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Abstract

Statistical power is an inherent part of empirical studies that employ significance testing and is essential for the planning of studies, for the

interpretation of study results, and for the validity of study conclusions. This paper reports a quantitative assessment of the statistical power of

empirical software engineering research based on the 103 papers on controlled experiments (of a total of 5,453 papers) published in nine major

software engineering journals and three conference proceedings in the decade 1993–2002. The results show that the statistical power of software

engineering experiments falls substantially below accepted norms as well as the levels found in the related discipline of information systems

research. Given this study’s findings, additional attention must be directed to the adequacy of sample sizes and research designs to ensure

acceptable levels of statistical power. Furthermore, the current reporting of significance tests should be enhanced by also reporting effect sizes and

confidence intervals.
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1. Introduction

An important use of statistical significance testing in

empirical software engineering (ESE) research is to test

hypotheses in controlled experiments. An important com-

ponent of such testing is the notion of statistical power, which

is defined as the probability that a statistical test will correctly

reject the null hypothesis [12]. A test without sufficient

statistical power will not be able to provide the researcher

with enough information to draw conclusions regarding the

acceptance or rejection of the null hypothesis.

Knowledge of statistical power can influence both the

planning, execution and results of empirical research. If the

power of statistical tests is weak, the probability of finding

significant effects is small, and the outcomes of the study will

likely be insignificant. Furthermore, if the study fails to provide

information about the statistical power of its tests, we cannot

determine whether the insignificant results were due to

insufficient power or if the phenomenon actually did not
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exist. This will inevitably lead to misinterpretation of the

outcomes of the study.

Thus, failure to provide an adequate level of statistical

power has implications for both the execution and outcome of

research: “If resources are limited and preclude attaining

a satisfactory level of statistical power, the research is probably

not worth the time, effort, and cost of inferential statistics”

([1], p. 96).

These considerations have prompted researchers in dis-

ciplines such as social and abnormal psychology [8,10,38],

applied psychology [6,30], education [3], communication [7],

behavioral accounting [2], marketing [37], management

[5,16,25,30], international business [4], and information

systems research [1,36] to determine the post hoc statistical

power of their respective literature.

Within software engineering (SE), Miller et al. [29] discussed

the role of statistical power analysis in ESE research, suggesting

that there is inadequate reporting and attention afforded to

statistical power in the ESE literature, which leads to potentially

flawed research designs and questionable validity of results:

Any researcher not undertaking a power analysis of their

experiment has no idea of the role that luck or fate is playing

with their work and consequently neither does the Software

Engineering community (p. 286).
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Although Miller et al. [29] made an important contribution

in directing attention to the concept of statistical power in ESE

research and how it can be incorporated within the

experimental design process, they based their arguments on

an informal review of the literature. There is, therefore, a need

to conduct more formal investigations, similar to that of other

disciplines, of the state-of-the-practice in ESE research with

respect to statistical power.

The purpose of this paper is thus (1) to perform a systematic

review and quantitative assessment of the statistical power of

ESE research in a sample of published controlled experiments,

(2) to discuss the implications of these findings, and (3) to

discuss techniques that ESE researchers can use to increase the

statistical power of their studies in order to improve the quality

and validity of ESE research.

In Section 2, we present a brief background on statistical

power and its determinants. In Section 3, we provide an

overview of the research method employed to review and

determine the statistical power in controlled software engin-

eering experiments. Section 4 reports the results of the review,

while Section 5 provides a discussion of the results, their

implications, and some recommendations that should improve

the quality and validity of future ESE research. Section 6

provides some concluding comments.
2. Background: statistical power

2.1. Power and errors in statistical inference

According to Neyman and Pearson’s [31,32] method of

statistical inference , testing hypotheses requires that we specify

an acceptable level of statistical error, that is, the risk we are

willing to take regarding the correctness of our decisions.

Regardless of which decision rule we select, there are generally

twoways of being correct and twoways ofmaking an error in the

choice between the null (H0) and the alternate (HA) hypotheses

(see Table 1).

A Type I error is the error made when H0 (the tested

hypothesis) is wrongly rejected. In other words, a Type I error

is committed whenever the sample results fall into the rejection

region, even though H0 is true. Conventionally, the probability

of committing a Type I error is represented by the level of

statistical significance, denoted by the lowercase Greek letter

alpha (a). Conversely, the probability of being correct, given

that H0 is true is equal to 1Ka.

The probability of making an error of Type II, also known as

beta (b), is the probability of failing to reject the null hypothesis
Table 1

Ways of being correct or making an error when choosing between two

competing hypotheses

Unknown true state of nature

H0: No difference HA: difference

Statistical

conclusion

Accept H0 1Ka: Correct b: Type II error

Reject H0 a: Type I error 1Kb: Correct (power)
when it is actually false. Thus, when a sample result does not

fall into the rejection region, even though some HA is true, we

are led to make a Type II error. Consequently, the probability

of correctly rejecting the null hypothesis, i.e. the probability of

making a correct decision given that HA is true, is 1Kb; the

power of the statistical test. It is literally the probability of

finding out that H0 is wrong, given the decision rule and the

true HA.

As can be seen from Table 1, statistical power is particularly

important when there is a true difference in the population. In

this situation, when the phenomenon actually exists, the

statistical test must be powerful enough to detect it. If the

test reveals a non-significant result in this case, the conclusion

of ‘no effect’ would be misleading and we would thus be

committing a Type II error.

