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Abstract: The use of meta-analytic techniques to
summarize empirical software engineering
research results is illustrated using a set of 5
published experiments from the literature. The
intent of the analysis is to guide future work in
this area through objective summarization of the
literature to date. A focus on effect magnitude, in
addition to statistical significance is championed,
and the reader is provided with an illustration of
simple methods for computing effect
magnitudes.

Background
The field of empirical software engineering
research can benefit from research synthesis
techniques that help summarize and assess the
body of empirical results accumulating in the
literature. Research synthesis techniques that go
beyond the subjective review of literature found
in nearly every dissertation could help
researchers to build on a framework of existing
results, rather than merely commenting on it. In
order for the benefits of research synthesis
techniques to be realized however, basic
standards of research conduct and reporting must
be present. Failing some level of comparability
among subject populations, sampling standards,
and research designs, summaries of existing
research tend to focus on the shortcomings or
strengths of the research methods used – rather
than the results and data reported. Meta-analytic
methods allow us to summarize the outcomes of
previous research, and form empirically derived
expectations for future research focus.

In coining the term “Meta-Analysis,” Glass
(1976) defined it in the following way:

“ I use it to refer to the statistical analysis of a
large collection of analysis results from
individual studies for the purpose of integrating
the findings. It connotes a rigorous alternative to
the casual, narrative discussions of research
studies which typify our attempts to make sense
of the rapidly expanding research literature.”

Though Glass is credited with the popularization
of meta-analysis, statistical procedures for
combining the results of multiple research
studies were also explored in the 1930s during
the development of statistical methods for the
analysis of agricultural experiments (Tippet
1931, Fisher 1932, Karl Pearson 1933, Cochran
1937). This paper provides an illustration of a
minimal set of meta-analytic methods, using a
series of 5 published experiments on
requirements inspection techniques.

Meta-Analysis in Software Engineering
In their illustration of the use of meta-analysis in
software engineering, Pickard, Kitchenham and
Jones (1998) conclude that:

“Meta-analysis is appropriate for homogeneous
studies when raw data or quantitative summary
information, e.g., correlation coefficient, are
available. It can also be used for heterogeneous
studies where the cause of the heterogeneity is
due to well-understood partitions in the subject
population.”

The problems associated with estimating
comparable effect magnitudes across a series of
heterogeneous experiments are immediately
obvious to anyone who has ever written a
literature review. Comparing apples and oranges
without resorting to a discussion of fruit juice is
very difficult. Advocates of meta-analysis
recognize this as a grey area in the use of these
methods. For instance, Cook and Leviton (1980)
emphasize that there will always be subjective
elements to the practice of meta-analysis, as in
most research methods, when they say:

“… all literature reviews share both qualitative
judgments and quantitative techniques. Meta-
analysis is rife with qualitative judgments –
about the population of studies that are relevant,
the breadth of the constructs to be investigated,
the criteria by which studies are to be grouped
into those of high and low methodological
quality, etc. “

Reconciling the implications for differences in
sampling frames, operational definitions, and
study designs (to name only a few challenges) is
rarely a straightforward exercise. However, the
ability to introduce new independent variables in
the analysis and to explore novel combinations
of experimental conditions makes meta-analysis



a desirable addition to the subjective narrative
found in most literature reviews.

A little closer to home, Brooks (1997)
commenting on the lessons from psychological
research for the field of software engineering
noted:

“A major lesson has been that a single study is
extremely unlikely to be definitive. Replication
variants of the study can often fail to be
confirming. Dozens and eventually hundreds of
studies can follow on the same topic. Knowledge
singularly fails to accumulate, however, and it
even becomes attractive to dismiss an entire
research literature.”

