
Using Semantics to Enhance Query Reformulation in Dynamic Environments

Damires Souza (<u>damires@ifpb.edu.br</u>) Thiago Arruda (<u>tan@cin.ufpe.br</u>) Ana Carolina Salgado (<u>acs@cin.ufpe.br</u>) Patricia Tedesco (<u>pcart@cin.ufpe.br</u>) Zoubida Kedad (<u>zoubida.kedad }@prism.uvsq.fr</u>)

- Dynamic distributed environments are composed by autonomous and heterogeneous data sources – peers
- Peers are semantically connected to each other by means of mappings or *correspondences*

Motivation – our focus

How to **reformulate** queries among the peers, in such a way that the resulting **set of answers** expresses, as close as possible, what the **users** intended to obtain at query submission time, considering the **dynamicity** of the environment ??

Query Reformulation

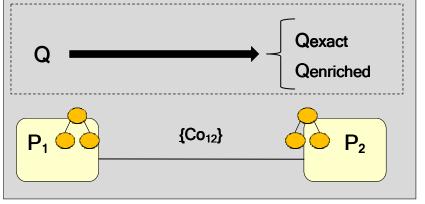
- I. Querying distributed data sources should be *useful* for users
 - Resulting query answers should be in conformance with users' preferences.
 - It is not useful for users when they do not receive any answer at all.
- II. Concepts from a source peer do not always have exact corresponding concepts in a target one
 - *Empty reformulation* and, possibly, no answer to the user.

Applying Semantics to Query Reformulation

- The SemRef Approach
- Experiments and Results
- Related Work
- Conclusions and Further Work

Our Rationale

Using semantics to enhance the reformulation

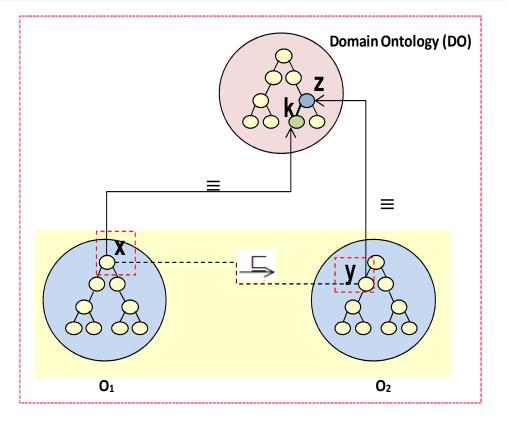

I. Users' preferences, query semantics and the current status of the environment should be taken into account at query reformulation time

We use contextual information

II. The original query should be *adapted* to bridge the gap between the two sets of concepts

We use query enrichment

Setting for our Approach


- Goal: find reformulated queries of *Q* expressed in terms of the concepts of O₂
- Schemas are represented as ontologies

> **Two** query reformulations may be produced:

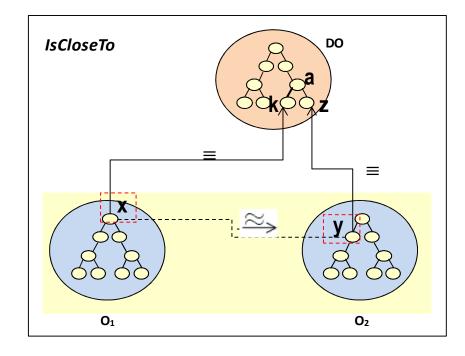
- an *exact* one, considering only equivalence correspondences; and
- ✓ an *enriched* one, resulting from the set of other correspondences.
- Users will be provided with a set of expanded answers.