Traditionally, a is set to .05 to guard against Type I error,

while b is set to .20 to guard against Type II error. Accepting

these conventions also means that we are guarded four times

more against Type I errors than we are against Type II errors.

However, the distribution of risk between Type I and Type II

errors need to be appropriate to the situation at hand. An

illustrative case is made by Mazen et al. [25] regarding the ill-

fated Challenger space shuttle, in which NASA officials faced a

choice between two types of assumptions, each with a

distinctive cost:

The first [assumption] was that the shuttle was unsafe to fly

because the performance of the O-ring used in the rocket-

booster was different from that used on previous missions.

The second was that the shuttle was safe to fly because there

would be no difference between the performance of the

O-rings in this and previous missions. If the mission had

been aborted and the O-ring had indeed been functional,

Type I error would have been committed. Obviously the cost

of the Type II error, launching with a defective O-ring, was

much greater than the cost that would have been incurred

with Type I error (ibid, p. 370).
2.2. Determinants of statistical power

The fundamental approach to statistical power analysis was

established by Cohen [12], who described the relationships

among the four variables involved in statistical inference:

significance criterion (a), sample size (N), population effect

size (ES), and statistical power (1Kb). For any statistical

model, these relationships are such that each is a function of the

other three. Thus, we can determine the power for any

statistical test, given a, N, and ES (Table 2).

The appropriate sections of Cohen [12] or Kraemer and

Thiemann [21] should be consulted for details on how to

perform statistical power analysis. Specifically, Chapter 12 in

Cohen’s book provides the computational procedures that are

used to determine the power and sample size values of the

commonly used power tables and power charts.

As mentioned, the significant criterion (a) is the probability

of incorrectly rejecting the null hypothesis. Power increases



Table 2

Determinants of statistical power

Significance criterion (a) The chosen risk of committing a Type I error

(e.g. aZ0.05)

Sample size (N) The total number of subjects included in the

analysis of data

Effect size (ES) The magnitude of the effect under the alternate

hypothesis (e.g. dZ0.5)

β α

1- β

Reject H0Accept H0

Fig. 1. Statistical power and the probability of Type I and Type II error in

testing a directional hypothesis.
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with larger a. A small a will, thus, result in relatively small

power. The directionality of the significance criterion also

affects the power of a statistical test. A non-directional two-

tailed test will have lower power than a directional one-tailed

test at the same a, provided that the sample result is in the

predicted direction. Note that a directional test has no power to

detect effects in the direction opposite to the one predicted (see

Fig. 1).

The second determinant of power is sample size (N). At any

given a level, increased sample size reduces the standard

deviations of the sampling distributions for H0 and HA. This

reduction results in less overlap of the distributions, increased

precision, and thus increased power (see Fig. 1).

The final determinant of power is the effect size (ES), which

refers to the true size of the difference between H0 and HA (the
Table 3

Effect-size indexes and their values for small, medium, and large effects for the mo

Statistical test Effect-size index

1. The t-test for the difference between two

independent means

dZ ðmAKmBÞ=s

2. The t-test for the significance of a product-

moment correlation coefficient, r

r

3. The test for the difference between two

independent rs

qZzAKzB

4. The normal curve test for the difference

between two independent proportions

hZfAKfB

5. The chi-square test for goodness of fit (one-

way) or association in two-way contingency

tables

wZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
iZ1

ðP1iKP0iÞ
2=P0i

s

6. One-way analysis of variance fZsm/s

7. Multiple and multiple partial correlation f 2ZR2=ð1KR2Þ
null hypothesis is that the effect size is 0), i.e. the degree to

which the phenomenon is present in the population. The larger

the effect size, the greater the probability that the effect will be

detected and the null hypothesis rejected.

The nature of the effect size will vary from one statistical

procedure to the next (e.g. a standardized mean difference or a

correlation coefficient), but its function in power analysis is the

same in all procedures. Thus, each statistical test has its own

scale-free and continuous effect size index, ranging upward

from zero (see Table 3). So, whereas p values reveal whether a

finding is statistically significant, effect size indices are

measures of practical significance or meaningfulness. Inter-

preting effect sizes is thus critical, because it is possible for a

finding to be statistically significant but not meaningful, and

vice versa [13,23].

Effect size is probably the most difficult aspect of power

analysis to specify or estimate. It can sometimes be determined

by a critical assessment of prior empirical research in the area.

However, due to a lack of empirical studies and cumulative

findings in software engineering, the best option for a

reasonable estimation of effect size is expert judgment [29].

Cohen [12] has facilitated such estimation of effect size.

Based on a review of prior behavioral research, he developed

operational definitions of three levels of effect sizes (small,

medium, and large) with different quantitative levels for the

different types of statistical test. In information systems (IS)

research and in the behavioral sciences, the operationalized

definitions of the effect size for each of these categories have

become a research standard for the most commonly used

statistical tests [1,36].

Cohen established these conventions in 1977 [11], and they

have been fixed ever since. His intent was that “medium [effect

size] represents an effect likely to be visible to the naked eye of

a careful observer. small [effect size] to be noticeably smaller

than medium but not so small as to be trivial, and. large

[effect size] to be the same distance above medium as small

was below it” ([13],p.156). Table 3 gives the definition of the

ES indices and the corresponding ES values for the most

common statistical tests. These ES values enable the

comparison of power levels across studies in this survey, as
st common statistical tests ([13], p. 157)

Effect size

Small Medium Large

.20 .50 .80

.10 .30 .50

.10 .30 .50

.20 .50 .80

.10 .30 .50

.10 .25 .40

.02 .15 .35
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well as across surveys conducted in other disciplines. As an

example, the ES index for the t-test of the difference between

independent means, d, is the difference expressed in units of the

within-population standard deviation. For this test, the small,

medium, and large ESs are, respectively, dZ.20, .50, and .80.

