
Towards a Context Ontology to Enhance Data Integration
Processes

Damires Souza
Federal University of

Pernambuco
PO Box 7851

50.732-970 Recife, PE,
Brazil

+55 81 3453 9213

dysf@cin.ufpe.br

Rosalie Belian
Federal University of

Pernambuco
PO Box 7851

50.732-970 Recife, PE,
Brazil

+55 81 2126 8430

rbb@cin.ufpe.br

Ana Carolina Salgado
Federal University of

Pernambuco
PO Box 7851

50.732-970 Recife, PE,
Brazil

+55 81 2126 8430

acs@cin.ufpe.br

Patricia Tedesco
Federal University of

Pernambuco
PO Box 7851

50.732-970 Recife, PE,
Brazil

+55 81 2126 8430

pcart@cin.ufpe.br

ABSTRACT

Data Integration has become one of the most relevant research

fields in data management for the last years. The problem of

integrating data from diverse, heterogeneous data sources is

ubiquitous and has been tackled by some different approaches. A

recent one concerns Peer Data Management Systems (PDMS)

which are characterized by their dynamicity. To help matters,

semantic information like context may be employed to ease some

processes in DI: schema reconciling and query processing.

However, dealing with contextual information entails a high

development cost because several tasks (e.g. context acquisition

and processing) must be performed. In order to provide means for

that, first we have to define how to better represent contextual

information. In that respect, ontologies are an interesting approach

since they enable reasoning, reusability and knowledge sharing. In

this paper, we propose CODI - a Context Ontology to formally

represent context in Data Integration processes. We also present a

case study illustrating how CODI can be used to enhance query

processing in a PDMS environment, so that users will get more

complete and relevant results.

1. INTRODUCTION
The problem of Data Integration (DI) is a pervasive challenge

faced by applications that need to query across multiple

autonomous and heterogeneous data sources [7]. The environment

in which a data integration system operates is very dynamic and

the system deals with much less information and control than in a

traditional database setting. Consequently, it is more difficult to

plan some tasks. As an illustration, it is hard for the system to

decide on a good query execution plan, since it may not have

enough information previously, and, at the same time, a plan that

looks good initially, may be arbitrarily bad if the sources do not

respond exactly as expected.

In order to better address tasks as query processing and schema

reconciling, we need more semantics and control that may be only

acquired on the fly. To face these issues, we propose the use of

Context, i.e. the circumstantial elements that make a situation

unique and comprehensible [4], as a way to provide more precise

semantics, control information and reasoning as well.

We are able to understand context when identifying how humans

use it in practice. Humans seem to be able to build complex

contexts instinctively [10]: first context is recognized and

understood; then the relevant set of properties (e.g. location,

interests) required to deal with that context is automatically

assembled. Thus, we define Context as a set of elements

surrounding a domain entity of interest which are considered

relevant in a specific situation during some time interval. The

domain entity of interest may be a person, a procedure, a file, a set

of data or even an inter-schema mapping. Furthermore, we use the

term contextual element (CE) referring to pieces of data,

information or knowledge that can be used to define the Context,

in accordance with the definition provided by Vieira et al. [18].

In DI, context has been mainly used to represent different

understanding of data and schema elements [9]. We argue that

context may be used in a broader way to improve data integration

processes. In this sense, our goals when using context are twofold:

(i) to ease schema reconciling, trying to identify in which context

the elements occur and determining the semantic affinity between

them and; (ii) to enhance query processing capabilities, providing

users with more meaningful and complete answers according to

the context acquired at query submission and execution time.

More specifically, in this work we focus on using context to

improve query processing capabilities in a Peer Data Management

System (PDMS) environment.

Nevertheless, an important issue in using context is how to

represent its elements [3, 13, 19]. A challenge to be faced is the

fact that there is not a standard model for representing it yet.

Context ontologies have been considered an interesting approach

because they enable sharing and reusability and may be used by

different reasoning mechanisms [13, 19]. Hence, in this paper, we

present CODI - an ontology to represent CEs in the data

integration realm. Through this model, it is possible to compose

inference rules that enable the discovery of high-level (complex,

implicit) context from low-level (basic, explicit) context. To

clarify matters, we present a case study illustrating how the

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct commercial

advantage, the VLDB copyright notice and the title of the publication and its

date appear, and notice is given that copying is by permission of the Very

Large Database Endowment. To copy otherwise, or to republish, to post on

servers or to redistribute to lists, requires a fee and/or special permissions

from the publisher, ACM.

VLDB ’08, August 24-30, 2008, Auckland, New Zealand.

Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

proposed ontology can be used to enhance a query execution

process in PDMS.

