

Towards a Context Ontology to Enhance Data Integration Processes

Damires Souza (dysf@cin.ufpe.br) Rosalie Belian (rbb@cin.ufpe.br) Ana Carolina Salgado (acs@cin.ufpe.br) Patricia Tedesco (pcart@cin.ufpe.br)

Outline

- Data Integration X Context
 - Schema Reconciling
 - Query Processing
- CODI-Context Ontology for Data Integration
- Some Considerations
- Conclusion and Further Work

Data Integration Systems

- Need to query across multiple autonomous and heterogeneous data sources
- Dynamic environment
 - It deals with less information and control
 - It is more difficult to plan tasks

We need more semantics and control that may be only acquired on the fly

Context

- **Circumstantial elements** that make a certain situation unique and comprehensible (Dey 2001)
- A set of elements surrounding a domain entity which are considered relevant in a specific situation and in a given time
 - Domain Entity : person, procedure, an inter-schema mapping

Contextual Elements (CE) refer to pieces of data, information or knowledge that can be used to define the *Context* (Vieira et al. 2007)

Context in DI Processes

Schema Reconciling

 Identifying in which context the schema elements occur and determining the semantic affinity between them

Query Processing

 Providing users with more meaningful and complete answers according to the context acquired at query submission and execution time

Schema Reconciling

Schema Reconciling

- This process usually executes:
 - A preprocessing routine
 - translates schemas into a common format and makes schema element names processable;

- A schema matching and mapping routine

- produces inter-schema mappings
- Element names can have different meanings depending on the semantic context
- CEs may provide a more accurate semantic interpretation (allowing restrictions or characterizations of an element name according to a specific semantic context)

Query Processing in PDMS

- **PDMS**: Peer Data Management System
 - It is a natural step beyond data integration systems
 - The single logical schema is replaced by an interlinked collection of semantic mappings
 - Its dynamicity must be dealt with accordingly
 - Context may be used as a way to deal with such dynamicity.

Context-based Query Processing in PDMS (1/2)

Step	Contextual Elements
Query Submission	User preferences User interface type Submission peer
Query Analysis	Required entities, attributes and operators
Relevant Peers' Establishment	Data model Peer availability Required operators

Context-based Query Processing in PDMS (2/2)

Step	Contextual Elements
Query Reformulation	Semantic inter-schema mappings between peers
Query Execution and Answer Integration	Query context
Result Presentation	User's preference Query interface type

CODI – A Context Ontology for DI

Represent context

- Domain Entities
 - User, environment, data, procedure, association and application
- Contextual Elements
 - Domain, schemas, region, profile, type, constraint ...

Domain Entity

Contextual Element

Environment Entity and its CEs

Association Entity and its CEs

Legend:	
	Domain Entity
	Contextual Element

Procedure Entity and its CEs

Legend:	
	Domain Entity
	Contextual Element

A Motivating Scenario

- Brazilian Hydrographic System
 - PDMS environment
 - Peers A and B

Using CODI – Query processing

 Spatial query Q: SELECT R.Name, C.Name FROM River R, City C WHERE Cross(R.Shape,C.Shape)=1;"

> "For all the rivers, find the cities through which they pass".

• Q's submission is done in **Peer B**

Query Submission

Query Analysis

STEP 2: Query Ar	nalysis
	Q2
isExecutedIn=	PeerB
asksForCondition=	Cross(R.Shape, C.Shape) = 1
hasModel=	Object-Relational
asksForAttribute=	B.City.Name
	B.River.Name
he classic	B.River
hasenuty=	B.City
UserInterface=	Geographical
SubmissionPeer=	PeerB
usesOperator=	Cross
hasRestriction=	GeographicalResult
hasFinality=	GetRiversCrossCities
hasDescription=	For all rivers, find the cities
Q's Cor	itext

Relevant Peers' Establishment

Mappings between Schema A and B

	03]		04		
element1 =	=		A.Lake	1	element1 =		A.StreamofWater	
hasSemanticAsso	ciation =		isEquivalentTo		hasSemanticAssociation =		isEquivalentTo	
element2 =		-	B.Lake		element2 =		B.River	
AssocID	=		03		AssocID =	•	04	
	08			Γ		09		
element1 =	A.Stre	amo	ofWater.Name		element1 =	А	.Town.Geometry	
hasSemanticAssoc	iation =	i	sEquivalentTo		hasSemanticAssociat	ion =	isSimilarTo	
element2 =		B.R	iver.Name		element2 =		B.City.Shape	
AssocID	=		08		AssocID =		09	
			Some A-B	N	lappings			

Query Reformulation

Q2RefA:

=1;"

SELECT S.Name, T.Name FROM StreamofWater S, Town T WHERE Cross(R.Shape,C.Shape)

		Q2R	EFA				
isExecutedIn =				Peer_A			
asksForCondition =	С	ross(SW.C	Seo	metry,T.Geometry)=1		
hasModel =		Object-Relational					
		A.StreamofWater.Name					
asksForAttribute =		A.Town.Name					
		A.StreamofWater					
hasEntity =		A.Town					
isReformulat	tionOf =				Q2		
usesOperato	usesOperator =			Cross			
hasRestriction =	nasRestriction =			Geographical Result			
hasFinality =				GetRiversCrossCities			
hasDescription =	Fo	For all the rivers, find the cities thro.					
name =		Q2REFA					

Some Considerations (1/3)

- Representing context information using an ontology brings various benefits:
 - Provides concept subsumption, concept consistency and instance checking
 - Allows to organize knowledge
 - Eases execution of **semantic queries**
 - Allows defining constraints and reasoning rules

Some Considerations (2/3)

- A PDMS environment is highly dynamic, so we have to obtain the context:
 - Around the query (its semantics),
 - Around the peers (availability),
 - About mappings (may be of different types)
 - Concerning the user (preferences, interface)

Some Considerations (3/3)

- By using context, the system is able to adapt and react to different user's queries and needs.
- Without context, query processing would be limited by not dealing with some information that can just be acquired on the fly.

Conclusions

- Complexity of DI environments makes context a necessity
- Differences related to other approaches:
 - Contextual Elements are defined according to Domain
 Entities that have been identified as relevant
 - Broader range of concepts used in DI processes
 - Two new entities procedure and environment
 - **Ontology** is used as a context representation model
 - A formal framework
 - With reasoning services

Conclusions and Further Work

- CODI was initially used by a schema reconciling process
 - Preliminary results have shown considerable improvements
- We are working on the implementation in a PDMS environment
- Further work
 - Development of additional scenarios
 - Integration of this work with a context manager

Towards a Context Ontology to Enhance Data Integration Processes

Damires Souza (dysf@cin.ufpe.br) Rosalie Belian (rbb@cin.ufpe.br) Ana Carolina Salgado (acs@cin.ufpe.br) Patricia Tedesco (pcart@cin.ufpe.br)