Thus, an operationally defined medium difference between

means is half a standard deviation.
3. Research method

We assessed all the 103 papers on controlled experiments

(of a total of 5,453 papers), identified by Sjøberg et al. [40],

published in nine major software engineering journals and

three conference proceedings during the decade 1993–2002

(Table 4). These journals and conference proceedings were

chosen because they were considered to be representative of

ESE research. Furthermore, since controlled experiments are

empirical studies that employ inferential statistics, they were

considered a relevant sample in this study.

Since the term ‘experiment’ is used inconsistently in the

software engineering community (often being used synony-

mously with empirical study), we use the term ‘controlled

experiment’. A study was defined as a controlled experiment if

individuals or teams (the experimental units) conducted one or

more software engineering tasks for the sake of comparing

different populations, processes, methods, techniques,

languages, or tools (the treatments). We did not distinguish

between randomized experiments and quasi-experiments in

this study, because both designs are relevant to ESE

experimentation.

We excluded several types of study that share certain

characteristics with experiments. While these might be highly

relevant for the field, they are not controlled experiments as

defined above. Thus, we excluded correlation studies, studies

that are based solely on calculations on existing data, and
Table 4

Distribution of ESE studies employing controlled experiments: Jan. 1993–Dec.

2002

Journal/conference proceeding Number Percent

Journal of Systems and Software (JSS) 24 23.3

Empirical Software Engineering (EMSE) 22 21.4

IEEE Transactions on Software Engineering

(TSE)

17 16.5

International Conference on Software Engineer-

ing (ICSE)

12 11.7

IEEE International Symposium on Software

Metrics (METRICS)

10 9.7

Information and Software Technology (IST) 8 7.8

IEEE Software 4 3.9

IEEE International Symposium on Empirical

Software Engineering (ISESE)

3 2.9

Software Maintenance and Evolution (SME) 2 1.9

ACM Transactions on Software Engineering

(TOSEM)

1 1.0

Software: Practice and Experience (SP&E) – –

IEEE Computer – –

Total 103 100
simulated team evaluations that use data for individuals.

Studies that used projects or companies as treatment groups, in

which data was collected at several levels (treatment defined,

but no experimental unit defined) were also excluded because

we consider these to be multiple case studies [43].

In order to identify and extract controlled experiments,

one researcher systematically read the titles and abstracts of the

5,453 scientific articles. Excluded from the search were

editorials, prefaces, article summaries, interviews, news,

reviews, correspondence, discussions, comments, reader’s

letters and summaries of tutorials, workshops, panels and

poster sessions. If it was unclear from the title or abstract

whether a controlled experiment was described, the complete

article was read by two researchers.

These criteria were met by 103 articles, which reported 113

experiments (Table 4). All of them involved a number of

significance tests. However, not all of these were equally

relevant to the hypotheses of the studies. In fact, it was not

always clear from the reporting of the studies which hypotheses

were actually tested or which significance tests corresponded to

which hypotheses.

The first two authors read all the 103 articles in detail and

made separate extractions of the power data. Based on these

two data sets, all three authors reviewed all tests in all

experiments to reach a consensus on which experiments and

tests to include. For 14 experiments, no statistical analysis was

performed and for seven experiments, we did not manage to

track which tests answered which hypothesis or research

question. Five experiments were reported in more than one

article. In these cases, we included the one most recently

published. This assessment resulted in 78 articles (Fig. 2). Of

these articles, we identified 459 statistical tests corresponding

to the main hypotheses or research questions of 92

experiments.

Similar to the methodology used by Baroudi and Orlikowski

for MIS research [1] for MIS research, both parametric and

nonparametric tests of the major hypotheses were included in

this study. Table 5 shows the distribution of the 459 statistical

tests in the final sample for which statistical power could be

determined post hoc. The main parametric tests were Analysis

of Variance (ANOVA) and t-tests. The main nonparametric
All articles
1993 - 2002

n = 5453

Not controlled
experiments

n = 5350

Controlled
experiments

n = 103

Excluded*
n = 25

Analyzed
n = 78

Fig. 2. Results of the literature review. *25 articles were excluded due to

duplicate reporting, no statistical analysis or unspecified statistical tests



Table 6

Distribution of sample sizes (observations) occurring in 92 controlled SE

experiments

Statistical test Mean Std. Min Median Max

ANOVA 79 118 6 65 800

t-Test 34 29 5 30 136

Wilcoxon 40 23 10 34 78

Mann–Whitney 34 13 6 32 66

Fisher’s exact test 40 27 16 20 74

Chi-square 119 180 10 30 531

Kruskall–Wallis 26 19 15 15 69

Table 5

Distribution of statistical tests employed in 92 controlled SE experiments

Statistical test Number Percent

ANOVA 179 39.0

t-test 117 25.5

Wilcoxon 41 8.9

Mann–Whitney 39 8.5

Fisher’s exact test 15 3.3

Chi-square 14 3.1

Kruskall–Wallis 8 1.7

Other tests 46 10.0

Total 459 100
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tests were Wilcoxon, Mann–Whitney, Fisher’s exact test, Chi-

square, and Kruskall–Wallis. Other tests include Tukey’s

pairwise comparison (18), nonparametric rank-sum test (6),

Poisson (3), regression (3), Mood’s median test (2), proportion

(2), and Spearman rank correlation (2).