This paper is organized as follows: Section 2 discusses context in

the light of Data Integration; Section 3 introduces a motivating

scenario; Section 4 describes our proposal, presenting the

identified domain entities and their respective contextual elements

and Section 5 shows the proposed CODI in practice. Related work

is discussed in Section 6. Finally, Section 7 draws our conclusions

and points out some future work.

2. CONTEXT IN DATA INTEGRATION
The use of context in Data Integration systems is quite different

from other context-sensitive applications. Integrating

heterogeneous data sources requires solving schematic and

semantic conflicts which may arise at schema or instance-level [6,

9, 13, 14, 15]. Some of the metadata that describe the data sources

may be used as contextual information (e.g. the data scale). Other

contextual elements are perceived or inferred dynamically during

the execution of a given process (e.g. in query processing, the

availability of data sources is perceived at run time). Thus, in DI,

context may be used to ease two main issues: schema reconciling

and query processing.

A schema reconciling operation receives a set of distinct data

source schemas, with varying structures and semantics, and

produces a set of mappings among semantically related schema

elements [11]. A process for schema reconciling usually executes

the following tasks [11]: i) a preprocessing routine that translates

schemas into a common format and makes schema element names

processable; and ii) a schema matching and mapping routine that

produces inter-schema mappings. Element names can have

different meanings depending on the semantic context to which

they are related. Hence, CEs may provide a more accurate

semantic interpretation, allowing restrictions or characterizations

of an element name according to a specific semantic context. For

instance, two entities having equal names may refer to different

real world objects and then need to be considered semantically

dissimilar (e.g. entity1 referring to block in a city context and

entity2 referring to block in a building context, considering a

geographic knowledge domain). In this case, there is a semantic

dissimilarity relation between these terms that needs to be

considered when interpreting meaning. This semantic relation

may be identified by considering the entities to which the block

entities are connected in their schemas or even by the kind of

application that are using them. Likewise, contextual knowledge

may be used in reconciling structural differences in order to make

the necessary transformations to turn data source elements capable

of being integrated (e.g. to integrate data from two data sources

with different scales).

The other main issue in DI is query processing. In this paper, we

focus on query processing in a PDMS. PDMS represent a natural

step beyond data integration systems, replacing their single logical

schema with an interlinked collection of semantic mappings

between peers' individual schemas [8, 16]. A PDMS, as a P2P

system itself, keeps the properties of all P2P systems, e.g., every

peer may join and leave the network at any time; moreover, all

peers are autonomously created and managed. PDMS are intended

to be used for query answering and information sharing, but, to

this end, their dynamicity must be dealt with accordingly. In this

light, context is used as a way to deal with such dynamicity.

Therefore, a context-based query execution process in a PDMS is

usually accomplished by the following steps:

(1) Query Submission: whenever the user poses a query, the

current values of user, PDMS and query’s context are acquired.

For example, user preferences, query language, user interface and

submission peer’s identification are acquired.

(2) Query Analysis: the query is analyzed in order to identify

essential features and objectives. For instance, its required

entities, attributes and operators are query context elements that

are discovered in this step.

(3) Relevant Peers’ Establishment: in our work, relevant peers are

the ones which are neighbors (i.e. connected through a semantic

path of mappings) of the submission peer and, at the same time,

are able to provide answers for a given query. Thus, in this step,

the submission peer neighbors context (data model, peer’s

availability, whether or not it can apply the required operators) are

analyzed to help determine which ones are really relevant.

(3) Query Reformulation: semantic inter-schema mappings

between peers are also considered contextual information since

they are rather dynamic and their application may produce

different query rewritings. According to such mappings, the

submitted query is rewritten into another to be executed in a

relevant peer.

(4) Query Execution and Answer Integration: each relevant peer

executes the query and returns its result to the initial submission

peer. Then, this peer analyzes the query’s context in order to

integrate the produced answers. Also, queries’ context elements

may be stored in a knowledge base for later recovery. As a result,

historical context data will be maintained according to user

interaction’s trajectories or to query processing steps to help to

predict users’ needs or establish trends in query processing.

(5) Result Presentation: the query result can be presented in

various forms according to the user’s preference, query interface

and intended usage. The final result is presented by the

submission peer where the original query was formulated.

In summary, context usage in query processing may entail three

important benefits: (i) it enables the analysis of the user’s query

through its interpretation and identification of related entities and

necessary operators on the fly; (ii) it helps to identify relevant

peers that may contribute with answers to a given query, thus

improving query processing results and; (iii) since the effects of

collecting and integrating content from various sources need to be

handled, context may enrich the post-processing of the retrieved

answers to adjust the final result representation according to the

user preferences or intended level of detail.

3. A MOTIVATING SCENARIO
Water is one of the most important resources on Earth. In most

Brazilian regions, water is abundant in rivers and lakes, although

in other areas it is not sufficient to provide benefits to habitants.