Brooks goes on to conclude that meta-analysis
can be useful “if there is indeed a single effect
size out there waiting to be estimated” but that
the field of software engineering simply lacks a
sufficient body of replicated empirical studies to
support this investigation. The answer to the first
challenge is faced by every researcher who
performs an experiment using their operational
definitions of the important variables and relies
on statistical analyses to reject the null
hypothesis. The second problem, shortage of
empirical results, is being addressed through
efforts of researchers like the ones described
here. In addition, the journal Empirical Software
Engineering strives to provide its audience with
detailed data from the studies it publishes in
order to facilitate building on the findings from
the single study which initiates a line of inquiry.

Software Requirements Inspection
Techniques – A Series of Replicated
Experiments
Porter, Votta and Basili (1995) initiated a
program of experimental research to study
inspection method in software engineering. The
authors set forth a logical basis for the
desirability of a new inspection technique, where
each member of the inspection team is assigned
specific responsibilities based on scenarios
associated with particular types of defects. The
experimental results reported provide statistical
support to the logical argument set forth. These
researchers also made their experimental
materials available to other researchers, so that
replications of their original experiment could be
performed independently.

Since the publication of the first experiment, 4
replications have been reported in the same

journal (Empirical Software Engineering) with a
variety of results. Taken as a set, these 5
experiments address a variety of important
research questions, including analysis of
‘meeting gain’ to investigate the hypothesis that
holding the inspection meeting does not
significantly increase the defect detection rate.
As well, there are differences in the statistical
models employed for analysis in some of the
articles. Most authors performed a series of one-
way ANOVAs to examine each independent
variable, then went on to examine other effects
like the interaction between inspection technique
and specification, or the performance of
individual inspectors. However the basic
underlying designs are quite similar. For the sake
of brevity, the focus of this paper is restricted to
the effect of inspection technique, and the effect
of specification on the defect detection rate of
inspection teams. The following 5 sections
provide a brief summary of each experiment.

The Porter, Votta and Basili Experiment
Porter, Votta and Basili (1995) conducted an
experiment using 48 graduate students enrolled
in a course on formal methods. The design of
this experiment resembles a Greco-Latin Square
arrangement, where multiple layers of a Latin-
Square design are used to test conditions arising
from the manipulation of a number of
independent variables (Winer 1971). An internal
replication within the design required 2 sets of
24 students. In addition, the experimenters
exercise some control with regard to subjects’
exposure to the different inspection techniques.
They avoided situations where use of a
systematic method of inspection is followed by
use of a less systematic method. The concern is
that the previous experience could add structure
to the subsequent inspection round, resulting in a
different process than that of the subjects who
did not have that previous experience.

Given the importance of distinguishing the
effects of related treatments (inspection methods
that vary along a single dimension – how
systematic they are) and to make the most of a
limited subject pool, these design choices seem
to reflect a good tradeoff. However, some
researchers will prefer a saturated factorial
model where no effects are confounded, and all
interactions can be estimated. Indeed we see
such a full factorial model used in one of the
replications described later in this paper.
The chief results of this first experiment (for the
purposes of the present paper) included a 35%



improvement in detection rate for inspection
teams using the scenario method, and
statistically significant differences in inspection
rate associated with the inspection method as
well as the specification inspected (for teams of
inspectors).

The First Replication
Fusaro, Lanubile and Visaggio (1997), using the
experimental kit provided by the authors above,
replicated the experiment using undergraduates
in an advanced software engineering course. All
participants had “experience from a previous
software engineering course in SRS reading but
only in the information systems domain.” The
experimental materials were translated into
Italian.

The experimental design is presented in an
experimental plan along with the plan from the
original experiment. An additional constraint
was placed on the set of permissible sequences
for teams’ exposure to inspection techniques for
this replication.  These authors also exercised
some control over inspection team formation by
using a matching procedure as “an adjunct to
randomization.” Finally, these investigators
found additional defects in the requirements
specifications that were not considered during
the initial experiment. Results pertaining to the
original set of defects as well as the expanded list
are reported.

