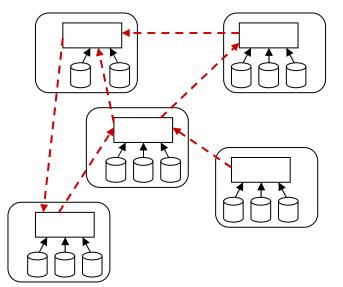


COLIBRI Colóquio Franco-Brasileiro

Using Semantics in Peer Data Management Systems

Carlos Eduardo Pires (cesp@cin.ufpe.br) Damires Souza (damires@ifpb.edu.br) Ana Carolina Salgado (acs@cin.ufpe.br) Zoubida Kedad (zoubida.kedad@prism.uvsq.fr) Mokrane Bouzeghoub (mokrane.bouzeghoub@prism.uvsq.fr)


- Motivation
- SPEED Project
 - Peer Clustering
 - ✓ Query Reformulation
- Further Work
- Cooperation Status

Peer Data Management Systems (PDMS)

Peers represent autonomous and heterogeneous data sources

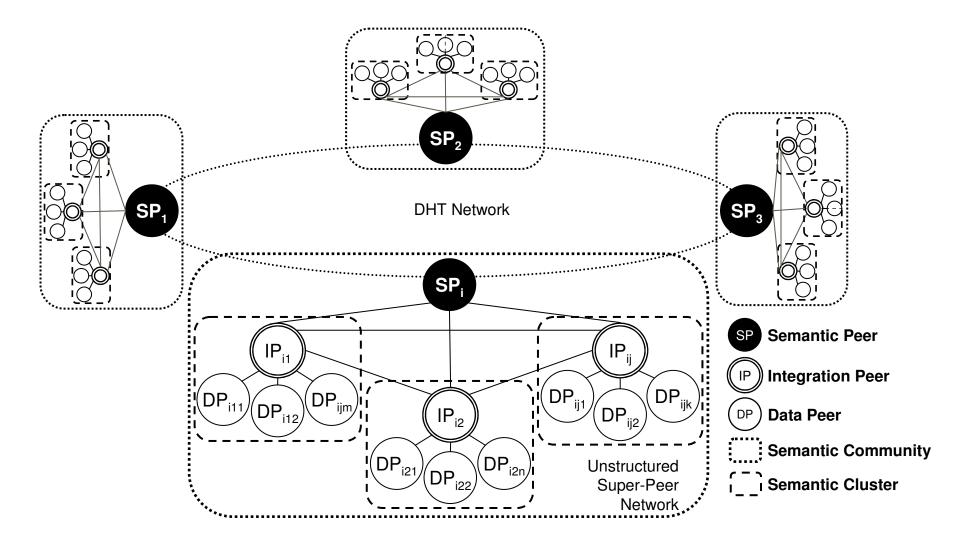
- Sharing structured and semistructured data
- Data are represented through exported schemas
- Lack of a unique global schema
- Schema mappings

Peer Data Management Systems (PDMS)

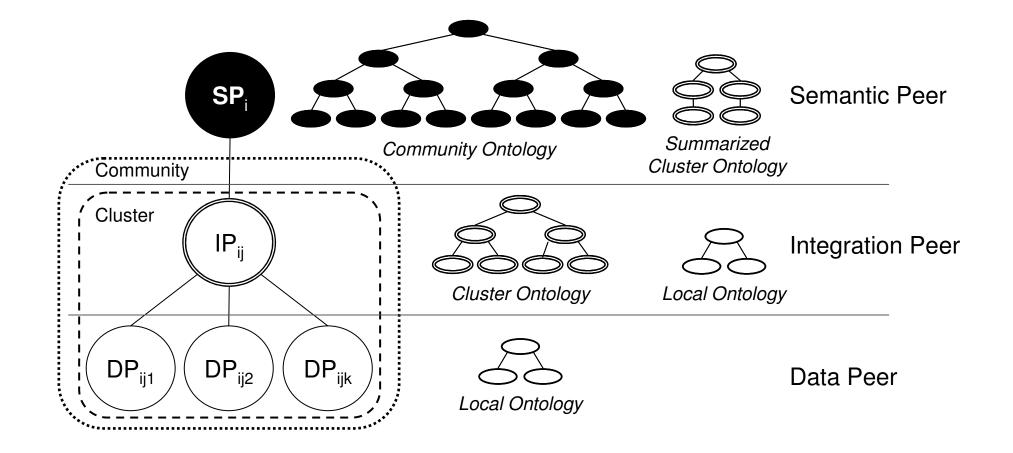
A PDMS consist of a set of peers

- Schema matching techniques are used to establish schema mappings: correspondences between schema elements
 - Schema mappings are defined between pairs of semantic neighbor peers
- Queries submitted at a peer are answered with data residing at that peer and with data that is reached through mappings over the semantic neighbors.