Using Domain Ontologies to Identify Semantic Correspondences

- We use Domain Ontologies – DO as background knowldege to identify semantic correspondences
 - To bridge the conceptual differences or similarities between two overlapping ontologies
 - Matching Ontologies are terminologically
 normalized according to the DO

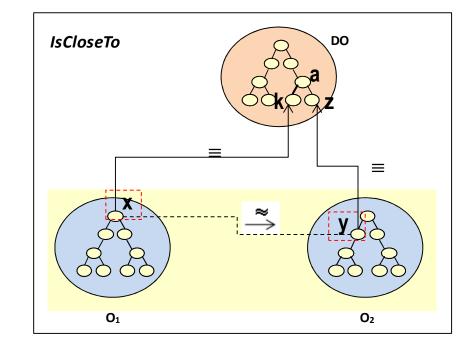
Using Domain Ontologies to Identify Semantic Correspondences

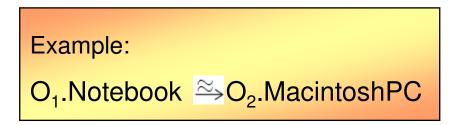
- A Semantic Correspondence is defined as one of the following expressions:
 - 1. $O_1: x \cong O_2: y$, an *isEquivalentTo* correspondence
 - 2. $O_1:x = O_2:y$, an *isSubConceptOf* correspondence
 - 3. $O_1: x \supseteq_{2} O_2: y$, an *isSuperConceptOf* correspondence
 - 4. $O_1: x \rightarrow O_2: y$, an *isPartOf* correspondence
 - 5. $O_1:x \leq O_2:y$, an *isWholeOf* correspondence
 - 6. $O_1:x \cong O_2:y$, an *isCloseTo* correspondence
 - 7. $O_1:x \perp O_2:y$, an *isDisjointWith* correspondence
 - where x and y are elements (concepts/properties) belonging to the matching ontologies O_1 and O_2 .


Using Domain Ontologies to Identify Semantic Correspondences

An element O₁:x isCloseTo O₂:y If

 $(O_1:x \equiv DO:k \text{ and } O_2:y \equiv DO:z) \text{ and}$ (DO:k \sqsubseteq DO:a and DO:z \sqsubseteq DO:a) and DO:a $\neq \top$ and DO:a *isRigid* and \neg (DO:k \perp DO:z) and (depth(DO:a, DO: \top) \ge tresholdRoot)

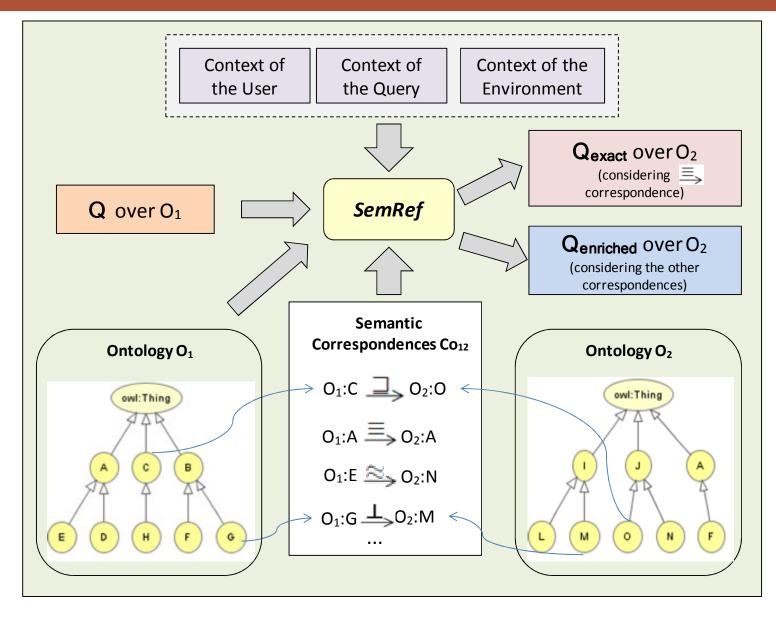

and


(depth(DO:k,DO:a) ≤ thresholdCommonAncestor and depth(DO:z,DO:a) ≤ thresholdCommonAncestor)

Using a Domain Ontology to Define Semantic Correspondences

- \succ O₁:k and O₂:z are close if
 - They share a common ancestor in the DO
 - The common ancestor is not the root
 - The concepts do not hold any subsumption nor disjointness
 - The measured depths are evaluated to true

Using Context in Query Reformulation


User Context (preferences):

- Exact reformulation is the default option
- Enriching variables: Approximate, Specialize, Generalize, and Compose.