In this sense, our motivating example is concerned with the

Brazilian Hydrographic System which has been developed in a

PDMS environment. For the sake of simplicity, we only consider

two peers A and B which store geospatial data sources, depicted

in Figure 1. Peer A is at scale of 1:1000’000, while peer B is

more detailed and is at scale of 1:250’000. In addition, Peer A

contains three classes – Lake, StreamofWater and Town which

inherit some characteristics from Geographical_entity. The three

classes have a geometry attribute. Peer B contains Lake, River and

City which are subclasses of Basic_geo_entity. These classes have

a shape attribute.

In this scenario, some conflicts arise due to the heterogeneity of

the peers. The semantic conflicts related to schema level are: (1)

different entity names – Geographical_entity vs.

Basic_geo_entity, StreamofWater vs. River and Town vs. City; (2)

different attribute names – geometry vs. shape; and also different

data types – integer vs. string (GID) and point vs. polygon (lake,

and town and city). These conflicts are resolved in schema

reconciling time, when inter-schema mappings are identified.

Other relevant conflicts (found in query processing) are the

instance level ones. Here we have different scales 1:1000’000

(Peer A) vs. 1:250’000 (Peer B) and the multi-representation

problem, since lake is represented by a point in Peer A and by a

polygon in Peer B. Also, both peers are considered to be vector,

but, in fact, real geospatial data sets may be vector or raster, which

raises complexity and may entail format conversions.

Lake

Shape : Polygon

Capacity : Real
River

Shape : Line

Status : String

Basic_geo_entity

ID : String

Name : String

City

Shape : Polygon

Peer A

Lake

Geometry : Point

StreamofWater

Geometry : Line

Geographical_entity

ID : Integer

Name : String

Town

Geometry : Point

Peer B

Figure 1. Schemas for Peers A and B

For instance, consider that a user poses the query “Select

Capacity, Area from Lake;” as s/he is looking for all the lake

capacities and their corresponding areas. To answer this query, all

contextual elements around its formulation are considered. Firstly

a mapping such as A.Lake ≡ B.Lake (suppose it is already

generated) is observed. This means that both entities are

semantically equivalent. However, in Peer A, Lake is represented

as a Polygon and, in Peer B, as a Point. As a result, Peer B is not

able to answer the query since it is not possible to calculate the

area over a Point representation. In this example (considering

only the two peers), the answer will be retrieved by Peer A,

according to the user application scale and his/her preferences.

4. CODI – A CONTEXT ONTOLOGY FOR

DATA INTEGRATION
CODI (Contextual Ontology for Data Integration) is an ontology

for representing context according to the DI issues discussed in

Sections 1 and 2. In order to establish the relevant contextual

elements (CEs), at first we have identified the domain entities that

we needed to work with. A domain entity is anything in the real

world that is relevant to describe the domain (e.g data sources,

users and applications) [18]. In our work, we consider that CEs

are used to characterize a given domain entity. Therefore, we

determined six main domain entities around which we consider

the CEs: user, environment, data, procedure, association and

application. To figure out these domain entities and their related

CEs, our approach has been guided by a participatory and

incremental design methodology. The ontology was developed

during a series of face-to-face meetings between DI experts who

are concerned with issues such as schema reconciling, query

processing, Data Integration Systems, PDMS and reasoning.

Furthermore, we have also examined systematically in the

literature some DI real systems and related problems. As a result,

we draw the domain entities’ concepts, their properties and more

specifically the related contextual elements that would be relevant

to deal with.

We present the domain entities’ taxonomy as well as some

contextual elements relevant to them in Figure 2. As a result,

CODI is a conjunction of those domain entities and the CEs

which are related to them. Moreover, Figures 3,4,5,6,7 and 8

describes the CEs that characterize each of the above mentioned

domain entities. For the sake of space, we have converted the

diagrams from Protégé’s notation to UML1. In addition, we show

the CEs in white and the domain entities in gray.

 Figure 2. The Domain Entities’ taxonomy and the overview

of CODI’s Contextual Elements

User: The CEs that make up a user's information context are

concerned with his/her profile, location, role, region and query

interface type (Figure 3). According to the user preferences and

query interface type, the system may define, for instance, the way

a query result should be presented. Also, user’s CEs are used in

schema reconciling to determine data types and scale for schema

element representation.

Location

Profile

Region

Role

Interface

User

isInLoc

hasProf

hasRegion

hasRole

usesInterface

Figure 3. CEs for the User domain entity

Figure 4. CEs for the Data domain entity

1 Unified Modeling Language

AttributeEntity

QueryResult

Type Data
DataType

DataSourceInSource

Meaning

SchemaElementContent

SourceSchema

has

SchemaElement
hasMeaning

has

isPartOf

Association: associations are important to characterize relations

between elements and are used by tasks such as query processing

(Figure 5). In our work, associations are mappings which

represent existing relationships among schema elements and may

indicate how data in one schema is to be transformed into data in

another schema.