Data Management in PDMS

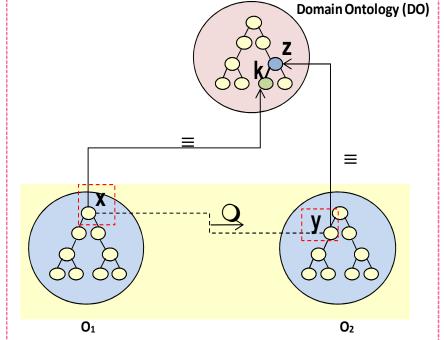

A challenging problem

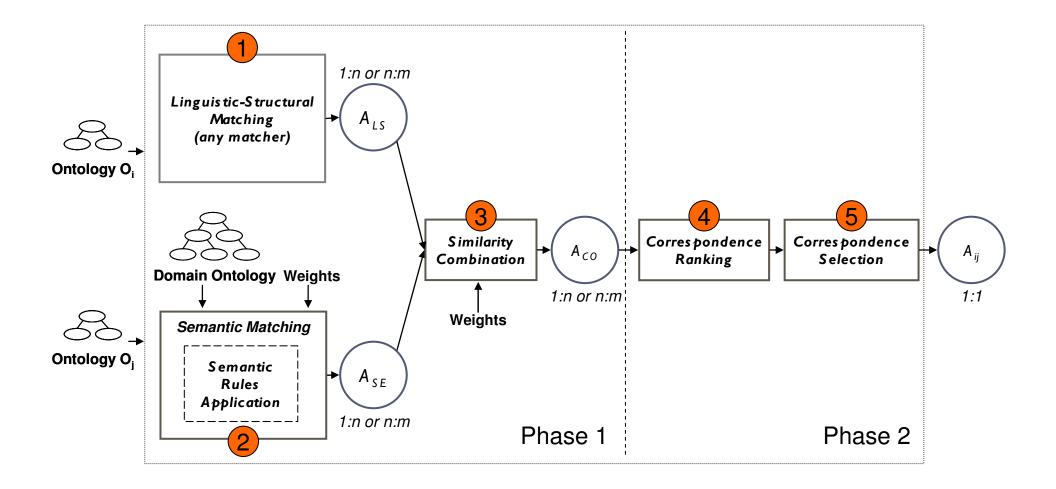
- Excessive number of peers, their autonomous nature, and the heterogeneity of their schemas
- Semantic knowledge in the form of ontologies has proven to be a helpful support
 - Ontologies can be used to represent the semantic content of data sources as well as to unify the semantic relationships between their schemas.


Goal of this Research Project

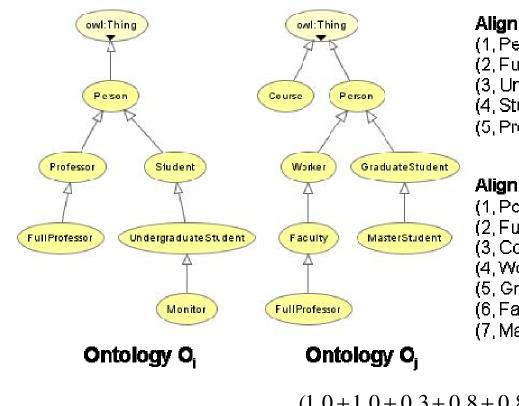
- To exploit the benefits provided by semantics through ontologies and contextual information to enhance data management issues in PDMS
- We propose semantic-based approaches to support:
 - ✓ Peer clustering
 - Schema summarization
 - Schema matching
 - Query reformulation

SPEED – An Ontology-based PDMS


Types of Ontologies


SemMatch – A Semantic Ontology Matcher

- Domain Ontologies DO are used as background knowledge to identify seven types of semantic correspondences:
 - is Equivalent To : $O_1: x \xrightarrow{\equiv} O_2: y$
 - $isSubConceptOf : O_1: x \xrightarrow{\Box} O_2: y$
 - isSuperConceptOf : O₁:x → O₂:y
 - *isPartOf* : $O_1: x \xrightarrow{P} O_2: y$
 - *isWholeOf* : $O_1: x \xrightarrow{\triangleleft} O_2: y$
 - isCloseTo: $O_1: x \cong O_2: y$
 - *isDisjointWith* $O_1: x \xrightarrow{\perp} O_2: y$

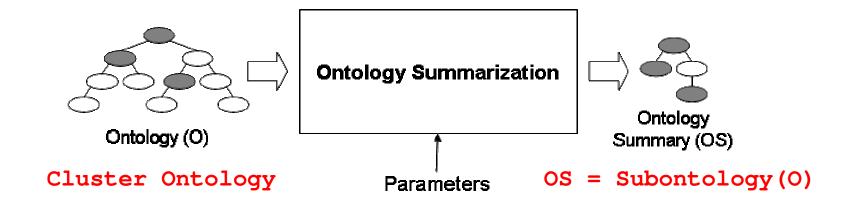

where x and y are elements belonging to the ontologies O_1 and O_2 .