Query Context: Query semantics + Query reformulation mode

- Restricted: the priority is to produce an exact reformulation, although if it results empty, then an enriched reformulation may be provided
- *Expanded*: exact and enriched reformulations are to be produced.
- Environment Context: path_length (number of subsequent reformulations) + submission peer's identification and its neighbors context.

General Principle of Applying Semantics to Query Reformulation

Our approach has been encoded in ALC-DL

Query Q is a query expressed over P_i's ontology, having the following form:

$$Q = Q_1 \sqcup Q_2 \sqcup \ldots \sqcup Q_M$$

Where $Q_i = C_1 \sqcap C_2 \sqcap ... \sqcap C_N$

Each C_j is an atomic concept, a negated atomic concept of a quantified atomic concept (C_j, \neg C_j, \forall R.C_j or \exists R.C_j)

Q₃ = [Teacher □ Researcher] ⊔ [Student □ Researcher]

Enriching	Mode			
Variables			Produced	
Approximate	Expanded	Restricted	Reformulated	
Compose			Queries	
Specialize				
Generalize				
At least one is	TRUE	FALSE	Exact	
TRUE			Enriched	
All are FALSE	TRUE	FALSE	Exact	
At least one is	FALSE	TRUE	Exact	
TRUE			Enriched, if Exact is	
			EMPTY	
All are FALSE	FALSE	TRUE	Exact	

SemRef(Q, P₁, P₂, Co[O₁,O₂], MODE, REF_VAR, Q_{exact}, Q_{enriched})

Input: Q, P₁, P₂, Co[O₁,O₂], MODE, REF_VAR

Output: Qexact, Qenriched

1.	For each conjunctive query Q_k in Q
2.	Find exact reformulation Q_{k}_{exact} of Q_{k}
3.	If (one of APPROXIMATE, COMPOSE, SPECIALIZE, GENERALIZE is TRUE
4.	Then
5.	Find enriched reformulation $Q_{k_enriched}$ of Q_k
6.	End For;
7.	If (at least one of $Q_{k_exact} \neq \emptyset$)
8.	Then
9.	Build final exact reformulation Q_{exact} of Q
10.	$ElseQ_{exact} \leftarrow \varnothing$
11.	If ((MODE is expanded) or (MODE is restricted and Q_{exact} is empty)) and
12.	(at least one of $Q_{k_enriched} \neq \emptyset$)
13.	Then
14.	Build final enriched reformulation Q _{enriched} of Q
15.	$Else Q_{enriched} \leftarrow \varnothing$
16.	End <i>SemRef</i> ,

The *SemRef* Approach – Main steps through an Example

Approximate = TRUE + Query Reformulation Mode = Expanded Q = Faculty // ¬AssistantProfessor

 $Q_{1} = Faculty$ $S_{1}C_{1}, S_{2}C_{1}, Neg_{2}C_{1} = \{\}$ $S_{1}C_{1} = \{Faculty\}$ $S_{2}C_{1} = \{AdministrativeStaff, Assistant\}$ $Neg_{2}C_{1} = \{\}$

Co₁₂ for O₁:Faculty

 O_1 :Faculty $\equiv O_2$:Faculty

 O_1 :Faculty $\Longrightarrow O_2$:Worker

 O_1 :Faculty $\cong O_2$:AdministrativeStaff

$$O_1$$
:Faculty $\approx O_2$:Assistant

Q1_exact = [Faculty]

Q1_enriched = [AdministrativeStaff \] Assistant]

The *SemRef* Approach – Main steps through an example

- $Q_2 = -AssistantProfessor$ $S_1C_1, S_2C_1, Neg_S_2C_1 = \{ \}$
- $S_1C_1 = \{ \}$
- $S_2C_1 = \{VisitingProfessor\}$