These authors reported statistically significant
differences between the two requirements
specifications, but no statistically significant
differences among the inspection techniques
were found, using a series of one-way ANOVAs.

The Second Replication
Miller, Wood and Roper (1998) provide a third
set of empirical results for the experiment. The
subjects in this replication were third-year
undergraduates in a formal university course.
These authors dropped the Ad Hoc approach
from the design, leaving only two detection
methods to compare – checklist and scenario.
In addition, a new constraint on the order of
presentation for the requirements specifications
was used, to minimize the chance of the
experimental data being contaminated by
subjects’ discussions with one another regarding
the specification they had just reviewed. Finally,
the subjects in this replication each used only
one inspection technique – either checklist or
scenario – for both experimental rounds.

The article describing this replication, like the
other articles, provides a thorough discussion of
threats to internal and external validity. These
authors in particular discuss several key issues
associated with the design and statistical power
of the experiment. They make explicit their
intention to boost statistical power by increasing
the sample size – while simplifying the design.
This replication contains the largest sample size
of all the replications, with a total of 50 subjects
organized into 16 teams.

The unit of analysis underlying the majority of
results reported in this article is the individual
inspector, rather than the inspection team.
Because of this focus, the data available from the
published article alone cannot support a detailed
meta-analysis in conjunction with the published
figures from the other replications. However
group means and standard deviations are
estimated from tables in the article (1), and used
here with a minor concern for the distorting
effects of rounding error. The results of F-tests
performed using individual level data are hardly
comparable with the group level analyses
reported in the other replications.

These researchers found no statistically
significant difference in the detection rate of
individual inspectors associated with the
inspection technique used. The authors comment
that the p-value of .10 associated with this test
suggests that their findings are more similar to
the outcome of the original experiment than the
first replication. In the context of our meta-
analysis, the similarities between the mean
detection rates (to be illustrated later) provide a
more compelling case for claiming this
similarity. Indeed, the author’s own analyses
confirm that results for individual data are not
comparable to the results for team inspection
performance. There are methodological and
statistical grounds for this difference, and the
actual ANOVA results reported by these authors
differ depending on the unit of measurement.

Analysis of the data at the group level
(combining inspectors into teams) reveals no
statistically significant effect for inspection
method. However, the authors comment that the
higher p-values associated with the group level
analysis suggest that their results support the
non-significant method effect uncovered in the
first replication, rather than the result reported in
the original experiment.



The Third Replication
Sandahl, Blomkvist, Karlsson, Krysander,
Lindvall, and Ohlsson (1998) published the third
replication of the experiment. The subjects in
this replication consisted of a sample of 24
undergraduate students in Sweden. These
researchers focused on only three of the
independent variables in the original model
(method, specification, and order). They also
elected to focus on only two inspection
techniques (scenario and checklist).

The randomized factorial design was balanced in
this replication, with each team inspecting both
specifications and using both techniques. The
statistical techniques used to analyze the
experimental data took advantage of the full
factorial design, and differed substantially from
the analysis strategies in the other replications.
However, these authors published a complete
table of detection rates for all teams in the
experiment. This table and the clear explanation
of the research design provided by the authors
permit us to re-analyze the raw detection rates
using a model of our choosing.

The original experimental materials were used,
supplemented with some instructions written in
Swedish and subjects were given access to a
dictionary during the experiment. The authors
characterize their subjects as novice inspectors,
reporting that this experiment represents the first
participation in a requirements inspection for
most of the students. Lack of familiarity with
and a dislike for the notation used in the
experimental materials was also reported by
these subjects. Finally, very few subjects had
driven automobiles with cruise control systems,
which is the focus of one of the requirements
specifications used in these experiments.

The ANOVA table reported for the three main
effects and four interaction effects in the model
shows that none of the effects accounts for a
statistically significant percentage of variability
in the dependent variable. The authors also use a
pair of normal probability plots of these effects
along with a set of pre-specified contrasts, to
interpret trends in the data. They conclude, “the
specification is the most significant explaining
factor of the variance amongst the independent
variables.”

