

Using Semantics to Enhance

Query Reformulation in

Dynamic Distributed Environments
by

Damires Yluska Souza Fernandes

PhD. Thesis

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE, APRIL / 2009

Universidade Federal de Pernambuco

Centro de Informática

Damires Yluska Souza Fernandes

Using Semantics to Enhance

Query Reformulation

in Dynamic Distributed Environments

Thesis presented to the Graduate

Program in Computer Science of the

Federal University of Pernambuco as

a partial fulfillment of the

requirements for the degree of Doctor

of Science (D.Sc.) in Computer

Science.

Advisor: Ana Carolina Salgado

Co-Advisor: Patricia Azevedo Tedesco

RECIFE, APRIL / 2009

Fernandes, Damires Yluska de Souza
 Using semantics to enhance query reformulation in dynamic distributed
environments / Damires Yluska de Souza Fernandes - Recife : O autor, 2009.
 xiv, 172 folhas : il., fig., tab. graf.

 Tese (doutorado) - Universidade Federal de Pernambuco. CIN - Ciência da
Computação, 2009.

 Inclui bibliografia e apêndice.

 1. Banco de Dados. 2. Reformulação de consulta. 3. Semântica. 4. Ambientes
distribuídos e dinâmicos. I. Título.

 005.74 CDD (22.ed.) MEI 2009-075

To my parents, Edmilson and Lourdinha,

To my husband, Fabio,

To my children, Victor, Amanda and Renan.

Without your unconditional love,

support and sacrifice,

this thesis would not have been possible.

Deep Inside
By Taylor Duncan

Standing on the beach, sand between my toes

What lays in my future, who will come and go

The sun beams down upon me, as I raise my head and look

At the vast ocean before me, its size which I mistook

I feel so insignificant compared to this great expanse

What difference can I make, will I even be given a chance

I realize then while standing there, that all I have to do

Is listen to my heart and it will pull me through

For strength and inspiration are not material things

They come from deep inside of you they give your soul its wings

So whenever you're in doubt and you begin to stray

Take a look down deep inside and the answer will come your way

If you believe in yourself you can make your dreams come true

For no one else can do it, the power must come from you

V

AAAAAAAACCCCCCCCKKKKKKKKNNNNNNNNOOOOOOOOWWWWWWWWLLLLLLLLEEEEEEEEDDDDDDDDGGGGGGGGEEEEEEEEMMMMMMMMEEEEEEEENNNNNNNNTTTTTTTTSSSSSSSS
This thesis would not have become a reality if I have not got the contribution of a lot of

people. First of all, I thank my scientific advisors for their constant support, patience,

suggestions and criticisms during my PhD years. In particular, I would like to thank

Prof. Ana Carolina Salgado for receiving me as her student, and believe that I could

accomplish such hard task. I have learned a lot with you, Carol, not only by the

academic lessons, but also by your way of being a great and special woman. You are an

example for me! In the same way, I have been increasingly grateful with the opportunity

to be advised by Prof. Patricia Tedesco. In fact, I consider that she has been my co-

advisor since the first day I came into her classes, and we started to discuss about agents

and context. Paxi, I am very grateful for all your help, patience, and hearing me not only

in good, but in bad times. You have an incredible computational view of everything!

 I would also like to thank Professor Mokrane Bouzeghboud who received me in

Versailles with special attention and hospitality. Thank you, Professor, our meetings in

France were actually essential for my research. A deep and sincere special thanks to my

third “informal” advisor, Prof. Zoubida Kedad, who influenced my work by providing

valuable ideas in many interesting discussions. Zoubida, you are an example of

researcher, and I feel very lucky for the opportunity to work with you!

I am very grateful to my thesis committee members, Prof. Carlos Heuser, Prof.

Ana Maria Moura, Prof. Bernadette Lóscio, Prof. Fred Freitas and Prof. Fernando

Fonseca, for the time they have spent in reviewing my thesis. I would like to say that

Bernadette is a very special person for me. Berna, I enjoyed a lot being with you in

France. You were more than a friend in good times and in bad times.

I thank all CIn professors who taught me, helped me or with whom I had the

opportunity to learn and discuss computational issues: Prof. Flavia, Prof. Silvio Meira,

Prof. Jones, Prof. Fernando, Prof. Nelson, Prof. Valeria, Prof. Fred and Prof. Liliane.

Thanks for the support of Lilia and Neide. I also thank my friends from CEFET/PB who

gave me support and incentive to my studies.

Friends born here have been a big part of my life and I am grateful for all of

them: Vaninha, Rosalie, Marcia, Leonardo, Silvia, Ana Paula. Thank you for your

friendship and support. I learned a lot with each one of you! I also thank my friends of

SPEED group, namely Thiago Pacheco, Thiago Arruda, Rocir, Rodrigo, Victor and

Carlos Eduardo. Special thanks to Pacheco and Arruda for their substantial

contributions to my work and for the implementation of the tools. Also, special thanks

VI

to Carlos Eduardo with whom I have shared most of my PhD studies, doubts and

discussions. Carlos, you are a great guy!

The greatest acknowledgement I reserve for my family, for their support,

patience and love. My parents, Edmilson and Lourdinha, thank you for giving me the

best start in life I could ever have. You were, are and will always be references in my

life!!! I love you! My brothers and sisters, Andre and Sandra, Ed and Erica, Adriano

and Andrea, you are all very special for me. Your encouragement made me stronger and

persistent! Special thanks to Andre and Sandra for receiving me in their home,

supporting my stay in Recife with so tender hospitality! I will always be grateful to

you!! Also, I would like to thank my parents-in-law, Herculano and Lucia, for their

support and incentive.

Most of all, I thank my children and my husband. Thank you very much for

being part of my life! Thank you for your love, confidence and patience during all the

times, including when I was absent. My dear Victor, Amanda and Renan, you three are

the meaning of my life! I love you so much! My dear Fabio, thank you for being this

special husband, thank you for your love, help, support and for not letting me down. I

love you!

At last, but not least, thanks God for giving me health and emotional conditions

to accomplish the hard task of conducting my PhD Studies.

VII

AAAAAAAABBBBBBBBSSSSSSSSTTTTTTTTRRRRRRRRAAAAAAAACCCCCCCCTTTTTTTT

Query answering has been addressed as a key issue in dynamic distributed

environments. An important step in this process is reformulating a query posed at a peer

into a new query expressed in terms of a target peer, considering existing

correspondences between them. Traditional approaches usually aim at reformulating

queries by means of equivalence correspondences. However, concepts from a source

peer do not always have exact corresponding concepts in a target one, what may result

in an empty reformulation and, possibly, no answer to users. In this case, if users define

that it is relevant for them to receive semantically related answers, it may be better to

produce an enriched query reformulation and, consequently, close answers than no

answer at all.