Type Description

Association

AssocType hasDescription

SchemaElement

SemanticAssociationMapping

element2

element1

denotes

Figure 5. CEs for the Association domain entity

Model
MappingGeneration

QueryProcessing

Operator

SchemaElement

Query

uses

hasModel

hasElement

Type

Description

Constraint

Goal StepProcedure

ProcType hasDesc

hasConstraint

hasGoal

hasStep

Figure 6. CEs for the Procedure domain entity

Procedure: in this case, the idea is to provide the

contextualization of a procedure steps in order to help to solve a

given problem. In our setting, a procedure may be the complete

mapping generation process, a particular Query or the Query

Execution Process as a whole (Figure 6). For instance, a Query is

formulated within a search context, therefore, in addition to the

inherited Procedure’s CEs, we have to identify: i) which kind of

query model is being used; ii) which schema elements are

necessary to work with; and iii) which operators are to be

executed.

Application: each application has its particular features (Figure

7). For instance, an important CE to DI is the application Domain.

Each domain has a Vocabulary, usually represented by a domain

ontology and its specific terms. Terms and their related features

are acquired from the related domain ontology.

Interface Region Type

Application

hasInterface hasRegion AppType

SubDomain

Domain
hasDomain

isComposedBy

Vocabulary
hasVocabulary

Term

isComposedBy

Figure 7. CEs for the Application domain entity

Environment: concerns the environment where the user interacts

and the application is executed. In our work, it may be a Data

Integration System (with a single global schema) or a PDMS

(with mappings among peers’ schemas), as shown in Figure 8. In

fact, in both cases, we are dealing with dynamic and autonomous

data sources that may join and leave the network at any time.

Thus, environment CEs must be acquired on the fly (e.g. data

source availability). In this sense, Data Integration Systems,

PDMS, data sources, peer and source schemas are the domain

entities from which the CEs will be acquired. In general, the main

environment CEs are: Type, Region, Platform and Condition.

Depending on the system (e.g. PDMS), other specific elements

may be added or refined.

Figure 8. CEs for the Environment domain entity

CEs can either be explicit or implicit. An explicit CE is obtained

from static sources, such as a profile (e.g. settings information).

An implicit one is perceived in the surrounding dynamic

environment or is derived through some reasoning process. For

example, a spatial relationship (e.g. touch, cross, distance) is

inferred through the analysis of two objects locations. Still, the

scale a user is working with may be identified through his/her

application parameters. Another illustration concerns the

presentation of query results. A query’s result set may contain

different data representations, e.g. different unit formats that are

used in the distributed data sources. Thus, depending on the

context of query submission, a specific unit may be chosen and a

conversion and merging process may be performed automatically.

In other words, contextual information perceived or inferred

through reasoning mechanisms may be used to adjust the result

representation. For instance, a presentation preference for

statistical results may specify different formats such as a summary

table, trends diagram or a pie chart, thus a user may explicitly

defines that s/he prefers a summary table rather than a trends

diagram or the system may implicitly discover such information

through user trajectories (historical information).

5. USING CODI
The main idea underlying our work is to use CODI to represent

and to maintain the CEs related to DI. One of the advantages of

using an ontology mechanism is the possibility of inferring new

complex information from existing basic context. In this section,

we present a query processing case study in the light of our

motivating scenario. In such scenario, we assume that the inter-

schema mappings have already been generated, so we are able to

focus on query answering in general.

To better explain where and when the contextual information is

used, we present CODI’s usage for each one of the presented

query execution process steps (Section 2). To this end, we provide

views of CODI’s instantiation which have been produced using

OntoViz, a Protégé plug-in. In this format, instances are

associated with their concepts through the io relationship and

subtypes are associated with their supertypes through the isa

relationship. The diagrams presented below are in fact fragments

from the overall ontology, and do not show neither the whole

class hierarchy nor the complete set of instances.

In this light, suppose that a user poses the following spatial query

Q: “SELECT R.Name, C.Name FROM River R, City C WHERE

SourceSchema

Condition

Region Type

 Environment

hasCondition

hasRegion

EnvType

Platform

hasPlatform

SchemaElement

PDMS

Role

isComposedBy Domain

Peer

isNeighborOf

hasSemanticDomain

hasRole

DataSource

has hasDomain

hasDataSource

DataIntegrationSystem

hasDataSource

Cross(R.Shape,C.Shape)=1;”. The topological spatial operator

Cross (geometry1, geometry2) is a Boolean operation which

returns true if a geometry1 intersects with another geometry2. It

can be applied to line/line, line/area, point/area, and point/line

groups [5]. Thus, Q’s submission is done in Peer B and means:

“For all the rivers, find the cities through which they pass”.