The Fourth Replication
Porter and Votta (1998) performed a replication
of their own experiment using 18 professional
subjects. Their confirmation of the original
experimental results regarding inspection method
is used to bolster the credibility of initial
research results based on graduate student-
subjects. The researchers used a design much
like that of the original experiment.

Because of the restrictions on the ordering of
inspection techniques used and the smaller
sample size of this replication, the number of
inspection teams for each level of each
independent variable is not always equal. The
unbalanced Greco-Latin square design used in
this replication presents some challenges in
assuring that the effect of maturation does not
impact the results.

Given the similarities in design, materials used
and experimental procedures, the authors treat
this replication as a third in the series of
experiments they have conducted in this area.
Recall that the first experiment contained an
internal replication, where each set of 24 subjects
was studied in a separate experimental run.

The findings of this replication with respect to
the inspection method variable, are (as
mentioned above) consistent with the results of
the first experiment. Namely, these researchers
found statistically significant differences in the
defect detection rates of teams using different
inspection methods. However, there were no
statistically significant differences in detection
rates associated with the specification being
inspected. This finding differs from the results of
the original experiment, and all replications
described above.

Combining the Five Experiments
How will the authors of the next replication
reconcile these seemingly contradictory results?
The narrative review of literature in the
introduction will likely focus on the design
adequacy of the preceding replications. If
contradicting results are not totally ignored,
subjective criticisms of study designs may be
offered in order to encourage readers to discount
previous results or modifying their interpretation.

In the case of this series of experiments, the
authors of the 4 replications listed above have
provided thoughtful explanations to reconcile
differences. It is interesting to note however, that



in the final replication, Porter and Votta make no
mention of the other replications whatsoever. By
making the experimental materials available to
other researchers, these authors were obviously
inviting the replications. Given their approach to
sharing experimental materials, it would not be
surprising to hear that the authors of the final
replication were aware of, and perhaps even
helpful to, the authors of the preceding
replications. Yet they do not comment on the
implications associated with lessons learned
from the replications. Why?

The Problem
Where conditions that warrant differential
interpretation of individual replications are
readily obvious, authors typically lack objective
methods for driving that interpretation. The
challenge addressed in this paper is the USE,
rather than dismissmissal of seemingly
contradictory findings. By implication, the
approach in common use today leads each
succeeding author to sort-out the wheat from the
chaff as they attempt to sum-up the state of the
knowledge in the domain under study. This
process of picking out the profound knowledge
among all the scholastic calisthenics is hardly a
scientific process in most applications. If we are
to truly grow the body of knowledge, we must
consider a more scientific (empirically driven)
basis for summing-up (Light and Pillamer 1984)
our collective knowledge.

Combined Tests of Significance
In the development of statistical methods to
support agricultural experiments, a number of
procedures for combining multiple statistical
tests can be found. Among these the work done
by Tippet (1931) is perhaps the earliest instance
of a method for testing the statistical significance
of combined results. Soon after, R.A. Fisher
(1932) and Karl Pearson (1933) independently
derived the same procedure for combing
statistical significance across multiple studies.
This latter method (alternatively called Fisher’s
method or Pearson’s method) uses the equation
below to test the null hypothesis that the
treatment effect in every study is equal to zero.

χ2 = -2 ∑  loge p [1]

When the null hypothesis is true the sampling
distribution of the χ2 calculated above is
approximately distributed as a chi-square
distribution with 2n degrees of freedom, where n

is the number of p-values being combined (Wolf
1988).

Applying Fisher’s method
Table 1. below gives the p-values deriving from
one-way ANOVAs carried out for each of the
replications of the requirements inspection
experiments. The first row contains p-values
associated with differences between inspection
techniques, and the second row contains the p-
values for differences between the specifications.
Each column in the table represents a replication,
with the first column containing the p-values for
the original experiment. (The p-values in the
third column derive from a different unit of
analysis, as described above, and are included
solely for the purpose of illustration).