In this work, we propose a semantic-based approach, named SemRef, which

brings together both query enrichment and query reformulation techniques in order to

provide users with a set of expanded answers. Exact and enriched query reformulations

are produced as a means to obtain this set of answers. To this end, we make use of

semantics which is mainly acquired from a set of semantic correspondences that extend

the ones commonly found. Examples of such unusual correspondences are closeness

and disjointness. Furthermore, we take into account the context of the user, of the query

and of the environment as a way to enhance the overall process and to deal with

information that can only be acquired on the fly.

We formalize our definitions using ALC Description Logics and present the

algorithm underlying our approach with properties that guarantee its soundness and

completeness. We implement the SemRef algorithm within a query submission and

execution module for a Peer Data Management System (PDMS). We provide examples

illustrating its usage and advantages. Finally, we present the experimentation we have

done with SemRef and the obtained results.

Keywords: Query Reformulation, Semantics, Context, Dynamic Distributed

Environments

VIII

RRRRRRRREEEEEEEESSSSSSSSUUUUUUUUMMMMMMMMOOOOOOOO
O processamento de consultas tem sido abordado como um problema central em

ambientes dinâmicos e distribuídos. O ponto crítico do processamento, no entanto, é a

reformulação da consulta submetida em um ponto origem em termos de um ponto

destino, considerando as correspondências existentes entre eles. Abordagens

tradicionais, em geral, realizam a reformulação utilizando correspondências de

equivalência. Entretanto, nem sempre conceitos de um ponto origem têm

correspondentes equivalentes no ponto destino, o que pode gerar uma reformulação

vazia e, possivelmente, nenhuma resposta para o usuário. Neste caso, se o usuário

considera interessante receber respostas relacionadas, mesmo que não precisas, é melhor

gerar uma reformulação adaptada ou enriquecida e, por consequência, respostas

aproximadas, do que nenhuma.

Dentro deste escopo, o presente trabalho propõe um enfoque baseado em

semântica, denominado SemRef, que visa integrar técnicas de enriquecimento e

reformulação de consultas de forma a prover usuários com um conjunto de respostas

expandidas. Reformulações exatas e enriquecidas são produzidas para permitir alcançar

esse conjunto. Para tal, usamos semântica obtida principalmente de um conjunto de

correspondências semânticas que estendem as normalmente encontradas na literatura.

Exemplos de correspondências não usuais são closeness e disjointness. Além disso,

usamos o contexto do usuário, da consulta e do ambiente como meio de favorecer o

processo de reformulação e lidar com informações que somente são obtidas

dinamicamente.

Formalizamos as definições propostas através da Lógica Descritiva ALC e

apresentamos o algoritmo que compõe o enfoque proposto, garantindo, através de

propriedades aferidas, sua corretude e completude. Desenvolvemos o algoritmo SemRef

através de um módulo de submissão e execução de consultas em um Sistema de

gerenciamento de dados em ambiente P2P (PDMS). Mostramos exemplos que illustram

o funcionamento e as vantagens do trabalho desenvolvido. Por fim, apresentamos a

experimentação realizada com os resultados que foram obtidos.

Palavras-chave: Reformulação de Consultas, Semântica, Contexto, Ambiente

Dinâmico e Distribuído.

IX

TTTTTTTTAAAAAAAABBBBBBBBLLLLLLLLEEEEEEEE OOOOOOOOFFFFFFFF CCCCCCCCOOOOOOOONNNNNNNNTTTTTTTTEEEEEEEENNNNNNNNTTTTTTTTSSSSSSSS
Chapter 1 ... 1