User’s Context (User = Claire)

PDMS’s Context

Q’s Context

STEP 1: Query Submission
GeoSpatialPDMS

PeerB

PeerA

B

A
SchemaB

SchemaA
Brazilian Hidrographic Data

isComposedByPeer

isComposedByPeer

isNeighborOf

isNeighborOf hasDataSource

hasDataSource

hasSourceSchema

hasSourceSchema

hasDomain

hasDomain

Claire

isInLoc= Epitacio Pessoa

hasID= 07

hasGroup= Researcher

hasInterest= Floods Research

isInRegion= Northeast

hasRole= Manager

usesInterface=

name=

Geographical

Claire

UserInterface

Q2

Geographical
PeerB

SubmissionPeer

Figure 9. CEs at Query Submission Time

At submission time (step 1), some contextual information

concerned with the user, the query and the environment are

acquired or perceived as depicted in Figure 9. In this case, the

user profile (group, role, interest, name), his/her location and the

kind of interface he/she is using are CEs which are gathered. Also,

information about the environment, i.e the PDMS, such as the

composing peers and data sources, their schemas as well as their

domain are important information that should be dealt with when

the relevant peers are set. To this end, we have to know for

example which peers are available, if they have a common

knowledge domain and the existing elements in each peer’s

schema. Besides, as context of the query, it is observed where it

has been submitted and what kind of interface has been used.

In step 2, the query is completely analyzed (Figure 10). Thereby,

the required entities, spatial operators, attributes, constraints and

conditions are gathered in order to identify the semantics of the

query. As a result, this semantics will be taken into account to

verify which peers are relevant for such query and how it can be

better reformulated in these peers. For example, we consider that

in our PDMS, when a submission peer P receives a given query

Q, it identifies its semantics (through contextual elements) and

creates a corresponding query graph. This graph is compared with

the graphs representing the schemas of the peer’s neighbors. If the

query graph is subsumed by the neighbor’s schema graph, then

this neighbor is really relevant for such query.

STEP 2: Query Analysis

Q’s Context

Q2

isExecutedIn= PeerB

asksForCondition= Cross(R.Shape, C.Shape) = 1

hasModel= Object-Relational

asksForAttribute= B.City.Name

B.River.Name

hasEntity=
B.River

B.City

UserInterface= Geographical

SubmissionPeer= PeerB

usesOperator= Cross

hasRestriction= GeographicalResult

hasFinality= GetRiversCrossCities

hasDescription= For all rivers, find the cities...

Figure 10. CEs at Query Analysis Time

Next, in step 3, the peers that are considered relevant (in our

example, Peer A) are also observed and their context acquired and

used (Figure 11). For instance, we have to see if such peers are

available for query reformulation and if they can execute the

spatial operator that has been required, since not all of the DBMS

are able to execute properly all the set of existing spatial

operators.

Next step is reformulating query Q to a representation (a

rewriting) that is compatible with each relevant peers’ schemas. In

this example, Peer A is relevant, so the process takes into account

the mappings between Peer A and Peer B and rewrites Q into

another query QRef. Figure 12 depicts some mappings which, for

us, are treated as contextual information and are used to allow

query rewriting. In fact, mappings are rather important in a

PDMS’s setting since peers may join or leave the system at free

and thus, the assumption we can make about them is based on

their mappings. Figure 13 presents the context of the reformulated

query QRef in Peer A.

STEP 3: Relevant Peer’s Establishment

Peer A Context

PeerA

A

Object-Relational

SchemaA
available

Cross

hasCondition

implementsSpatialOperator

hasDataSource

hasCondition
hasSourceSchema

hasModel

Figure 11. CEs at Relevant Peer’s Establishment Time

03

element1 = A.Lake

hasSemanticAssociation = isEquivalentTo

element2 = B.Lake

AssocID = 03

Some A-B Mappings

04

element1 = A.StreamofWater

hasSemanticAssociation = isEquivalentTo

element2 = B.River

AssocID = 04

08

element1 = A.StreamofWater.Name

hasSemanticAssociation = isEquivalentTo

element2 = B.River.Name

AssocID = 08

09

element1 = A.Town.Geometry

hasSemanticAssociation = isSimilarTo

element2 = B.City.Shape

AssocID = 09

Figure 12. Some Mappings between Schemas A and B

Q2REFA is a reformulation of Q

STEP 4: Query Reformulation

Q2REFA

isExecutedIn = Peer_A

asksForCondition = Cross(SW.Geometry,T.Geometry)=1

hasModel = Object-Relational

asksForAttribute =
A.StreamofWater.Name

A.Town.Name

hasEntity =
A.StreamofWater

A.Town

isReformulationOf = Q2

usesOperator = Cross

hasRestriction = Geographical Result

hasFinality = GetRiversCrossCities

hasDescription = For all the rivers, find the cities thro…

name = Q2REFA

Figure 13. CEs at Query Reformulation Time

It is important to note that, in this example, query Q will be

executed both in Peer B (submission peer) and in Peer A (through

a reformulation). In Step 5, when the executed queries results are

assembled to produce the final answer, the system analyzes other

CEs such as multi-representation and scales difference.