The power of the nonparametric testswas determined by using

analogous parametric tests where appropriate [9,10,18,21]. For

example, the t-test formeans approximates to theMann–Whitney

U test and the Wilcoxon rank test, the parametric F test to the

Kruskal–Wallis H test, and Pearson’s r to the Spearman Rank

Correlation. Chi-square approximations were not needed since

Cohen provided separate tables to determine its power.

Following the post hoc method, the power of each test was

determined by using the stated sample size, setting the a level

to the conventional level of .05, and choosing the nondirec-

tional critical region for all power computations. Furthermore,

power was calculated in relation to Cohen’s definitions of

small, medium, and large effect sizes [12]. This is similar to

that of past surveys of statistical power in other disciplines,

such as IS research (e.g. [1,36]). All power calculations were

made using SamplePower 2.0 from SPSS.1

4. Results

The 78 articles selected for this study with available data for

calculating power yielded 459 statistical tests of the major

hypotheses being investigated in the 92 reported controlled

experiments. Table 6 shows the distribution of sample size for

the experiments by type of statistical test. On average, the

statistical tests covered 55 observations. However, the high

standard deviation for several of the tests reveals a large

amount of variation in sample sizes. For example, among the

ANOVA subsample the average sample size was 79, yet 165 of

the 179 tests examined had an average sample size of 50, while

the remaining 14 tests had an average of 450. Similarly, for the

Chi-square subsample the average sample size was 126.

However, two of the tests had a sample size of 531

observations, while the average sample size of the remaining

12 tests was 58 observations. Also, in the group of other tests,

with an average sample size of 39 observations, the three

regression tests had a sample size of 242 observations, while
1 See www.spss.com/samplepower/
the average sample size for the remaining 43 tests was 25

observations.

Several of the experiments surveyed in this study used

within-subject designs so that each subject contributed

several observations to the sample size of a statistical test.

The most extreme cases were as follows: one study that

used 800 observations from 100 subjects for an ANOVA

test; another study that used 564 observations from 94

subjects for an ANOVA test; and yet another study that used

531 observations from 266 subjects in a Chi-square test. The

latter study was also the one with the highest number of

subjects in our sample.

So, while the average sample size of all 459 statistical

tests in this study was 55 observations, with a standard

deviation of 87, the median sample size was as low as 34

observations. Correspondingly, the average number of

subjects in the surveyed experiments was 48, with a

standard deviation of 51 and a median of 30. As a

comparison, the average sample size of all tests in

Rademacher’s power study in IS research was 179 subjects

(with a standard deviation of 196) [36].

Table 7 presents the power distribution of the 459 statistical

tests in the 92 experiments using Cohen’s conventional values

for small, medium, and large effect sizes (see Table 3).

Small effect size: The average statistical power of the tests

when we assumed small effect sizes was as low as .11. This

means that if the phenomena being investigated exhibit a small

effect size, then, on average, the SE studies examined have

only a one in ten chance of detecting them. Table 7 shows that

only one test is above the .80 conventional power level and that

97% have a less than 50% chance of detecting significant

findings.

Medium effect size: When we assume medium effect sizes,

the average statistical power of the tests increases to .36.

Although this is an improvement over the .11 power level

achieved by tests of small effect sizes, the studies only have, on

average, just about a one-third chance of detecting phenomena

exhibiting a medium effect size. Table 7 indicates that only 6%

of the tests examined achieve the conventional .80 power level

or better, and that 78% of the tests have a less than 50% chance

of detecting significant results.

Large effect size: Assuming large effect sizes, the average

statistical power of the tests increases further, to .63. This

means that, on average, the studies still have slightly less than a
Other 38 57 10 16 242

Total 55 87 5 34 800

http://www.spss.com/samplepower/


Table 7

Frequency and cumulative percentage distribution of power in 92 controlled SE

experiments

Power

level

Small effect size Medium effect size Large effect size

Freq. Cum. % Freq. Cum. % Freq. Cum. %

.91–.99 – – 18 100 69 100

.81–.90 1 100 11 96 75 85

.71–.80 – 100 14 94 49 69

.61–.70 2 100 13 91 70 58

.51–.60 9 99 44 88 58 43

.41–.50 2 97 50 78 21 30

.31–.40 – 97 76 67 43 25

.21–.30 13 97 107 51 43 16

.11–.20 120 94 94 27 31 7

.00–.10 312 68 32 7 – –

Total 459 – 459 – 459 –

Average

power

0.11 0.36 0.63
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two-thirds chance of detecting their phenomena. As can be

seen from Table 7, 31% of the tests attain or exceed the .80

power level, and 70% obtain a greater than 50% chance of

correctly rejecting their null hypotheses. Thus, even when we

assume that the effect being studied is so large as to make

statistical testing unnecessary, as much as 69% of the tests fall

below the .80 level.

Table 8 presents the power of the studies by type of

statistical test employed. None of the tests reaches the

conventional .80 power level on average; not even when we

assume large effect sizes. ANOVA and t-tests account for

almost two-thirds of all statistical analyses in controlled SE

experiments, yet their mean power level for detecting large

effect sizes is only .67 and .61, respectively, while the

corresponding power levels assuming medium effect sizes

are as low as .40 and .33.