Chapter 2 ... 7

2.1. Query Reformulation in Data Integration ... 7

2.1.1. Query Reformulation in Mediator-based Systems ... 8

2.1.2. Query Reformulation in PDMS ... 11

2.2. Query Reformulation by Expansion .. 14

2.3. Query Reformulation by Personalization .. 15

2.4. Existing Query Reformulation Approaches ... 17

2.4.1. Query Reformulation in a Single Database Using an Ontology .. 17

2.4.2. Query Reformulation using Profile Knowledge .. 19

2.4.3. Query Reformulation in Piazza ... 20

2.4.4. Query Reformulation in an Ontology based PDMS .. 22

2.4.5. Query Reformulation in “What to Ask to a Peer” .. 22

2.4.6. Query Reformulation in SomeRDFS ... 23

2.4.7. Query Reformulation by Concept Approximation ... 24

2.4.8. Comparative Analysis ... 26

2.5. Concluding Remarks ... 28

Chapter 3 ... 29

3.1. Ontology ... 29

3.1.1. Basic Notions .. 30

3.1.2. Ontology Reasoning and Representation... 32

3.1.3. Ontology in Distributed Environments ... 33

3.2. Description Logics ... 36

3.2.1. Description Logics Languages ... 37

3.2.2. Distributed Description Logics ... 38

3.3. Context ... 40

3.3.1. Context-Sensitive Systems ... 41

3.3.2. Context Representation ... 43

3.3.3. Context in Databases and Data Integration ... 44

3.4. Concluding Remarks ... 46

Chapter 4 ... 47

4.1. Using Domain Ontologies to Identify Semantic Correspondences 47

4.1.1. Correspondences Specification .. 49

4.1.2. A More Complete Example .. 59

4.1.3. Comparing Existing Approaches with Ours .. 62

4.1.4. Considerations.. 63

4.2. Using an Ontology to Represent Context .. 63

4.2.1. CODI – A Context Ontology for Data Integration ... 64

X

4.2.2. CODI in Practice .. 69

4.2.3. Considerations.. 74

4.3. Using Ontologies to Define OPDMS .. 74

4.4. Concluding Remarks ... 76

Chapter 5 ... 77

5.1. Overview of the Approach .. 78

5.2. Enriching Queries and Producing Expanded Answers ... 80

5.3. Using Context to Enhance Query Reformulation... 82

5.4. The SemRef Algorithm .. 85

5.5. A More Complete Example ... 94

5.6. Comparative Analysis ... 99

5.7. Concluding Remarks ... 101

Chapter 6 ... 103

6.1. Running Setting ... 103

6.1.1. System Architecture ... 103

6.1.2. Mapping Expressions and Correspondences.. 105

6.2. SemRef Implementation ... 108

6.2.1. Semantic Matcher .. 110

6.2.2. SemRef Module .. 113

6.2.3. Semantics Preserving ALC/DL-to-SPARQL Query Translation 116

6.3. Concluding Remarks ... 120

Chapter 7 ... 122

7.1. Overview of the Adopted Methodology ... 122

7.2. Experimentation Purposes .. 123

7.3. Experimentation Planning... 125

7.3.1. Hypotheses Definition .. 125

7.3.2. Instrumentation Description .. 126

7.3.3. Setting Overview .. 126

7.3.4. Variables ... 127

7.4. Operation.. 128

7.5. Results Analysis .. 132

7.6. Concluding Remarks ... 135

Chapter 8 ... 137

8.1. Thesis Contributions ... 138

8.2. Future Work .. 140

8.3. Concluding Remarks ... 141

XI

References .. 142

Appendix A .. 151

Appendix B .. 153

Appendix C .. 156

Appendix D .. 159

Appendix E .. 162

E.1 Complete Set of Submitted Queries ... 162

E.2 Complete Set of Experiments ... 165

E.3 A Small Fragment of the Experiments Using Queries Expressed in SPARQL 172

XII

LLLLLLLLIIIIIIIISSSSSSSSTTTTTTTT OOOOOOOOFFFFFFFF FFFFFFFFIIIIIIIIGGGGGGGGUUUUUUUURRRRRRRREEEEEEEESSSSSSSS
Figure 1.1 Query Answering in a Distributed Environment _____________________________________ 2

Figure 1.2 Query Reformulation Setting __ 4

Figure 1.3 Thesis Organization ___ 5

Figure 2.1 GAV Matching between sources and the mediator [adapted from Bilke 2007] _____________ 9

Figure 2.2 LAV Matching between sources and the mediator __________________________________ 10

Figure 2.3 Query Reformulation in a Pure PDMS __ 13

Figure 2.4 Query Reformulation in a Super Peer PDMS _______________________________________ 13

Figure 2.5 Product Ontology __ 18

Figure 2.6 Kostadinov’s Query Reformulation Process [Kostadinov 2007] ________________________ 20

Figure 2.7 Hierarchies of two different peers on the same domain ______________________________ 25

Figure 3.1 An excerpt from an Animal Taxonomy __ 32

Figure 3.2 An excerpt from a cleaned Ontology [Guarino and Welty 2004] _______________________ 36

Figure 3.3 Ontology O1 (using OntoViz Notation) __ 40

Figure 3.4 Ontology O2 ___ 40

Figure 4.1 Using a DO to Specify Semantic Correspondences between Ontologies _________________ 51

Figure 4.2 An Illustrative Domain Ontology __ 52

Figure 4.3 Matching Ontologies ___ 52

Figure 4.4 Specifying the isEquivalentTo Correspondence _____________________________________ 53

Figure 4.5 Specifying the isSubConceptOf and isSuperConceptOf Correspondences _________________ 53

Figure 4.6 Specifying the isPartOf and isWholeOf Correspondences _____________________________ 54

Figure 4.7 Specifying the isCloseTo Correspondence ___ 56

Figure 4.8 Specifying the isDisjointWith Correspondence _____________________________________ 58

Figure 4.9 A Domain Ontology about Organisms __ 58

Figure 4.10 Matching Ontologies __ 59

Figure 4.11 Excerpts from Conference Ontologies O1 and O2 __________________________________ 60

Figure 4.12 Excerpt from Conference Domain Ontology ______________________________________ 60

Figure 4.13 The Domain Entities’ taxonomy and some CODI’s CEs ______________________________ 65

Figure 4.14 CEs for the User domain entity ___ 65

Figure 4.15 CEs for the Association domain entity ___ 66

Figure 4.16 CEs for the Procedure domain entity __ 66

Figure 4.17 CEs for the Application domain entity ___ 67

Figure 4.18 CEs for the Data domain entity __ 67

Figure 4.19 CEs for the Environment domain entity __ 68

Figure 4.20 Ontologies for Peers A and B __ 69

Figure 4.21 CEs at Query Submission Time ___ 71

Figure 4.22 CEs at Query Analysis Time ___ 71

Figure 4.23 CEs at Relevant Peer’s Establishment Time _______________________________________ 72

Figure 4.24 Some Correspondences between Ontologies B and A _______________________________ 72

Figure 4.25 CEs at Query Reformulation Time __ 73

Figure 5.1 Query Reformulation Setting ___ 79

Figure 5.2 Activity Diagram for User’s Query Submission _____________________________________ 84

Figure 5.3 High Level View of the SemRef Algorithm ___ 88

Figure 5.4 The SemRef Algorithm __ 90

Figure 5.5 Excerpts from the Ontologies of P1 and P2 __ 95

Figure 5.6 Excerpt from the Education Domain Ontology _____________________________________ 95

XIII

Figure 6.1 Overview of SPEED’s architecture [Pires et al. 2008] _______________________________ 104

Figure 6.2 Mapping Expressions and Correspondences in SPEED ______________________________ 105

Figure 6.3 Query Module Architecture ___ 109

Figure 6.4 Use Case Diagram for Semantic Matcher __ 111

Figure 6.5 The Semantic Matching Tool Interface __ 112

Figure 6.6 Some Correspondences between Matching Ontologies _____________________________ 112

Figure 6.7 Use Case Diagram for SemRef ___ 113

Figure 6.8 Query Interface with DL Query Formulation Option ________________________________ 115

Figure 6.9 Query Interface with SPARQL Query Formulation Option ____________________________ 116

Figure 7.1 Exact, Enriched and Empty Reformulations over Possible Ones _______________________ 133

Figure 7.2 Total of Query Reformulations, when considering Qexact and Qenriched as one ____________ 134

Figure 7.3 Degree of Soundness and Completeness ___ 134

Figure A.1 Build_Enriched Reformulation Function ___ 151

Figure A.2 Build_Enriched Reformulation Function ___ 151

Figure A.3 The Build_Final_Exact_Reformulation Function ___________________________________ 152

Figure A.4 The Build_Final_Enriched_Reformulation Function ________________________________ 152

Figure B.1 SemiPort.OWL Ontology__ 153

Figure B.2 UnivBench.OWL Ontology __ 154

Figure B.3 UnivCsCMO.OWL Ontology ___ 155

Figure C.1 Reformulation Log for an ALC/DL Query _______________________________________ 156