Neg_S₂C₁ = {AssociateProfessor, FullProfessor }

Co₁₂ for O₁:AssistantProfessor

 O_1 :AssistantProfessor $\approx O_2$:VisitingProfessor

 O_1 :AssistantProfessor $\downarrow O_2$:Professor

 O_1 :AssistantProfessor \square_O_2 :AssociateProfessor

O₁:AssistantProfessor <u>L</u>O₂:FullProfessor

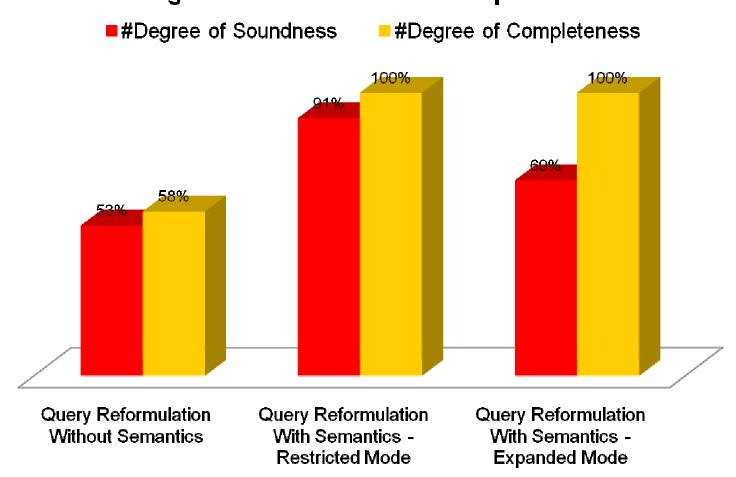
 Q_2 _exact = Ø

Q₂_enriched = [-,VisitingProfessor ⊔ AssociateProfessor ⊔ FullProfessor]

Q_{exact} = [Faculty]

Q_{enriched} = [AdministrativeStaff ⊔ Assistant] ⊔ [¬VisitingProfessor ⊔ AssociateProfessor ⊔ FullProfessor]

Implementation Issues – *SemRef* Module


📓 Semantic Query Submission Module				
Configuration Query Logs Application				
Peer Ontology	DL SPARQL Concept Home			
©Person	▲ [UndergraduateStudent Monitor] [PhdStudent] ¬Worker Constructors:			
•homepage •emailAddress •fax •photo	n LOG			
etelephone	Reformulation LOG			
©Student ©UndergraduateS ©GraduateStuder ©PhDStudent	<pre></pre>			
©Worker ©AdministrativeSt ©ClericalStaff ©SystemsStaff ©Faculty ©AssistantProf ©FullProfessor ©Lecturer ©TechnicalStaff ©Product ©SoftwareComponer ©Project • projectTitle ©ResearchProject ©DevelopmentProje	Query Reformulation Mode: Expanded Using Enriching Variables: Yes Selected Variables: - Approximate - Generalize - Specialize Original Query (Source Peer): [UndergraduateStudent □ Monitor] ⊔ [PhDStudent] ⊔ ¬Worker Exact Query (Target Peer): [[¬Worker]] Enriched Query (Target Peer): [[MasterStudent ⊔ GraduateStudent]] ⊔ [[¬Person ⊔ ¬Assistant ⊔ ¬Faculty ⊔ ¬AdministrativeStaff ⊔ UndergraduateStudent]]			
©SoftwareProject ©Publication •year •keywords •abstract Back Curre	Query Reformulation Mode: Expanded Using Enriching Variables: Yes Selected Variables: - Approximate - Generalize - Specialize			

Implementation Issues – *SemRef* Module

Configuration Query Logs Application	Templates	
Peer Ontology	DL SPARQL Concept	Home
©UndergraduateStudent ©GraduateStudent ©PhDStudent ©Worker ©AdministrativeStaff ©ClericalStaff ©SystemsStaff ©Faculty ©AssistantProfessor ©FullProfessor ©Lecturer	 SELECT distinct ?x FROM <http: ontology="" portal="" swrc.ontoware.org=""></http:> WHERE { ?x rdf:type <http: ontology="" portal#publication="" swrc.ontoware.org=""></http:> Limit 20 	Templates: One Concept Union Intersection Negation
©TechnicalStaff ©Product ©SoftwareComponent ©Project ●projectTitle ©ResearchProject ©DevelopmentProject ©SoftwareProject	Query reformulation mode: Submit Legend: Restricted Expanded XX = Limit Query Result	Y = Concept and t
©Publication •year •keywords •abstract	Manual_45 	
 pubTitle note ©Proceedings ©Thesis 	Book_40	=
●type ©DoctoralThesis ©MasterThesis	unofficialPublication_53	