SemMatch – A Semantic Ontology Matcher

Global Similarity Measure

Alignment A_{ii}

- (1, Person, Person, isEcuivalentTo 1.0)
- (2, FullProfessor, FullProfessor isEquivalentTo, 1.0)
- (3, UndergraduateStudent, Course, isPartOf, 0.3)
- (4, Student, Person, isSubConceptOf, 0.8)
- (5, Professor, Faculty, isSubConceptOf, 0.3)


Alignment A_{ii}

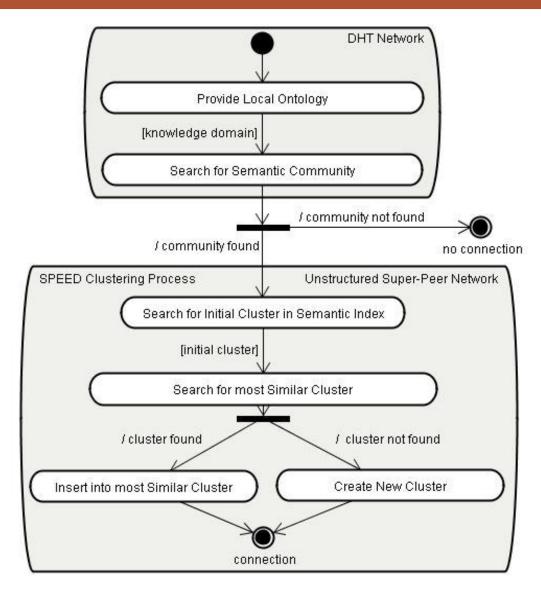
- (1, Person, Person, isEcuivalentTo 1.0)
- (2, FullProfessor, FullProfessor isEquivalentTo, 1.0)
- (3, Course, UndergraduateStudent, isWholeOf, 0.3)
- (4, Worker, Person, isSubConceptOf, 0.8)
- (5, GraduateStudent, UndergraduateStudent, isDisjointWith, 0.0)
- (6, Faculty, Professor, isSuperConceptOf, 0.8),

(7, MasterStudent, Student, isSubConceptOf, 0,8)

Weighted Average
$$(O_i, O_j) = \frac{(1.0 + 1.0 + 0.3 + 0.8 + 0.8) + (1.0 + 1.0 + 0.3 + 0.8 + 0.0 + 0.8 + 0.8)}{|6| + |7|} = 0.66$$

Ontology Summarization

- > Main use in Peer Clustering
 - Resume cluster ontologies (semantic index)
- A summary does not represent a cluster ontology in its entirety
 - Improve ontology matching


Centrality: relationships (number and type) of a concept with other concepts in an ontology O

$$centrality(c_n) = \frac{nr \times \left(\frac{n_s \times w_s}{max_s} + \frac{n_{ud} \times w_{ud}}{max_{ud}}\right)}{|C| - 1}$$

Frequency: occurrences of a concept in local ontologies O₁,...,O_n that compose O

$$frequency(c_n) = \frac{|correspondences(c_n)|}{|O_1,...,O_n|}$$

Ontology-based Peer Clustering

Using Semantics in Peer Data Management Systems

PDMS Simulator

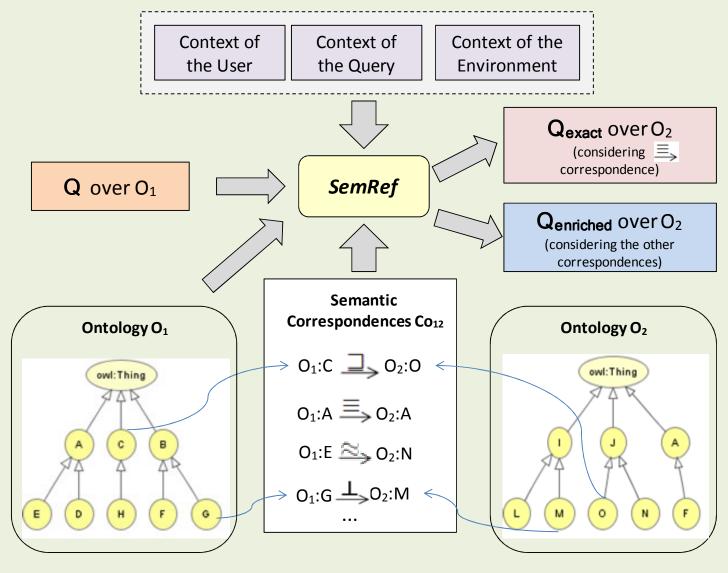
Query Reformulation

How to **reformulate** queries among the peers in such a way that the resulting **set of answers** expresses, as close as possible, what the **users** intended to obtain at query submission time, considering the **dynamicity** of the environment.