Figure C.2 Reformulation Log for a SPARQL Query __ 157

Figure C.3 Answers’ Log for an ALC/ DL Query ___ 157

Figure C.4 Answers’ Log for a SPARQL Query __ 158

Figure D.1 TravelCLO1.OWL Ontology ___ 159

Figure D.2 TravelCLO2.OWL Ontology ___ 160

Figure D.3 TravelCMO.OWL Ontology __ 161

XIV

LLLLLLLLIIIIIIIISSSSSSSSTTTTTTTT OOOOOOOOFFFFFFFF TTTTTTTTAAAAAAAABBBBBBBBLLLLLLLLEEEEEEEESSSSSSSS
Table 2.1 Database for “Restaurants” .. 16

Table 2.2 Preferences for Types of Cuisines .. 17

Table 2.3 Answers Set ... 17

Table 2.4: Article ... 19

Table 2.5: Components ... 19

Table 2.6: Comparative Analysis of Query Reformulation Approaches .. 27

Table 3.1 Ontologies O1 and O2 (TBox and ABox) ... 39

Table 3.2 Bridge-Rules between O1 and O2 .. 39

Table 4.1. Semantic correspondences between O1 and O2 .. 60

Table 5.1 User Preferences and Produced Reformulations .. 88

Table 5.2. Some Semantic Correspondences between O1 and O2.. 96

Table 5.3. Some other Semantic Correspondences between O1 and O2 .. 97

Table 5.4. Some Semantic Correspondences between O2 and O1.. 98

Table 5.5: Comparative Analysis of Query Reformulation Approaches with Ours 100

Table 6.1 Semantic Neighboring of a Peer I1 .. 106

Table 6.2 ALC/DL-to-SPARQL Translation Examples .. 120

Table 7.1 Query Reformulation without Semantics – Mode: Restricted ... 129

Table 7.2 Query Reformulation with Semantics – Mode: Restricted with Enriching Variables 129

Table 7.3 Query Reformulation with Semantics – Mode: Expanded and Enriching Variables 130

Table 7.4 Number of Produced Exact, Enriched and Empty Reformulations .. 131

Table 7.5 Produced Reformulations, considering Exact and Enriched as One .. 131

Table 7.6 Degree of Soundness and Completeness .. 132

CCCCCCCCHHHHHHHHAAAAAAAAPPPPPPPPTTTTTTTTEEEEEEEERRRRRRRR 11111111
‘How do you know I’m mad?’ said Alice.

‘You must be,’ said the Cat,

‘or you wouldn’t have come here.’

from “Alice’s Adventures in Wonderland”, Lewis Carroll

Introduction

The increasing use of computers and the development of communication infrastructures

have led to a wide range of data sources being available through networks. As a

consequence, there has been a demand for high-level integration of such autonomous

and heterogeneous data sources through the development of diverse distributed

environments, including Data Integration Systems [Halevy et al. 2006; Lóscio 2003],

Peer Data Management Systems (PDMS) [Arenas et al. 2003; Herschel and Heese

2005; Sung et al. 2005] and DataSpaces [Franklin et al. 2005]. These dynamic

distributed environments are characterized by an architecture constituted by various

autonomous data sources (e.g., sites, files, databases), here referred to as peers, which

hold information, and which are linked to other ones by means of mappings (i.e.

associations between schema elements), called hereafter as correspondences. One

special problem concerning these architectures is how to exploit the correspondences

between schema elements in order to answer queries posed to one peer [Calvanese et al.

2004; Stuckenschmidt et al. 2005] in terms of a target peer and provide users with

results in conformance with their preferences.

The existence of multiple different schemas describing related data is a common

phenomenon in those distributed settings. Examples of scenarios which may benefit

from such settings are scientific research ones such as biology, geography, health,

education. In these scenarios, people have overlapping data, and they want to access

other sources’ additional information. In general, query answering in such environments

is usually accomplished by the following steps: (i) query submission; (ii) query

analysis; (iii) relevant data sources’ identification; (iii) query reformulation; (iv) query

execution; (v) answers integration; and (vi) query result presentation. Among such

steps, query reformulation has been considered one of the most important, since it is

Chapter 1 – Introduction 2

concerned with the ability of translating the queries according to a set of inter-schema

correspondences. Thus, when a user, at a given peer P, formulates a query posed over its

schema, answers are computed at P, and the query is reformulated and forwarded to

other peers through correspondence paths in the network. Since peers usually do not

contain complete information to answer a given query, any relevant peer may add new

and/or complementary answers. Furthermore, different paths of correspondences to the

same peer may yield different answers.

As an illustration, consider three peers which belong to the “Education”

knowledge domain, as depicted in Figure 1.1. In this scenario, peers have data about

academic people and their works (e.g., cooperative research projects) from different

institutions (A, B and C). In this light, it is possible that each peer only stores part of the

information about cooperative research projects, and, even though they may have

overlapping data for the same project, the content might still be different. It is very

likely that a query posed in one of the given peers may obtain a more complete result

considering such diverse and complementary data sources. Suppose now that a user at

peer UnivA poses query QA over UnivA’s schema. Answers are computed at UnivA, and

the query is reformulated and forwarded to the other peers through the available

correspondence paths. In this example, UnivA has a correspondence CA_B to UnivB.

Using CA_B, a query QA will be reformulated to QB over UnivB’s schema. QB will be

executed at peer UnivB. In the same way, UnivB will reformulate QB to its neighbor peer

UnivC (QC). At each reformulation process, the query is adapted to the current peer

schema, according to its own constraints. Query results will be sent back to the peer

UnivA after the query local executions. Peer UnivA will integrate all the results and

present the complete set of answers to the user.

Figure 1.1 Query Answering in a Distributed Environment

In this sense, the crucial point we want to address is how to reformulate queries

among the peers in such a way that the resulting set of answers expresses, as close as

possible, what the users intended to obtain at query submission time, taking into account

what kind of data the sources may contribute with and the dynamicity of the system.

Two aspects should be considered when dealing with query reformulation. First,

querying distributed data sources should be useful for users, i.e., resulting query

UnivA UnivB UnivC

A

QB

CA_B CB_C
QA

B C

QC

User

Query Reformulation

Result Set

Results Results

Chapter 1 – Introduction 3

answers should be in conformance with users’ preferences. On the other hand, it is not

useful for users when they do not receive any answer at all. A second aspect is that

concepts from a source peer do not always have exact corresponding concepts in a

target one, which may result in an empty reformulation and, possibly, no answer to the

user. Regarding the former aspect, we argue that user preferences and the current status

of the environment should be taken into account at query reformulation time; regarding

the latter, the original query should be adapted to bridge the gap between the two sets of

concepts, using not only equivalence correspondences but also other ones that can

approximate and/or enrich the queries.