Table 1. P-values for each experiment
1 2 3 4 5

Method .0016 .77 .10 .8934 .0103
Specification .0014 .003 .01 .0248 .6997

Multiplying the sum of the natural logarithms of
each of the p-values in the first row by –2, we
obtain a test statistic of 27.380 for the Method
effect. The corresponding test statistic for the
Specification effect is 42.079. Comparing these
values with the tabled chi-square value for 2n (or
10) degrees of freedom we find sufficient reason
to reject the null hypothesis at the .05 level of
significance.

The tests carried out above, in rejecting the null
hypothesis for each effect, found that not all
effects are equal to zero. This conclusion
however is not very satisfactory as it tells us very
little about the specific effects. Our omnibus test
does not support a ranking of the 5 sets of
experimental results, and in fact says nothing
about the magnitudes of the effects measured in
each experiment.

Effect Magnitudes
The preferred approach to meta-analyses relies
on quantifying the effect magnitudes for the
results to be combined. This more
methodologically challenging approach is the
primary focus of leading authors in meta-analytic
methodology (e.g., Hedges and Olkin 1985,
Hunter, Schmidt and Jackson 1982). The focus
on effect magnitude, rather than statistical
significance alone, has some intuitive appeal to
many researchers. After all, if some as-yet
undiscovered holy Grail of research methods
could be used to test our hypotheses with 100%



certainty (rather than the probabilistic treatment
we give them now), our next question would
surely be “by how much?” “By how much does
method A improve performance over method
B?” This is a question of effect magnitude, and
by implication a question of cost and benefit. A
million-dollar idea that costs 3 million dollars to
implement is hardly ‘significant.’ The field of
empirical software engineering research must
address the issue of effect magnitude in order to
assure that the results of our research are of
consequence to the field of software engineering.

As Pickard et al (1998) conclude, “combining
study results is not likely to solve all of the
problems encountered in empirical software
engineering studies.” However, the explicit focus
on effect magnitude that meta-analytic methods
bring to a research literature would surely be a
step in the right direction for our field.

Estimating Effect Magnitudes in the
Inspection Experiments
In this section of the paper, a brief and simplistic
meta-analysis is performed using data from the 5
experiments summarized above. The results
presented in this section provide an objective
summary with respect to two of the outcomes
studied in each experiment – the effects of
inspection method and specification on team
detection rate.

One of the basic ways of understanding the
effect of independent variables is to examine
dependent variable means for each level of the
independent variables. The two figures below
provide bar charts for the means of each level of
each of the two independent variables selected
for meta-analysis.

Figure 1. Detection Rates for Inspection Methods

Notice that the bar chart shown in Figure 1
shows very clearly that the 5 experiments differ
substantially in the way the two inspection

methods compare. The scenario method (shown
in black) is obviously associated with a higher
average detection rate in the first and last
experiment. While the third experiment also
shows a higher average for the scenario method
than the checklist method, the difference is very
small. We know from the reports provided by the
authors, that the results of statistical analysis
follow the same pattern.

Figure 2. Detection Rates for Specifications

In the case of Figure 2, we see a pattern of
consistent differences in average detection rate
associated with the two requirements
specifications used in the experiments. The
pattern of results from the statistical tests
conducted by the authors does not necessarily
lead the reader of these articles to this image.

Based on graphical examination of these means,
we might begin to formulate some general
conclusions about the ‘agreement’ or
‘disagreement’ among the reported results.
However, a reliance on central tendency alone,
without an understanding of the impact of
differences in variability may well lead us astray.
Fortunately a method for standardizing the mean
differences is provided, using pooled sample
standard deviations.