- Users' preferences, query semantics and the current status of the environment are taken into account at query reformulation time: *contextual information*
- The original query should be adapted to bridge the gap between the two sets of concepts: query enrichment

The SemRef Approach - Using Context

Users Context (preferences):


- Exact reformulation is the default option
- Enriching variables: Approximate, Specialize, Generalize, and Compose.

> Query Context: Query semantics + Query reformulation mode

- Restricted: the priority is to produce an exact reformulation, although if it results empty, then an enriched reformulation may be provided
- Expanded: exact and enriched reformulations are to be produced.

Environment Context: path_length (number of subsequent reformulations) + submission peer's identification and its neighbors context.

The SemRef Approach

SemRef Module

📓 Semantic Query Submission Module	
Configuration Query Logs Application	
Peer Ontology	DL SPARQL Concept Home
©Person	
 homepage emailAddress fax photo telephone 	Reformulation LOG
©Student ©UndergraduateS ©GraduateStuder ©PhDStudent	<http: univ-bench.owl#graduatestudent="" www.lehigh.edu="" ~zhp2="">}} GNION {?xTul.type ?2 . <http: univ-bench.owl#graduatestudent="" www.lehigh.edu="" ~zhp2=""> rdfs:subClassOf ?y . ?z rdfs:subClassOf ?y . FILTER (?z != <http: univ-bench.owl#graduatestudent="" www.lehigh.edu="" ~zhp2="">)}}}</http:></http:></http:>
©Worker ©AdministrativeS ©ClericalStaff ©SystemsStaff ©Faculty ©AssistantProf ©FullProfesson ©Lecturer ©TechnicalStaff ©Product ©SoftwareComponen ©Project • projectTitle ©ResearchProject ©DevelopmentProje	Query Reformulation Mode: Expanded Using Enriching Variables: Yes Selected Variables: - Approximate - Generalize - Specialize Original Query (Source Peer): [UndergraduateStudent □ Monitor] ⊔ [PhDStudent] ⊔ ¬Worker Exact Query (Target Peer): [[¬Worker]] Enriched Query (Target Peer): [[MasterStudent ⊔ GraduateStudent]] ⊔ [[¬Person ⊔ ¬Assistant ⊔ ¬Faculty ⊔ ¬AdministrativeStaff ⊔ UndergraduateStudent]]
©SoftwareProject ©Publication •year •keywords •abstract Back Curre	Query Reformulation Mode: Expanded Using Enriching Variables: Yes Selected Variables: - Approximate - Generalize - Specialize

Using Semantics in Peer Data Management Systems

Further Work

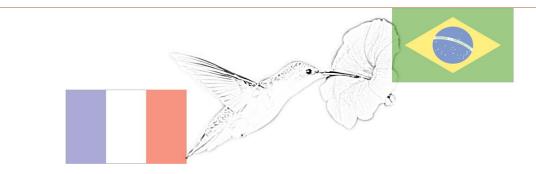
Two relevant issues:

\checkmark (i) the maintenance of semantic communities

the evolution of cluster ontologies

✓ (ii) query routing

- preserve the query semantics at the best possible level of approximation
- enhance the selection of relevant semantic neighbors
- personalize query results according to user's profile


Proposal of an Ontology Management Framework

✓ Match, merge, translate and summarize

Cooperation Status

CIn/UFPE and PRiSM/UVSQ

- ✓ 90's two PhD students
- ✓ 2002 a PhD 'sandwich' and a scientific visit
- ✓ Since then
 - Research visits
 - Cooperation project: STIC/Amsud (2008-2009)
 - France: Univ. de Versailles and Univ. Paul Cézanne (Aix-Marseille)
 - Brazil: UFPE and UFC
 - Uruguay: Universidad de la República
 - A sabatical year (2007-2008)
 - Another PhD 'sandwich' (2008)
 - Joint publications

COLIBRI Colóquio Franco-Brasileiro

Using Semantics in Peer Data Management Systems

Carlos Eduardo Pires (cesp@cin.ufpe.br) Damires Souza (damires@ifpb.edu.br) Ana Carolina Salgado (acs@cin.ufpe.br) Zoubida Kedad (zoubida.kedad@prism.uvsq.fr) Mokrane Bouzeghoub (mokrane.bouzeghoub@prism.uvsq.fr)

Using Semantics in Peer Data Management Systems