In summary, this quantitative assessment revealed that

controlled SE experiments, on average, only have a two-thirds

chance of detecting phenomena with large effect sizes. The
Table 8

Power analysis by type of statistical test in 92 controlled SE experiments

Statistical

test

Small effect size Medium effect size Large effect size

Means Std.

Dev.

Means Std.

Dev.

Means Std.

Dev.

ANOVA .12 .11 .40 .24 .67 .28

t-Test .10 .03 .33 .17 .61 .23

Wilcoxon .12 .05 .46 .24 .74 .24

Mann–

Whitney

.09 .02 .29 .10 .59 .19

Fisher’s

exact test

.06 .05 .25 .22 .49 .34

Chi-square .18 .20 .43 .33 .64 .28

Kruskall–

Wallis

.09 .02 .31 .15 .59 .28

Other .10 .11 .26 .25 .44 .24
corresponding chance of detecting phenomena with medium

effect sizes is around one in three, while there is only a one in

10 chance of detecting small effect sizes.

Finally, a qualitative assessment of the treatment of power

within the sampled studies revealed an interesting pattern. Of

the 78 papers in our sample, 12 discussed the statistical power

associated with the testing of null hypotheses. Of these studies,

nine elaborated on the specific procedures for determining the

statistical power of tests. Three of the nine performed a priori

power analysis, while six performed the analysis a posteriori.

Only one of the papers that performed an a priori power analysis

used it to guide the choice of sample size. In this case, the authors

explicitly stated that they were only interested in large effect

sizes and that they regarded a power level of .5 as sufficient. Still,

they included so few subjects in the experiment that the average

power to detect a large effect size of their statistical tests was as

low as .28. Of the six papers that performed a posteriori power

analysis, two gave recommendations for the necessary sample

sizes in future replication studies. Thus, overall, 84.6% of the

sampled experimental studies did not reference the statistical

power of their significance tests.

5. Discussion

In this section, we discuss the implications of the findings in

this study for the interpretation of experimental SE research.

We suggest several ways to increase statistical power, and we

provide recommendations for future research. First, however,

we compare the main findings in the current study with the

related discipline of IS research.

5.1. Comparison with IS research

We compared the results of the current study with two

corresponding reviews of the statistical power levels in IS

research [1,36]. In the former study, 63 statistically-based

studies were identified from the issues of Communications of

the ACM, Decision Sciences, Management Science, and MIS

Quarterly over the five-year period from January 1980 to July

1985. The final sample included 149 statistical tests from 57

studies. In the latter study, 65 statistically-based studies that

employed 167 statistical tests were selected from MIS

Quarterly over the seven-year period from January 1990 to

September 1997. In comparison, the current study included 92

controlled experiments that comprised 459 statistical tests

published in nine major software engineering journals and

three conference proceedings during the decade 1993–2002

(see Tables 4 and 5).

Statistical power in the two IS research studies and the

current SE research study for small, medium, and large

effect sizes are compared in Table 9. The results of the two

IS studies indicate that the power levels for all effect sizes

have improved substantially in the decade between the two

studies. Furthermore, the results show that IS research now

meets the desired power level of .80 specified by Cohen [12]

for medium effect sizes, which is assumed as the target level

by most IS researchers [36].



Table 9

Comparison of current survey with statistical power values in prior IS research

Related IS

study

No. of

articles

Means for different effect-size assumptions

Small Medium Large

[1] 57 .19 .60 .83

[36] 65 .34 .81 .96

Current study 78 .11 .36 .63
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The results of the current study show that the power of

experimental SE research falls markedly below the levels

attained by IS research. One reason for this difference might be

that the IS field has benefited from the early power review of

Baroudi and Orlikowski [1], and thus explicit attention has

been paid to statistical power, which has paid off with

contemporary research displaying improved power levels, as

demonstrated by Rademacher [36]. What is particularly

worrying for SE research is that the power level displayed by

the current study not only falls markedly below the level of

1999 study by Rademacher, but that it also falls markedly

below the level of the 1989 study by Baroudi and Orlikowski.

While medium effect sizes are considered the target level

in IS research [36], and the average power to detect these

effect sizes are .81 in IS research, Table 7 indicates that

only 6% of the tests examined in the current research

achieve this level, and that as much as 78% of the tests in

the current research have a less than 50% chance of

detecting significant results for medium effects. Unless it can

be demonstrated that medium (and large) effect sizes are

irrelevant to SE research, this should be a cause for concern

for SE researchers and practitioners. Consequently, we

should explore in more depth what constitutes meaningful

effect sizes within SE research, in order to establish specific

SE conventions.

A comparison of power data for the two most popular types

of statistical test in experimental SE research, with the

corresponding tests in IS research, is provided in Table 10.

As can be seen from Table 5, these tests (ANOVA and t-test)

constitute about two-thirds of the statistical tests in our sample.

The results show that, on average, IS research employ sample
Table 10

Comparison of the two most popular types of tests in the current survey with

corresponding power data for IS research

Statistical test [1] [36] Current study

ANOVA (medium effect size)

Sample sizea 64 136 79

Power (mean value) .56 .82 .40

Power (std. deviation) .30 .19 .24

t-test (medium effect size)

Sample sizea 45 70 34

Power (mean value) .53 .74 .33

Power (std. deviation) .27 .18 .17

a Note that sample size in the two IS studies refers to subjects, while in the

current study it refers to observations.
sizes that are twice as large as those found in SE research for

these tests. In fact, the situation is a little worse than that, since

observations are used as the sample size in the current study,

while the IS studies refer to subjects. Moreover, the power

levels of the current study to detect medium effect sizes are

only about half of the corresponding power levels of IS

research.