In this perspective, we present a query reformulation approach, named SemRef,

which uses semantics as a way to better deal with these mentioned aspects. In order to

capture user preferences, query semantics and environmental parameters, we use

contextual information [Dey 2001]. We accomplish query reformulation and adaptation

by means of query enrichment. To this end, besides equivalence, we use other

correspondences which go beyond the ones commonly found, namely: specialization,

generalization, aggregation, disjointness and closeness. Through this set of semantic

correspondences, we produce two different kinds of query reformulations:

i. an exact one, considering only equivalence correspondences; and

ii. an enriched one, resulting from the set of other correspondences.

The priority is producing the best query reformulation through equivalence

correspondence, but if that is not possible, or if users define that it is relevant for them

to receive semantically related answers, an enriched reformulation is also generated. As

a result, users are provided with both exact and/or close answers, i.e., with a set of

expanded answers according to their preferences.

The central questions we want to answer in this thesis are the following:

• What is the difference in producing query reformulations considering

semantics and not considering semantics?

• To what extent does the use of semantics change the resulting set of query

reformulations?

• In which situations could the use of semantics help to avoid an empty set of

query reformulations?

• Is it possible to produce correct query reformulations, either exact or

enriched, with the aid of semantics?

In order to answer these questions, we address the query reformulation problem

in a setting containing just two peers, although our approach can also be used in an

extended scenario composed by a set of diverse peers. In our work, we are not

concerned with view-based query rewriting as works which deal with GAV/LAV

Chapter 1 – Introduction 4

strategies in order to reformulate queries posed through a global schema [Lóscio 2003].

Instead, we focus on reformulating a query posed at a source peer in terms of a target

peer. We use ontologies as conceptual representations of peer schemas, and

correspondences between these ontologies are identified to provide an understanding of

their data sources. Figure 1.2 illustrates the central idea of our SemRef approach.

Figure 1.2 Query Reformulation Setting

Regarding this simplified setting, we define our problem as follows: given an

ontology O1 (at peer P1), a user query Q expressed in terms of the concepts of O1, a

target ontology O2, our goal is to find reformulated queries of Q expressed in terms of

the concepts of O2 in such a way that these reformulated queries not only include the

best possible one (considering equivalence correspondences) but also the ones provided

by other semantic correspondences between the ontologies. The reasons underlying that

are twofold: (i) we aim to show that answers which are not an exact match, but which

are a close match to the requirements specified in the query, can still serve the purpose

of users, if they are in conformance with users’ preferences; and (ii) we want to provide

users with a set of expanded answers, in the light of the differences between the existing

sets of concepts in the peers, and taking into account the context surrounding the query.

This set of expanded answers will be obtained by executing exact and enriched

reformulations.

In our work, we have conducted a set of experiments using as two main

evaluation criteria the degree of soundness and the degree of completeness adapted from

measurements commonly used in information retrieval systems (i.e., precision and

recall) [Baeza-Yates and Ribeiro-Neto 1999]. Experimental results show that the use of

semantics really improves both criteria.

Expected contributions of this research include:

i. The specification and implementation of an approach to identify the set of

semantic correspondences between peer ontologies;

ii. The specification and implementation of a context ontology as a means to

represent and store contextual information;

iii. The specification and implementation of the SemRef approach within a

dynamic distributed environment;

I
1

I
2

P1
{Co12}

P2

QQQQ QQQQexactexactexactexact

QQQQenrichedenrichedenrichedenriched

Chapter 1 – Introduction 5

The organization of this thesis is illustrated in Figure 1.3 and is described as

follows.

Chapter 1 introduces and motivates the main ideas underlying this thesis.

Furthermore, it outlines how it has been organized.

Figure 1.3 Thesis Organization

Chapter 2 reviews the theoretical foundations of query reformulation in

distributed environments and presents how this problem has been considered in existing

related approaches.

Chapter 3 explores some semantic issues, particularly, ontologies, context and

the Description Logics formalism which have been increasingly used as a means for

enhancing query answering in distributed environments.

Chapter 4 presents the way we use ontologies in our approach: (i) as

background knowledge in order to identify semantic correspondences between matching

ontologies; (ii) as a mechanism to represent and store contextual information and (iii) as

a means for defining Ontology-based PDMS.

Chapter 5 presents the proposed SemRef approach by means of important

definitions regarding the use of semantics and the algorithms underlying it.

Chapter 6 introduces the PDMS where our approach has been instantiated,

provides details of the SemRef’s implementation and discusses the solutions we gave for

Chapter 1

Introduction

Chapter 3

Semantic Issues

Chapter 2

Query Reformulation

Chapter 5

The SemRef

Approach

Chapter 4

Using Ontologies in

Data Management

Chapter 6

Implementation

Issues

References

Contextualization

and Motivation

Concepts and

RelatedWork

Contributions

References and

Appendices

Chapter 7

Experiments and Results

Hypotheses

Evaluation

Chapter 8

Conclusions

Conclusions and

Future Work

Appendices

Chapter 1 – Introduction 6

bridging the gap between ALC/DL and SPARQL semantics, thus providing users with

queries in both languages.

Chapter 7 provides experiments of the proposed SemRef approach and the

results that have been obtained.

Chapter 8 summarizes the proposed work by discussing the achieved

contributions and indicating some directions in which the presented research could be

extended.

Finally, used references are pointed out, and appendices are provided as

follows: Appendix A shows SemRef complementary functions; Appendix B presents

the ontologies concerning Education Knowledge domain we have used; Appendix C

depicts additional screenshots of the query interface module; Appendix D shows

ontologies regarding Tourism knowledge domain we have also used; and Appendix E

presents the experiments we have performed.

CCCCCCCCHHHHHHHHAAAAAAAAPPPPPPPPTTTTTTTTEEEEEEEERRRRRRRR 22222222
“If we knew what it was we were doing,

it would not be called research, would it?”

Albert Einstein

Query Reformulation

This chapter reviews the theoretical foundations of query reformulation in distributed

environments, mainly focusing on techniques and approaches related to Databases and

Data Integration environments. Our objective is to discuss the terminologies and

techniques used in the subsequent chapters and to illustrate some of the techniques that

are most relevant to our work. Furthermore, this chapter presents how query

reformulation has been considered in existing related approaches and presents a

comparison among them.