The method given in Hedges and Olkin (1985)
for pooling sample standard deviations is shown
in [2] below. Note that the reference to
experimental and control groups can be replaced
with the two conditions of the independent
variables we are examining in this case.

Where:
nE is the sample size of the experimental group
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nC is the sample size of the control group
sE is the sample standard deviation of the
experimental group, and
sC is the sample standard deviation of the control
group

Table 2 (below) lists the means plotted in
Figures 1 and 2, the pooled standard deviations
for each independent variable, and the effect
magnitudes for each variable.

Table 2. Means, Standard Deviations, and Effect
Magnitudes for the 5 experiments.

Porter
et al

(1995)

Fusaro
et al

(1997)

Miller
et al

(1998)

Sandahl
et al

(1998)

Porter &
Votta
(1998)

Means

Scenario 0.60 0.23 0.46 0.29 0.38

Checklist 0.24 0.27 0.44 0.32 0.16

WLMS 0.47 0.30 0.49 0.36 0.28

Cruise 0.33 0.19 0.41 0.23 0.21

Pooled Standard Deviations

Method 0.10 0.10 0.09 0.13 0.09

Specification 0.14 0.07 0.09 0.11 0.13

Effect Sizes

Method 3.541 -0.391 0.225 -0.235 2.420

Specification 0.954 1.522 0.901 1.178 0.525

Relying on the characterization of effect
magnitude conveyed by the standardized mean
differences in the last two rows of Table 2, we
can clearly see the differences among the
outcomes of the 5 experiments. The largest effect
size found in the table, 3.541 indicates that the
difference in detection rate associated with the
method of inspection in the first experiment is
the most pronounced of all differences reported.

The value reported suggests an astonishing
difference between scenario and checklist
methods that represents an advantage for the
scenario method of more than 3.5 standard
deviations. When we look at the means (shown
in the table, as well as in Figure 1) the pattern of
difference is also obvious. Some researchers
provide guidelines for interpreting effect
magnitudes, based on standards deriving from
the field of inquiry (Wolf 1988). While the field
of empirical software engineering research lacks
established standards for effect magnitudes, the
value of 3.5 substantially exceeds any standard

known to this author (a typical standard for a
“large” effect is 0.8).

Based on the average and standard deviation of
the effect sizes, it is possible to construct a
confidence interval for the ‘population effect
size’ if our theory suggests such a parameter
exists. The average and standard deviations for
the effect sizes are given in Table 3, below.

Table 3. Average and Standard Deviations for
Effect Sizes in the 5 experiments.

Average SD
Method 1.11 1.77
Specification 1.02 0.37

The large value of the standard deviation for the
effect sizes associated with inspection method
suggests that the effect varies a great deal among
the replications. The effect for specification
however, seems reasonably stable – though no
explicit criteria is offered to guide this judgment.

The 95 percent confidence interval for the
method effect size ranges from –0.44 to 2.66.
The 95 percent confidence interval for the
specification effect size ranges form 0.69 to 1.34.
The fact that the first confidence interval spans
zero, and that the effect size reported in the first
experiment falls outside this interval gives us
reason to question the interpretability of the
effect sizes for method, as a set. There may be
reasons why combining results for the method
effect could be misleading.

At this point, methods for formally testing
homogeneity can be employed, and a host of
other investigative avenues are available – given
a sufficient sample of experimental results.

Homogeneity of Effect Magnitudes
We have reason to suspect that the effect
magnitudes in this series of experiments do not
all derive from a single sampling distribution of
the ‘population effect magnitude.’ Tests of
homogeneity can be applied to both sets of effect
magnitudes estimated above (one test for the
method effect and a second for the specification
effect).

Wolf (1988) presents a simple chi-square test to
test the homogeneity of effect sizes. The formula
for the test statistic with K-1 degrees of freedom



(where K is the number of effect sizes being
tested) is given in [3] below.
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and N is the total sample size associated with
each effect size (summing across both levels of
the independent variable).