5.2. Implications for interpreting experimental SE research

An important finding of this study is that explicit

consideration of power issues, e.g. in terms of discussion,

use, and reporting of statistical power analysis, in

experimental SE research is very limited. As mentioned

above, 15.4% of the papers discussed statistical power in

relation to their testing of the null hypothesis, but in only

one paper did the authors perform an a priori power

analysis. In addition, and perhaps as a consequence, the post

hoc power analyses showed that, overall, the studies

examined had low statistical power. Even for large effect

sizes, as much as 69% of the tests fell below the .80 level.

This implies that considerations of statistical power are

underemphasized in experimental SE research.

Two major issues that are particularly important for

experimental SE research arise from this underemphasis of

statistical power: (1) the interpretation of results from

individual studies and (2) the interpretation of results from

the combination or replication of empirical studies [22,24,

27,29,35]. As mentioned above, a test without sufficient

statistical power will not provide the researcher with enough

information to draw conclusions regarding the acceptance or

rejection of the null hypothesis. If no effects are detected in

this situation, researchers should not conclude that the

phenomenon does not exist. Rather, they should report that

no significant findings were demonstrated in their study, and

that this may be due to the low statistical power associated

with their tests.

Another issue regarding the interpretation of results from

individual studies with low power is the use of multiple tests. In

this case, which included 91.3% of the experiments, the

probability of obtaining at least one statistically significant

effect might be large, even if the probability that any specific

effect is statistically significant is small (see [28]). As an

example, recall from Table 7 that the probability that a medium

effect size is statistically significant is only .36. At the same

time, the 84 experiments in this study with more than one test

had an average of 5.4 tests per experiment. Thus, with this

number of tests, we would expect about two statistically

significant results for medium effect sizes in each of the

experiments in this study. So, although power is sufficient for

attaining statistical significance somewhere, it is not sufficient

for any specific test. Again, this inadequate power for testing

specific effects makes it difficult to interpret properly the

results of any single study. It would be helpful, therefore, if

researchers reporting results from statistical hypothesis testing

were to distinguish between the tests of primary and secondary

hypotheses.
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Low statistical power has also a substantial impact on the

ability to replicate experimental studies based on null

hypothesis testing. Ottenbacher nicely demonstrates an

apparent paradox that results from the replication of such

low powered studies [34], showing that:

.the more often we are well guided by theory and prior

observation, but conduct a low power study, the more we

decrease the probability of replication! Thus a literature

with low statistical power is not only committing a passive

error, but can actually contribute to diverting attention and

resources in unproductive directions (ibid, p.273).

Consequently, the tendency to underpower SE studies

makes replication and meta-analysis troublesome, and will

tend to produce an inconsistent body of literature, thus

hindering the advancement of knowledge.

The results of our review also raise another important issue:

the interpretation of studies with very high levels of power.

Some of the studies in this review employed large sample sizes,

ranging from 400 to 800 observations. This poses a problem for

interpretation, because virtually any study can be made to show

significant results if the sample size is large enough, regardless

of how small the true effect size may be [18]. Hence, it is of

particular importance that researchers who report statistically

significant results from studies with very large sample sizes, or

with very large power levels, also report the corresponding

effect sizes. This will put the reader in a better position to

interpret the results and judge whether the statistically

significant findings have practical importance.

5.3. Ways to increase statistical power

Increase the size of the sample: The most obvious way to

increase the statistical power of a study is to increase the size of

the sample. However, there is invariably some cost in terms of

time, effort, and money per subject that must be considered.

With this in mind, most researchers try to use the smallest

number of subjects necessary to have a reasonable chance of

obtaining significant results with a meaningful effect size [9].

However, while using only a few subjects may result in

meaningful effects not being detected, trivial effects may show

up as significant results when the sample size is very large.

Consequently, if the researcher wants significance to reflect a

sizable effect and also wants to avoid being led into a blind

alley by a significant result, attention should be paid to both

aspects of sample size. As a general rule, the sample size

should be large enough to give confidence that meaningful

effects will be detected. At the same time, the reporting of

effect sizes will ensure that trivial associations will be detected

even though they might be statistically significant.

Relax the significance criterion: Power can also be

increased by relaxing the significance criterion. This approach

is not common, however, because of widespread concern about

keeping Type I errors to a fixed, low level of, e.g. .01 or .05.

Still, as the example of the Challenger space shuttle showed,

the significance criterion and the power level should be
determined by the relative seriousness of Type I and Type II

errors. Thus, researchers should be aware of the costs of both

types of errors when setting the alpha and power levels, and

must make sure that they explain the consequences of the

raised probability of Type I errors if they relax the significance

criterion. When possible, researchers should analyze the

relative consequences of Type I and Type II errors for the

specific treatment situation under investigation.

Choose powerful statistical tests: In general, parametric

tests are more powerful than their analogous nonparametric

tests [21]. Thus, the power of a study can most often be

increased by choosing an appropriate parametric test. It is

important to note, however, that these tests make a number of

assumptions about the properties (parameters) of the popu-

lations, such as the mean and standard deviation, from which

samples are drawn. On the other hand, given the empirical

evidence for the robustness and enhanced power provided by

parametric tests, “researchers are encouraged to use the

parametric test most appropriate for their study and resort to

non-parametric procedures only in the rare case of extreme

assumption violations” ([1], p. 98).