This chapter is organized as follows: Section 2.1 introduces query reformulation

in Data Integration settings; Section 2.2 and 2.3 discusses query reformulation by

expansion and personalization, respectively. Existing query reformulation approaches

are described and compared in Section 2.4. Finally, Section 2.5 concludes the chapter

with some considerations.

2.1. Query Reformulation in Data Integration

Data integration has been a research area in Computer Science for several years under

diverse approaches: multi-database systems [Litwin et al. 1990], federated database

systems [Sheth and Larson 1990], mediator-based systems [Wiederhold 1992], data

warehouses [Chaudhuri and Dayal 1997], and, more recently, peer database

management systems (PDMS) [Sung et al. 2005], dataspaces [Franklin et al. 2005] and

pay as you go systems [Salles et al. 2007]. While these types of data integration systems

differ with respect to their level of coupling or materialization, all of them have in

common the need of dealing with heterogeneity, mappings and query answering. In this

section, we focus on query reformulation in both mediator-based systems and PDMS.

The reasons underlying that are twofold: (i) significant research effort has been already

Chapter 2 – Query Reformulation 8

done towards mediator-based systems that query data sources through a mediated

schema (a single central schema) [Lenzerini 2002, Lóscio 2003, Bilke 2007], and (ii)

PDMS have received considerable attention because their underlying infrastructure

(with no single central point) is appropriate for scalable and flexible distributed

applications over the Web [Adjiman et al. 2007; Tatarinov and Halevy 2004].

2.1.1. Query Reformulation in Mediator-based Systems

Mediator-based systems attempt to provide users with a uniform interface to access and

retrieve information from distributed data sources. The most important advantage of

these systems is that they enable users to specify what they want without thinking about

how to obtain the answers [Levy 1999].

A mediator-based system is responsible for reformulating, at runtime, a user

query on a single mediated schema into a composition of sub-queries over the local

source schemas [Lenzerini 2002]. To achieve this, mappings that capture the

relationship between the local source descriptions and the mediator schema are required.

Specifying these mappings is a fundamental step, since it influences both how difficult

query reformulation will be and how easily new sources are added to or removed from

the system. Mappings are usually described as declarative specifications of the data

transformation between a source and the mediator.

Formally, a data integration system I is a triple <G, S, M> where [Lenzerini

2002] G is the global schema (structure and constraints), S is the source schema

(structures and constraints), and M is the mapping between G and S, constituted by a set

of assertions of the form {qS,qG}, in which qS is a conjunctive query over the source

schema, while qG is a conjunctive query over the global schema.

To provide query reformulation, mappings are directional. This feature

determines the query reformulation approach [Ullman 1997]. Global-as-view (GAV)

systems describe mediator entities as views over the source schemas. To translate the

user query, which is formulated in terms of the mediator schema, into one or several

source queries, view expansion (or query unfolding) is used [Bilke 2007]. In this case,

the mediator entities in the user query are replaced by their definitions in the mappings,

resulting in a query containing only source relations. In Local-as-View (LAV) systems,

the sources are described as views over the mediator [Halevy 2001]. There are also

approaches which aim to combine GAV and LAV: GLAV and BAV. The former,

named Global-Local-As-View (GLAV), is a combination of answering queries using

views followed by a query unfolding step [Madhavan and Halevy 2003]. A GLAV

mapping is specified by a containment or an equivalence relationship between a

conjunctive query over a source schema and a conjunctive query over a target schema.

In the latter, named Both-as-View (BAV), schemas are mapped to each other using a

Chapter 2 – Query Reformulation 9

sequence of bidirectional schema transformations which are called transformation

pathways [Mc. Brien and Poulovassilis 2006]. From these pathways it is possible to

extract a definition of the global schema as a view over the local schemas (i.e., GAV),

and it is also possible to extract definitions of the local schemas as views over the global

schema (i.e., LAV). Next, we provide more details concerning GAV and LAV

strategies, since they are the basis for all the approaches.

Query Reformulation in GAV Approach

When using GAV, the mapping M associates to each element g in G a query qs (view)

over S. The mapping M provides the way the system will be able to retrieve data related

to each element from the mediated schema. This approach facilitates the query

reformulation strategy, although it is considered effective only when the set of data

sources are stable [Souza 2007; Bilke 2007].

Considering a data integration system I composed by relational data sources and

a mediated schema which is a set of relations, we illustrate GAV query reformulation

using the example depicted in Figure 2.1. This figure shows a single mediator relation R

and two source relations S1 and S2. Arrows depict correspondences between attributes.

To simplify the description, we use conjunctive queries to describe a mapping.

In this example, the GAV mapping would be:

R(Name, Surname, Age, Salary) :� S1(N, SN, A), S2(N, SN, S, D)

which represents a join of S1 and S2 on the first and second attributes (N and

SN), respectively. The schema of the mediator relation does not contain an attribute for

the department D. User queries are formulated in terms of such mediator relation R.

Figure 2.1 GAV Matching between sources and the mediator [adapted from Bilke 2007]

Thus, if the user asks for the salary of forty-year old people, the query can be

formulated as follows:

Q(S):� R(Name, Surname, Age, Salary), A = 40.

R Name Surname Age Salary

S1 N SN A S2 N SN S D

Chapter 2 – Query Reformulation 10

The mediator will expand the view R with the mapping definition, resulting in

the following query:

Q(S):� S1(N, SN, A), S2(N, SN, S, D), A = 40.

Based on that expanded query, the mediator produces a query plan, which

describes how and in what order data sources are accessed.

Query Reformulation in LAV Approach

When considering the LAV approach, the mapping M associates to each element s of

the source schema S a query qG over G. In this case, each source s is characterized in

terms of a view qG over the mediated schema. This means that adding a new source

implies only in adding a new assertion in the mapping. This makes the system’s

maintainability and extensibility easier [Souza 2007; Bilke 2007].

As an illustration, consider the same example described for GAV approach, now

concerning LAV correspondences (Figure 2.2). For every data source relation S1 and

S2, we write a mapping to the mediated schema relations R1 and R2, such as:

S1(N, SN, A) :� R1(Name, Surname, Age)

S2(N, SN, S, D) :� R1(Name, Surname, Salary), R2(Name, Dept)

Figure 2.2 LAV Matching between sources and the mediator

Query reformulation in LAV is not as direct as in GAV. Because of the form of

the LAV mapping descriptions, each of the sources can be viewed as containing an

answer to a query over the mediated schema. A user query is also posed over the

mediated schema. The problem is to find a way of answering the user query using only

the answers to the queries describing the sources.