Considering that the formulating scale is about 1:100’000, this

means that the user is working with a more detailed view of the

themes. Thus the graphical result will be taken from Peer B whose

scale of origin is closer and whose City’s geometric representation

(polygon) is more adequate to that level of detail. Therefore, since

the user interface is able to present geographical results, the final

result (step 6) will be depicted to the user both graphically and

textually (e.g. in the map and in a table format). Sometimes, the

final result may be produced from the answers obtained in several

peers if they return complementary information, for example,

when some attributes are present in one peer but are absent in

another.

Representing context information using an ontology brings

various benefits. It provides concept subsumption, concept

consistency and instance checking (including object properties

checking). Efficient implementation of these operations allows a

PDMS to organize knowledge, maintain its consistency, answer

semantic queries and recognize conditions that trigger rule firings.

The goal of a “semantic query” is to provide answers to queries in

face of incomplete information, usually stored in heterogeneous

data sources that are part of a dynamic environment. To this end,

the system should take advantage of the available semantic

information (in our work, through contextual elements) in order to

provide an enriched query execution process. Semantic queries

may produce different results to different users, depending on the

contextual elements that are acquired at its submission time. For

example, consider the situation in which an element (e.g. a

schema entity) of a given rule is not available (e.g., when a peer

goes out and comes back and its mappings have not yet been

updated). In this case, it is possible to exploit generalization

relationships (through the ontology) between concepts to find out

a concept that can be used in the rule. As a result, the rule is fired

anyway, despite the lack of precise information, returning a more

general, but yet meaningful result. In this sense, in a dynamic

environment such as a PDMS, the query results may be

considered complete according to what is available in that given

period of time and taking into account the user specific needs as

well.

A context ontology also allows defining constraints and reasoning

rules that may be used to derive other implicit context

information. In our work, for instance, we consider inter-schema

mappings with their types (e.g. subsumption) as contextual

information. Based on the mapping types, rules can be applied to

derive new useful mappings among the peers. Thus we are

currently specifying some rules to infer other kinds of mappings

from the existing ones in query execution time in order to provide

other possible semantic query paths. Thus, considering CA as a

concept from Peer A, CB a concept from Peer B and CC a concept

from Peer C, and subsumption and equivalence mappings, we

present an example of this kind of rule in Table 1.

Table 1. A Rule Example

Rule Instantiation

If CA m CB and CB ≡ CC then

CA m CC

If A.VisitingTeacher m

B.Teacher and

B.Teacher ≡ C.Professor

Then A.VisitingTeacher m

C.Professor

In addition, in Table 2, we work with some properties that may be

used to infer spatial relationships. Thus, knowing that Brazil is

part of South America, we can provide users with the extra

information that Brazil is also part of America. Also, if a user

poses a query that needs the operation “INSIDE” but there is no

available data source which realizes it, the system can search one

that executes “CONTAINS”, since from one we can derive the

other and vice-versa.

Table 2. Some Spatial Property Rule Examples

Property Rule Instantiation

Part-of If A isPartOf B

and

 B isPartof C

Then

 A isPartOf C;

If “Brazil” isPartOf

“SouthAmerica” and

“SouthAmerica” isPartOf

“America”

Then “Brazil” isPartOf

“America”;

Contains

-Inside

If A contains B

Then B isInside

A;

If “Brazil” contains “São

Paulo”

Then “São Paulo” isInside

“Brazil”;

This is a brief description of how the use of CODI can help to

enhance data integration, and, more specifically, query

processing. In fact, all information from the geospatial integration

world that is to be reasoned over may be dealt with as contextual

information. Consequently, from explicit contextual elements,

gathered from the peers, from the mappings and from the query

formulation, the system can infer and derive other implicit

contextual elements. Moreover, since the environment (PDMS) is

highly dynamic and, for each submitted query, the whole query

execution process instantiation changes completely, the context

around the query (its semantics), the peers (availability),

mappings (may be of different types) and the user (preferences,

interface) are essential information that have to be dealt with. In

this work, such information is treated as context.