The power of a test can also be increased by retaining as

much information as possible about the dependent variable. In

general, tests comparing data categorized into groups are less

powerful than tests using data measured along a continuum. As

Baroudi and Orlikowski recommend [1], “statistics that permit

continuous data to be analyzed in continuous form, such as

regression, should be used over those that require data to be

divided in groups, such as the analysis of variance” (p. 99).

Furthermore, as we have already noted, the direction of the

significance criterion also affects the power of a statistical test.

A directional, one-tailed test will yield higher power than a

non-directional two-tailed test at the same alpha level,

provided that the sample results are in the predicted direction.

Note, however, that a directional test has no power to detect

effects in the direction opposite to that predicted. Thus, the

primary guide for the researcher deciding whether a hypothesis

should be tested with a directional or non-directional test must

be the comparative term of the original research question.

Reduce measurement error and subject heterogeneity: The

larger the variance on the scores within the treatment and control

groups, the smaller the effect size and the power will be. One

source of such variance is measurement error, i.e. variability in

scores that is unrelated to the characteristic being measured.

Another source is the heterogeneity of subjects on the measure

[23]. Thus, anything thatmakes the population standard deviation

small will increase power, other things being equal.

In general, subject heterogeneity can be reduced by

selecting or developing measures that do not discriminate

strongly among subjects. If the measure, nevertheless, does

respond substantially to subject differences, these could be

reduced statistically during data analysis. To reduce such

variance, and thus increase statistical power, the researcher can

utilize a repeated measures or paired subjects design, or a

factorial design that employs blocking, stratification, or

matching criteria [39]. Researchers can also reduce subject
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heterogeneity by employing a research design that covaries a

pretest measure with the dependent variable [14].

Measurement error can be reduced by exercising careful

control over experimental subjects and conditions. In addition,

the researcher can use some form of aggregation, or averaging,

of multiple measures that contain errors individually, to reduce

the influence of error on the composite scores [33,41]. So,

whenever applicable, the researcher should use reliable, multi-

item measures to increase power [15].

Balance groups: The statistical power of a study is based less

on the total number of subjects involved than on the number in

each group or cell within the design. In addition, because the

power of a test with unequal group sizes is estimated using the

harmonic mean [12], the ‘effective’ group size is skewed toward

the size of the group with the fewest subjects. Thus, with a fixed

number of subjects, maximal statistical power is attained when

they are divided equally into treatment and control groups [23].

Researchers should, therefore, try to obtain equal, or in the case of

factorial designs, proportional, group sizes rather than getting a

large sample size that results in there being unequal or

disproportional groups [1].

Investigate only relevant variables: One of the best

strategies for increasing statistical power is to use theory and

prior research to identify those variables that are most likely

to have an effect [23]. Careful selection of which

independent variables to include and which variables to

exclude is, thus, crucial to raising the power of a study and

the legitimacy of its potential findings. Kraemer and

Thiemann suggested that only factors that are absolutely

necessary to the research question, or that have a

documented and strong relationship to the response, should

be included in a study [21]. Accordingly, they recommended

“Choose a few predictor variables and choose them

carefully.” (p. 65), or as McClelland put it [26]: “Doubling

one’s thinking is likely to be much more productive than

doubling one’s sample size.” (p. 964).

In summary, when criterion significance and power levels

are set, and a threshold for the minimum effect size to be

detected has been decided, the two primary factors for

consideration in a power analysis are the operative effect

size and the sample size. Since much of what determines

effect size has to do with the selection of measures,

statistical analysis, treatment implementation, and other

issues that are intrinsic parts of the research design, effect

size enhancements are, generally, more cost-effective to

engineer than are sample size increases [23]. However,

determining how best to enhance the effect size requires

some analysis and diagnosis of these factors for the

particular research situation at hand. A tactic that is almost

always effective, though, is procedural and statistical

variance control. Procedural variance control means tight

standardization of treatment and control conditions,

sampling, and measurement, while statistical variance

control uses such techniques as covariates or blocking

factors to separate variance judged irrelevant to the

assessment of treatment effects from the error term for

significance testing (see above). As shown by Lipsey [23],
such techniques can sometimes increase the operative effect

size two or threefold or even more.

Thus, when designing SE experiments, the goal should be to

obtain the largest possible effect size with the smallest

investment in the number of subjects studied. This presupposes

that the researcher understands the factors that influence

statistical power and skilfully applies that knowledge in the

planning and implementation of each study undertaken. For a

more in-depth treatment of these issues, see Lipsey’s excellent

work on design sensitivity to the statistical power of

experimental research [23].

5.4. Limitations

The main limitations of this study are publication selection

bias and inaccuracy in data extraction. As the basis for our

investigation was the recent survey of controlled SE

experiments performed by [40], the current study has the

same publication selection basis as the main study. However,

we consider the 12 surveyed journals and conferences to be

leaders in software engineering in general and empirical

software engineering in particular. Besides, Sjøberg et al.’s

selection of journals is a superset of those selected by others

(e.g. [17,44]). Nevertheless, if the main study also had included

the grey literature (theses, technical reports, working papers,

etc.) on controlled SE experiments, the current study could, in

principle, provide more data and possibly allow more general

conclusions to be drawn [19]. Regarding the selection of

articles, the main study utilized a multistage process involving

several researchers who documented the reasons for inclusion/

exclusion as suggested in [19] (see [40]).