For instance, suppose that the user asks for people whose age is below fifty-

years and which belong to dept = “Education”, the query would be:

Q(Name, Surname, Age, Dept):� R1(Name, Surname, Age, Salary),

R2(Name, Dept), A < 50, D = “Education”.

R1 Name Surname Age Salary

S1 N SN A S2 N SN S D

R2 Name Dept

Chapter 2 – Query Reformulation 11

The reformulated query on the sources would be:

Q’(N, SN, A) :� S1(N, SN, A), S2(N, SN, S, D)

In general, the complexity of answering queries using views is exponential, but

there are some algorithms that work efficiently in practice, such as the method of

inverse rules [Duschka and Genesereth 1997].

Some considerations

In a mediator-based data integration system, the need to establish the mediated schema

(a central point) and mappings between the data sources and such mediator is a major

bottleneck in integration efforts for real applications. In some cases, the data is so

diverse that a mediated schema would be almost impossible to build or to agree upon,

and very hard to maintain over time [Tatarinov and Halevy 2004]. PDMS have been

considered as a natural extension of mediator-based integration systems [Herschel and

Heese 2005], as some peers in such system may act as mediators to other peers. Next,

we describe query reformulation in PDMS.

2.1.2. Query Reformulation in PDMS

Recently, Peer Data Management Systems (PDMS) came into the focus of research as a

natural extension to distributed databases in the peer-to-peer (P2P) setting [Herschel and

Heese 2005; Souza 2007]. While research on P2P file sharing considers very large

networks (i.e., hundreds or thousands of peers), PDMS are usually conceivable on a

smaller scale [Bilke 2007]. They are considered the result of blending the benefits of

P2P networks, such as lack of a centralized authority, with the richer semantics of a

database [Zhao 2006]. They can be extensively used for data exchanging, query

answering and information sharing. For instance, in the areas of scientific research, the

idea of setting up a PDMS for research in the related area to share data among peers has

already been widely discussed [Ives et al. 2005; Zhao 2006; Ng et al. 2003].

A PDMS consists of a set of peers. Each peer has an associated schema that

represents its domain of interest. However, PDMS do not consider a single global

schema. Instead, each peer represents an autonomous data source and exports either its

entire data schema or only a portion of it. Such schema, named exported schema,

represents the data to be shared with the other peers of the system. Among those

exported schemas, mappings, i.e., correspondences between schema elements are

generated. In a PDMS, usually, schema matching techniques are used to establish such

mappings which are themselves the basis for query reformulation. In general, queries

submitted at a peer are answered with data residing at that peer and with data that is

reached through mappings that are propagated over the network of peers. In this sense,

we can define a PDMS as a set of peers {Pi}i∈[1..N]. For each peer Pi, let Si and Mi be

Chapter 2 – Query Reformulation 12

respectively the exported schema of Pi and the set of correspondences stated at Pi

between Si elements and Pi’s neighbors schemas elements.

Several network topologies have been proposed for P2P systems (as well as to

PDMS), including: (i) pure unstructured [Lv et al. 2002], where peers establish

connections to a fixed number of other peers, creating a random graph of P2P

connections, and flooding is used to locate and retrieve shared content; (ii) pure

structured topologies [Stoica et al. 2001] that use a Distributed Hash Table (DHT) to

capture the relationship between content name and content location; (iii) super-peer

topology [Yang and Garcia-Molina 2003], where special peers (super-peers) act as

dedicated servers for other peers and can perform complex tasks such as query

answering and data integration. Next, we provide an overview of query reformulation

in two of these PDMS topologies: pure and super-peer.

Query Reformulation in Pure PDMS

In order to query a peer in a pure PDMS, its own schema is used for query formulation

and mappings are used to reformulate the query over its immediate neighbors, then over

their immediate neighbors, and so on. In other words, there is a flooding of reformulated

queries over the network.

Figure 2.3 depicts a representation of a pure PDMS network in the light of

research centers. In order to facilitate information exchange and query answering

between different centers, four (illustrative) peers (with their respective data sources)

are connected. The arrows indicate schema correspondences, which are used to

reformulate the query over the peers’ immediate neighbors, which themselves

reformulate the query to their own neighbors, and so on. In this illustration, consider a

user in Brazil that poses query QB based on his/her local schema. QB will first be

reformulated to peer Portugal, according to the set of correspondences CoB-P. Then

such query will be reformulated to peers France and Germany, considering the

correspondences between the source and target peers. After executing the queries, the

answers are returned to the submission peer (Brazil) which is responsible for integrating

all the answers. At end, the submission peer presents the final result to the user. This

result will contain Brazil’s own data in addition with data from the other three locations.

Query Reformulation in Super-Peer PDMS

In a super-peer PDMS [Yang and Garcia-Molina 2003], the system addresses query

reformulation through its super-peers that have indexed information about their set of

peers. Thus, query reformulation is broken into clusters of super-peers and peers that are

able to answer the query.

Chapter 2 – Query Reformulation 13

Figure 2.3 Query Reformulation in a Pure PDMS

For example (see Figure 2.4), assume that a user poses a query Q on Brazil’s

peer that is forwarded to its corresponding super-peer (SP1). The super peer identifies

peers in the cluster that are able to answer the query. Then, the super-peer reformulates

the original query (Q) into a set of queries (Q1 and Q2) which will be sent to the peers

(Portugal and Germany). It also reformulates Q into another query Q3 which will be

forwarded to another super-peer (SP2). This super-peer reformulates such query into

queries Q4 and Q5, sends them to their respective peers and carries out the integration of

the returned answers. Finally, answers from every peer (neighbor super-peer and cluster

peers) are returned to the original super-peer, where they are integrated to produce the

final result. The final result is sent back to the Brazil’s peer from which the query was

submitted. The user at Brazil will get answers not only from its local data source but

from other peers as well, similarly to pure PDMS.

Figure 2.4 Query Reformulation in a Super Peer PDMS

Quality of Answers in PDMS

In distributed systems such as a PDMS, the quality of query answers depends not only

on data quality of a particular local data source, but also on the quality of the

correspondences [Yatskevich et al. 2006] among the peers. The semantics of a query

can be distorted and/or data loss can happen if some correspondences are imperfect

[Zaihrayeu 2006]. Thus, high quality level of query answering has been considered as

Brazil Portugal

France

Germany

B

Q1 Q2

CoB_P CoP_G

CoP_F

QB

Q3

P
G

F

Brazil Portugal

SP1

Germany

B GP

Q

Q
Q1

Q2

France

SP2

England

EF

Q4

Q5

Q3

Chapter 2 – Query Reformulation 14

the fact that data can flow among the databases preserving (at the best possible level of

approximation) their soundness and completeness [Giunchiglia and Zaihrayeu 2002].