For the method effect in our meta-analysis, the
equation in [3] yields a test statistic of 58.341,
which is statistically significant (p < .000001).
For the specification effect, the test statistic
equals 3.856, which is not statistically
significant.

We therefore conclude, with some confidence
that the effect sizes for the method effect are
heterogeneous across the set of 5 experiments.
The test conducted above does not suggest that a
similar statement can be made for the
specification effect. This presents us with a
rather interesting situation. Is it reasonable for
one effect to be homogeneous, while the other is
not – in the same set of experiments?

No authoritative answer is offered here, but
further analysis (using a larger sample of
empirical results) could help identify
mediating/moderating variables that operate
across the set of studies. Such variables may
impact the method effect without a
corresponding impact on the specification effect,
or vise versa. A brief exploration of some
hypotheses along these lines is provided in the
next section.

Interpreting the Results
Recall that the samples used in the experiments
differed across the set. The initial experiment
was conducted with graduate students enrolled in
a course on formal methods. The final replication
(by two of the original authors) was conducted
using a sample of professional engineers who
were participating in a training seminar. The
three remaining replications were all conducted
using undergraduates.

One hypothesis that could explain the differences
in the results reported above centers around the
subjects’ familiarity with the notation used in the
requirements specifications. One might argue
that a group of graduate students enrolled in a
formal methods course would have the greatest
degree of facility with the specification language
– such formalisms are likely to be a major theme
in the course. Furthermore, the authors of the
final replication report that the specification
language is in use in portions of the organization
from which their subjects were drawn. In
contrast, several mentions are made in the other
articles regarding the students dislike for the
specification language. Facility with the
specification language might be a mediating
variable worth investigating.

Another observation to be made about the
different experiments lies in the differences in
familiarity with the software domains used in the
experiment, as reported by the authors. College
students in Italy and Sweden who have not
driven an automobile equipped with cruise
control may well have a different experience
from graduate students and software
professionals in the United States. Familiarity
with the product domain may be a moderating
variable worth investigating.

Each of the replications reported in this paper
provides thorough discussions of validity and
generalizability issues. Several of the authors
used questionnaires to assess subjects’ reactions
to the experiment to assess hypotheses like the
ones mentioned above. Further data collection
and replication of the experiment will benefit
from these insights as well.

Using these Results
This paper makes no attempt to provide the final
word on the interpretation of the set of results
discussed above. Rather, the analyses and
discussions above tend to open the door for
additional, focused, investigation of the effects
under study. Using revised versions of the
questionnaires offered by some of the
researchers, the next replication could focus on
collecting data that might explain the differences
highlighted here. The estimates for effect
magnitudes provided here can also help to set
quantitative expectations for the effects to be
observed in future research in this area.



Conclusions
Meta-analysis, or the analysis of analyses, can
support investigations of important hypotheses
and provide researchers with a powerful way to
quantitatively summarize a field of inquiry.
While the techniques described in this paper can
be used to aggregate a set of existing empirical
results, these methods also provide ways of
building beyond the scope of individual research
designs. By incorporating new variables into the
analysis, based on conditions reported in the
original studies, the meta-analyst can look
beyond the set of independent variables included
in the previous research. Rather than a technique
for uncovering the ultimate verdict on a popular
research hypothesis, this paper strives to
illustrate how meta-analysis can be used to build
upon existing results and focus future inquiry.

Notes
1. Table 11, page 54 of Miller, Wood and Roper
(1998) contains a listing of sample sizes, means
and standard deviations for the crosstabulation of
technique by specification. The effect size
estimated here is based on means and standard
deviations of each level of each variable,
computed across (rather than within) each level
of the other variable. Means are simply estimated
by multiplying each tabled mean (in the article)
by it’s associated sample size, then deriving new
means using the totals and sample sizes in
combination. The pooled standard deviation is
computed using formula [2] above, pooling two
sample standard deviations at a time.
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