As described in Section 3, the first two authors read all 103

articles included in the main study in detail and made separate

extractions of the power data. Based on these two data sets, all

three authors reviewed all tests in all experiments to reach a

consensus on which experiments and tests to include. However,

because it was not always clear from the reporting of the

studies which hypotheses were actually tested, which signifi-

cance tests corresponded to which hypotheses, or how many

observations were included for each test, the extraction process

may have resulted in some inaccuracy in the data.

5.5. Recommendations for future research

Based on the problems that we have identified that are

associated with statistical power in experimental SE research,

we offer some recommendations to SE researchers who

perform null hypothesis testing.

First, before embarking on studies involving statistical

inference, we recommend that SE researchers plan for acceptable

power on the basis of attention to the effect size, either by

assessing previous empirical research in the area and using the

effect sizes found in these studies as a guide, or by looking at their

own studies and pilot studies for guidance. However, due to the

limited number of empirical studies in SE this approach may be

difficult to apply [29]. Alternatively, researchers can use a

judgmental approach to decidewhat effect size they are interested
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in detecting. However, until there is a better basis for establishing

conventions specific to SE, we recommend the same general

target level of medium effect sizes as used in IS research,

determined according to Cohen’s definitions [12].

Second, we recommend that SE researchers analyze the

implications of the relative seriousness of Type I and Type

II errors for the specific treatment situation under

investigation. Unless there are specific circumstances, we

do not recommend that researchers relax the commonly

accepted norm of setting alpha to .05. Similarly, we

recommend that SE researchers plan for a power level of

at least .80 and perform power analyses accordingly. Thus,

rather than relaxing alpha, we generally recommend

increasing power to better balance the probabilities of

committing Type I and Type II errors.

Third, in agreement with Kitchenham et al. [20] and

Wilkinson [42], we recommend that significance tests of

experimental studies be accompanied by effect size measures

and confidence intervals to better inform readers. In addition,

studies should report the data for calculating such items as sample

sizes, alpha level, means, standard deviations, statistical tests, the

tails of the tests, and the value of the statistics.

Finally, we recommend that journal editors and reviewers

pay closer attention to the issue of statistical power. This way,

readers will be in a better position to make informed decisions

about the validity of the results and meta-analysts will be in a

better position to perform secondary analyses.

6. Conclusion

The purpose of this research was to perform a quantitative

assessment of the statistical power of current experimental SE

research. Since this is the first study of its kind in SE research, it

was not possible to compare the statistical power data of the

current study with prior experimental SE research. Therefore,

we found it useful to draw on the related discipline of IS

research, because this provided convenient baseline data for

measuring and validating the results of the statistical power

analysis of this research.

The results showed that there is inadequate attention to

power issues in SE research in general, and that the level of
Table A1

A numeric guide to sample size for small, medium, and large effects sizes for diffe

Power aZ.01 aZ.05

dZ.2 dZ.5 dZ.8 dZ.2 d

.95 893 145 58 651 1

.90 746 121 49 527

.85 655 107 43 450

.80 586 96 39 394

.75 530 87 35 348

.70 483 79 32 310

.65 441 72 30 276

.60 402 66 27 246

.55 367 61 25 219

.50 334 55 23 194
statistical power falls substantially below accepted norms as

well as below the levels found in the related discipline of IS

research. For example, only 6% of the studies in this

analysis had power of .80 or more to detect a medium effect

size, which figure is assumed as the target level by most IS

researchers.

In conclusion, attention must be directed to the adequacy of

sample sizes and research designs in experimental SE research to

ensure acceptable levels of power (i.e. 1KbR.80), assuming that

Type I errors are to be controlled at aZ.05. At a minimum, the

current reporting of significance tests should be enhanced by

reporting the effect sizes and confidence intervals to permit

secondary analysis and to allow the reader a richer understanding

of, and an increased trust in, a study’s results and implications.
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Appendix A. A numeric guide to sample size for the t-test

We assume that a researcher plans to test a non-directional

hypothesis that two means do not differ by conducting a

controlled experiment with one experimental and one control

group. Such a study can be analyzed suitably with an unpaired

t-test with two-tailed rejection regions.

The effect size index (d) under these circumstances can be

calculated by

d Z
MEKMC

s

where

ME is the mean score of the experimental group;

MC is the mean score of the control group; and

s is the standard deviation based on either group or both.

A small effect size would be dZ.2, a medium effect size

would be dZ.5, while a large effect size would be dZ.8.
rent values of a and power for a two-tailed t-test

aZ.10

Z.5 dZ.8 dZ.2 dZ.5 dZ.8

05 42 542 88 35

86 34 429 70 28

73 30 361 59 24

64 26 310 51 21

57 23 270 44 18

51 21 236 39 16

45 19 207 34 14

41 17 181 30 12

36 15 158 26 11

32 14 136 23 10
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The sample size2 (N) required for each group as a function

of effect size, alpha, and power is shown in Table A13. As an

example, if the researcher wants to be able to detect a medium

difference (dZ.5) between the two independent means at aZ
.05, a sample size of NZ64 is required in each group.

Similarly, at the same alpha level, if the researcher has 60

subjects available for the experiment, a power level of .85 will

be attained for detecting a large effect size. Alternatively, by

relaxing the alpha level to .10, 30 subjects in each group would

yield a power of .60 to detect a medium effect size.
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