By using context, the system is able to adapt and react to different

users’ queries and needs. Without context, query processing

would be limited by not dealing with some information that can

just be acquired on the fly. As an illustration, in our example, the

kind of the interface where the query has been submitted and the

working scale can only be acquired in such given time. Another

example concerns the user preferences: not all user preferences

are relevant all the time, and only those that are semantically close

to the current query should be used, disregarding those ones that

are out of context. We can think in the same way for the other

domain entities: environment, application, data, procedure and

associations. As a result, dealing with contextual information can

increase the quality of query results and provide users with more

complete answers.

6. RELATED WORK
In data integration systems, contextual information has been used

in several ways to capture the relevant semantics related to an

object, its relationships and the surrounding issues that may

influence its usage. In this sense, it has been used in processes

addressing data- and schema-level conflicts resolution as well as

query answering, mostly taking into account the user context.

In terms of schema reconciling, our work is quite similar to the

work of Turley et al. and Ram et al. [17, 12]. Turley et al. relate

the contextual information necessary to improve data integration

in healthcare applications defining five main types of context

while Ram et al. provide constructs and definitions to represent

data- and schema-level conflicts between original and target

contexts. Our work, differently, deals with a broader range of DI

entities and related CEs, and also allows to infer existing semantic

relations between schema element names taking into consideration

context-bound interpretation.

In query answering, the effective use of multiple data sources

requires context and user-specific reconciliation of differences in

the data semantics among them. A partial investigation of the

query translation from a context and user’s point of view is given

in the work of Bao et al. [1]. Stefanidis et al. [14] provide a

logical model for the representation of user preferences and

context-related information and demonstrate how their model can

be integrated in a relational DBMS using data cubes for storing

context dependent preferences. Both works are really focused in

the user-specific context. Differently, our work is concerned not

only with the user context, but also with other existing ones (e.g.

mappings, data sources, queries) that a DI or query processing

scenario requires. Furthermore, Souza et al. [13] have proposed

an ontology to represent contextual information in geospatial data

integration. Such ontology intended to define meta-concepts to be

used in a broad range of areas, related to DI and to the geospatial

realm. CODI is an extension of Souza et al’s work, providing

environment and application contexts and other additional related

elements as well.

In summary, our proposed approach differs from the ones

mentioned above in the following aspects. Firstly, we define the

CEs according to domain entities that have been identified as

relevant in DI (data, environment, procedure, association,

application and user). Secondly, using such domain entities we

are able to provide a broader range of concepts and CEs which are

to be used in DI processes, making CODI a more complete

context ontology. Thirdly, CODI presents two different entities –

procedure and environment (which allow adapting activities on

the fly) that have not been employed in DI context-aware

solutions yet. Fourthly, we use an ontology as a context

representation model which is, in fact, a formal framework since

its underlying logical formalism is Description Logics. In this

sense, we are able to clearly define reasoning services over its

constructs, and provide information reuse and sharing as well.

7. CONCLUSIONS AND FURTHER WORK
Due to the ever increasing complexity of data integration

environments, the concept of context is becoming more and more

a necessity, instead of an optional functionality. These

environments are highly dynamic and the semantics and control

information around their processes (e.g. queries) is rather relevant

to produce results with quality according to users’ needs and

environment’s capabilities. In this sense, this work presented

CODI – a Contextual Ontology for Data Integration which aims

to assist the common tasks of a generic data integration process.

This means that CODI represents CEs related to the entities

involved within a DI scenario from any knowledge domain. What

differentiates CODI from other approaches is that the other ones

lack important aspects that should be considered in DI (e.g.

procedure, environment and association) since they are usually

restricted to specific integration processes and/or knowledge

domains. CODI aims to structure entities and their CEs in such a

way that they may be used for diverse DI processes, including

schema reconciliation and query processing. In fact, CODI may

be used by developers of DI solutions to identify, model and

represent contextual information in their applications.

CODI was encoded in OWL DL (Web Ontology Language) using

Protégé 3.3.12. It was initially used by a schema integration

process that merges schemas of healthcare data sources from

institutions of the Brazilian public health system [2]. In this case,

some preliminary tests have already been done and the initial

results have shown improvements when applying context. An

experiment carried out has shown that without context,

terminological semantic associations that were not settled in the

domain ontology were not taken into account by the schema

integration process. Using context, these relationships were

considered. Currently, we are working on the implementation of

the example described in this paper in a PDMS environment

which was already developed in Java/RMI (used for peer

2 Protégé 3.3.1 version, protege.stanford.edu/

communication). We are using Jena (jena.sourceforge.net/) for

reasoning.

Finally, the preliminary results provide evidence that the

application of contextual elements and the reasoning over them

has the potential to yield considerable benefits to DI processes. As

further work, we will develop additional scenarios which may

allow us to work with other instances, constraints, queries and

rules as well as with larger datasets. We are also integrating this

work with a context manager which is being developed within our

research group [18].

