R., "Theory W Software Project
Management: Principles and Examples", IEEE
Transactions on Software Engineering, 1989. July: p.
902-916.

[6] Gruenbacher, Paul & Briggs, R.O. "Surfacing Tacit
Knowledge in Requirements Negotiation: Experiences
Using EasyWinWin",Proceedings of the 34th Thirty
Fourth Hawaii International Conference on System
Sciences, CLUS09, 2001

[7] Choo, E.U., Schoner, B., and Wedley, W.C.,
“Interpretation of Criteria Weights in Multicriteria
Decision Making”, Computers and Industrial
Engineering37, 1999, pp. 527-541.



[8] Dyer, J.S. and Sarin, R.K., “Measurable Multiattribute
Value Functions”,Operations Research27, 1979, pp.
810-822.

[9] Edwards, W. and Barron, F.H., “SMARTS and
SMARTER: Improved Simple Methods for
Multiattribute Utility Measurement”,Organizational
Behavior and Human Decision Processes60, 1994, pp.
306-325.

[10]Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design
Patterns, Addison Wesley, 1995

[11] In, H., Boehm, B., Rodgers, T., and Deutsch, M.,
"Applying WinWin to Quality Requirements: A Case
Study", IEEE International Conference on Software
Engineering (ICSE 2001), IEEE Computer Society
Press, Toronto, Canada, May 12-19, (to appear)

[12] Keeney, R.L. and Raiffa, H.,Decisions with Multiple
Objectives: Preferences and Value Tradeoffs. Wiley,
New York, 1976.

[13] Kazman, R., Klein, M., Clements, P., “ATAM: A
Method for Architecture Evaluation”, CMU/SEI-2000-
TR-004, Software Engineering Institute, Carnegie
Mellon University, 2000.

[14] Kazman, R., Asundi, J., Klein, M., “Quantifying the
Costs and Benefits of Architectural Decisions”,
Proceedings of the 23rd International Conference on
Software Engineering (ICSE 23), (Toronto, Canada),
May 2001, to appear.

[15] M. Klein, R. Kazman, L. Bass, S. J. Carriere, M.
Barbacci, H. Lipson, “Attribute-Based Architectural
Styles”, Software Architecture(Proceedings of the
First Working IFIP Conference on Software
Architecture (WICSA1)), (San Antonio, TX), February
1999, 225-243.

[16]Klein, M., “Supporting Conflict Resolution in
Cooperative Design Systems”, IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 21, No. 6,
pp1379-1390, Nov/Dec 1991.

[17] Lee, J., “SIBYL: A Qualitative Decision Management
System”, In Artificial Intelligence at MIT: Expanding
Frontiers, Edited by P. Winston and S. Shellard, MIT
Press, Cambridge, 1990.

[18] Mylopoulos, J., Chung, L., Wang, H.Q., Liao, S., Yu,
E. “Extending Object-Oriented Analysis to Explore
Alternatives”, IEEE Software. February 2001.

[19] Nuseibeh, B. A., Easterbrook, S. M., and Russo, A.,
"Leveraging Inconsistency in Software Development",
IEEE Computer, Volume 33, No. 4, Pages 24-29, April
2000.

[20] Olson, D.L., Decision Aids for Selection Problems.
Springer, New York, 1996.

[21] Ramesh, B. and Sengupta, K., “Managing Cognitive
and Mixed-motive Conflicts in Concurrent
Engineering”, Concurrent Engineering, Vol. 18, No. 6,
1992, pp 498-519.