20

Experiments and Results

Degree of Soundness and Completeness

Related Work

Approach	Environment	Representation Model	Formalism	Query Language
[Necib 2007]	Single Databases	Relational	Term Rewriting Systems	SQL
[Kostadinov 2007]	Mediator-based System	Relational	Conjunctive Query	SQL
Piazza [Halevy et al. 2005]	PDMS	Relational and XML	Conjunctive Query	XQuery or Conjunctive Query
OPDMS [Xiao and Cruz 2006]	PDMS	RDF	FOL (First Order Logic)	Conjunctive RQL Query
WTA [Calvanese et al. 2004]	PDMS	Knowledge-based - FOL	FOL (First Order Logic)	FOL Query
SomeRDFS [Adjman et al. 2007]	PDMS/Semantic Web	RDF	DL and FOL	FOL Query
CA [Stuckenschmidt et al. 2005]	Weakly-Structured Environments	Terminological	DL	Boolean Query
SemRef	Dynamic Distributed Environments; OPDMS	OWL	DL (Description Logics)	<i>ALC </i> DL SPARQL

Related Work

Approach	Mapping/Correspondence Type	Semantics Usage	Reformulation Rules
[Necib 2007]	Equivalence (between database schema and ontology	Ontology	Extension Rules Reduction Rules
[Kostadinov 2007]	LAV mappings	User Profiles	Enrichment Rules Translation rules using LAV
Piazza [Halevy et al. 2005]	Equivalence, Inclusion and Definitional Mappings	Metadata in a Catalog	Translation Rules, using GAV/LAV
OPDMS [Xiao and Cruz 2006]	Equivalence, Broader, Narrower, Union and Intersection	Mapping Ontology	Translation Rules
WTA [Calvanese et al. 2004]	Subsumption, Participation of classes in roles		Translation Rules
SomeRDFS [Adjman et al. 2007]	Equivalence, Inclusion, Disjunction		Translation Rules
CA [Stuckenschmidt et al. 2005]	Equivalence, Specialization, Generalization	Terminological reasoning and query relaxation	Concept Approximation in terms of Lower and Upper Bounds
SemRef	Equivalence, Specialization, Generalization, Closeness, Disjointness, Aggregation (PartOf) and Aggregation (WholeOf)	Domain Ontology, Semantics underlying Correspondences and Contextual Information	Exactness and Enrichment Rules

Conclusions

- This work has presented a semantic-based query reformulation approach instantiated in a PDMS that brings together both query enrichment and query reformulation.
 - SemRef approach goes beyond traditional correspondences usage (e.g., *closeness*).
 - ✓ SemRef uses contextual information.
 - SemRef prioritizes the generation of exact reformulations but it also generates an enriched version
- Experiments carried out have shown that considering semantics, enriched reformulations are generated, providing additional expanded reformulations.

- Rules are being developed to allow reasoning over the contextual information already instantiated in a specific context ontology [Souza et al. 2008].
 - This reasoning might improve the query reformulation and routing processes.
- We will instantiate additional query reformulation scenarios which may allow us to work with other different contextual settings and with larger datasets.

Using Semantics to Enhance Query Reformulation in Dynamic Environments

Damires Souza (<u>damires@ifpb.edu.br</u>) Thiago Arruda (<u>tan@cin.ufpe.br</u>) Ana Carolina Salgado (<u>acs@cin.ufpe.br</u>) Patricia Tedesco (<u>pcart@cin.ufpe.br</u>) Zoubida Kedad (<u>zoubida.kedad }@prism.uvsq.fr</u>)

➤ Exact Reformulation. A reformulation Q' of a query Q is said to be exact (denoted as Q_{exact}) if each concept (or property) C' of Q' is related to a concept (or property) C of Q by a Co correspondence, where Co ∈ {=}.

Enriched Reformulation. A reformulation Q' of a query Q is said to be enriched (Qenriched) if each concept (or property) C' of Q' is related to a concept (or property) C of Q by a Co correspondence,

where $Co \in \{\sqsubseteq, \sqsupseteq, \bowtie, \bowtie, \checkmark, \checkmark, \checkmark\}$.