8. REFERENCES
[1] Bao, J., Caragea, D. and Honavar, V.: Query Translation for

Ontology-Extended Data Sources. In: Proceedings of the

Workshop on Semantic e-Science,Vancouver,Canada (2007)

[2] Belian, R. B. : A Context-based Name Resolution Approach

for Semantic Schema Integration, PhD thesis, Center for

Informatics, UFPE (2008)

[3] Brézillon, P.: Representation of Procedures and Practices in

Contextual Graphs. The Knowledge Engineering Review, v.

18, n. 2, pp. 147-174 (2003)

[4] Dey A.: Understanding and Using Context. Personal and

Ubiquitous Computing Journal, Volume 5 (1), pp. 4-7

(2001)

[5] Egenhofer M.: Reasoning about Binary Topological

Relations. In Oliver Günther, Hans-Jörg Schek (Eds.):

Advances in Spatial Databases, Second International

Symposium, SSD'91, Zürich, Switzerland Proceedings.

Lecture Notes in Computer Science 525 Springer, ISBN 3-

540-54414-3 (1991)

[6] Goh, C. H., Bressan, S., Madnick, S., and Siegel M.: Context

interchange: New features and formalisms for the intelligent

integration of information. ACM TIS, 17(3) (1999)

[7] Halevy A., Rajaraman A. and Ordille J. : Data

integration: the teenage years. In: Proceedings of the 32nd

international conference on Very large data bases - Volume

32, pp. 9 – 16 (2006)

[8] Herschel, S. and Heese, R.: Humboldt Discoverer: A

Semantic P2P index for PDMS. In: Proceedings of the

International Workshop Data Integration and the Semantic

Web, Porto, Portugal (2005)

[9] Kashyap, V. and Sheth, A.: Semantic and schematic

similarities between database objects: a context-based

approach. The VLDB Journal, v. 5. Springer-Verlag, pp.

276-304 (1996)

[10] Mills J., Goossenaerts J.B.M.: Using contexts in managing

product knowledge. In: E. Arai, J. Goossenaerts, F. Kimura,

K. Shirase (eds) Knowledge and Skill Chains in Engineering

and Manufacturing: Information Infrastructure in the Era of

Global Communications, Springer, pp. 57-65 (2005)

[11] Rahm, E. and Bernstein, P.: A survey of approaches to

automatic schema matching. The VLDB Journal, vol. 10, pp.

334-350 (2001)

[12] Ram, S. and Park, J.: Semantic Conflict Resolution Ontology

(SCROL): An ontology for detecting and resolving Data- and

Schema-Level Semantic Conflicts. Knowledge and Data

Engineering, IEEE Transactions on Communications (2004)

[13] Souza, D., Salgado, A.C. and Tedesco, P.: Towards a

Context Ontology for Geospatial Data Integration. Second

International Workshop on Semantic-based Geographical

Information Systems (SeBGIS'06), Montpellier, France

(2006)

[14] Stefanidis K., Pitoura E., Vassiliadis P.: On Supporting

Context-Aware Preferences in Relational Database Systems.

In: Proc. of the first International Workshop on Managing

Context Information in Mobile and Pervasive Environments,

in conjunction with MDM 2005, Cyprus (2005)

[15] Stuckenschmidt, H., Wache, H.: Context Modelling and

Transformation for Semantic Interoperability, In: M.

Bouzeghoub & M. Klusch & W. Nutt & U. Sattler (Eds.),

Knowledge Representation Meets Databases (KRDB 2000)

(Vol. 29): CEUR Workshop Proceedings (2000)

[16] Sung, L. G. A., Ahmed, N., Blanco, R., Li, H, Soliman, M.

A., and Hadaller, D.: A Survey of Data Management in Peer-

to-Peer Systems, Web Data Management, Winter 2005, pp.1–

50 (2005)

[17] Turley, J. and Johnson-Throop, K.: The role of context in the

integration of heterogeneous healthcare databases. In:

Proceedings of 6th International workshop on enterprise

networking and computing in healthcare industry (2004)

[18] Vieira V., Tedesco P., Salgado A.C. and Brézillon P.:

Investigating the Specifics of Contextual Elements

Management: The CEManTIKA Approach. The Sixth

International and Interdisciplinary Conference on Modeling

and Using Context. B. Kokinov et al. (Eds.): LNAI 4635,

Springer-Verlag, pp. 493–506 (2007)

[19] Wang X., Zhang D., Gu T., Pung H.: Ontology Based

Context Modeling and Reasoning using OWL. Second IEEE

Annual Conference on Pervasive Computing and

Communications Workshops, p.18 (2004)