Particularly, there are (at least) three kinds of runtime factors, peculiar to PDMS,

which influence the answer to a given user query, and, therefore, which also influence

the quality of query answers [Giunchiglia and Zaihrayeu 2002; Zaihrayeu 2006]:

• Network (dependent) variance: peers may change the data of their sources,

change their schemas, redefine correspondences, and new peers may join or

leave the system at any time. Thus, the same query submitted to a given peer,

but at different times, may yield different answers of different quality.

• Peer (dependent) variance: correspondences are established differently from

one peer to any other peer. Therefore, the same query submitted at the same

time but, by different peers, will result in different query propagation graphs.

Consequently, the query results may be different and of different quality.

• Query (dependent) variance: different queries submitted to the same peer and

at the same time may result in different query propagation graphs, and,

thereby, may produce different results and of different quality.

Naumann [2001] shows that in large scale environments, users cannot expect

correct and complete query answers, but they accept incomplete and partially incorrect

answers. Indeed, a given user query may not need the best possible answer, but simply

need some answer. Such kind of answer has been called good-enough [Zaihrayeu 2006].

The idea is that “an answer will be good-enough when it will serve its purposes given

the amount of effort made in computing it” [Zaihrayeu 2006]. To this end, an answer

does not absolutely need to satisfy all the constraints specified in the query. Currently,

this notion is one of the main research lines of the EU FP6 project OpenKnowledge
1
.

2.2. Query Reformulation by Expansion

In some query answering settings (e.g., Web search engines and Digital Libraries),

queries, especially short queries (usually key-based ones), do not provide a complete

specification of the information need. Many relevant terms can be absent from them and

terms included may be ambiguous [Bai et al. 2007]. Also, they do not uniquely identify

a single object in the data collection. Instead, several objects may match the query,

perhaps with different degrees of relevancy [Baeza-Yates and Ribeiro-Neto 1999]. In

these settings, query reformulation can be performed through the use of techniques like

query expansion, which aim at increasing the likelihood of retrieved answers.

1 http://www.openk.org/

Chapter 2 – Query Reformulation 15

Query expansion is a process which adds new terms or information to the query,

implementing the query representation with information not directly explicit by the

query [Grootjen and van der Weide 2006]. As an illustration, consider that a user

searches for the term “Jaguar”. In general, the system will not be able to disambiguate

the term between “Jaguar, the car brand” from “Jaguar, the animal”. Nevertheless, if the

system has some additional knowledge classifying “Jaguar” as a kind of animal, the

system will be able to apply query expansion and return answers with the correct

disambiguation by adding this term. Thus the query could be “Jaguar animal” instead of

only “Jaguar”. In this technique, the idea is to treat the query as an initial attempt to

retrieve information and use it to construct a new query [Grootjen and van der Weide

2006].

The purpose of query expansion is to reduce the gap between user intention

when formulating a query and system interpretations of such query. It can be both

interactive and automatic, and can be done taking into account knowledge stored in a

thesaurus or in an ontology. For instance, considering an ontology where there are

relationships between two single terms such as t1→ t2, if a query contains term t1, then t2

is always considered as a candidate for query expansion.

The efficiency of a process as query expansion may be measured in terms of

recall and precision. Recall is the ratio between the number of relevant documents

retrieved to the total number of relevant documents, and precision is the ratio between

the number of relevant documents retrieved to the total number of retrieved documents

[Manning et al. 2008]. Expanding a query with synonym terms is known to improve the

recall. To improve precision by reducing the ambiguity of ordinary terms, the use of

taxonomies, classification schemas or ontologies is recommended [Styltsvig 2006].

2.3. Query Reformulation by Personalization

The goal of query personalization is to assist users when formulating queries in order to

enable them to receive relevant information, according to their intentions. The

relevance of the information is defined by a set of criteria and preferences specific to

each user. These criteria may describe the users’ domain of interest, the quality level of

the data they are looking for or the modalities of the presentation of the data

[Kostadinov 2007]. In this light, query personalization may be defined as the process of

dynamically enhancing a query with related user preferences stored usually in a user

profile with the aim of providing personalized answers [Koutrika and Ioannidis 2005].

The underlying idea of query personalization is that different users may obtain

diverse answers which are considered as relevant due to what is identified from the user

model. In some areas (e.g., Information Retrieval), query personalization is considered a

Chapter 2 – Query Reformulation 16

machine learning process based on some kind of user feedback [Kostadinov 2007]. In

other areas, such as Human-Computer Interaction, user profiles generally define user

expertise with respect to the application domain to provide them with appropriate

interfaces and dialogs [Eisenstein and Puerta 2000]. Thus, it is essential to take into

account the user model, including the user context. The user context (e.g., location and

preferences) can be exploited by the system either to answer queries or to provide

recommendations, so users at different locations may expect different results, even from

a same query. Among these elements, user preferences, whatever they concern system

adaptation or content delivery, are the main knowledge which characterizes a

personalization system whose target is to increase user satisfaction [Kostadinov 2007].

Considering the user model and a query composed by concepts, we can say that

it is likely that a concept y is relevant for the query if we know that a concept x is in the

user model (e.g., in the user profile), and a binary relationship r(x,y) holds. In addition,

some kind of quantitative or qualitative attribution can be stated for these relationships.

As an illustration, consider a database schema (in relational model) with information

about restaurants depicted in Table 2.1. Users have preferences about types of

restaurants that they express by providing a numerical score between 0 and 1 that

quantifies their degree of interest. When formulating queries about restaurants, the

system will take into account these preferences to provide more meaningful answers.

Thereby, a query “Select Name From Restaurant Where Region like ‘Tambau’;”

will take into account not only the required data expressed in the query, but also the

preferences concerning the types of restaurants which exist in the asked region.

Table 2.1 Database for “Restaurants”

Rid Name Region Cuisine Type

132 Bella Mamma Manaíra Italian

111 Lion Tambaú French

654 Boulange Bistro Tambaú French

077 Casa do Bacalhau Manaíra Portuguese

234 Indian Arr Tambaú Indian

123 La Espanhola Tambaú Spanish

537 Nostra Casa Tambaú Italian

098 Adega do Alfredo Tambaú Portuguese

055 Sapore d’Itália Tambaú Italian

564 La Isla Cabo Branco Spanish

Assuming a set of preferences (Table 2.2) stated by the user, and a threshold

equal to 0.5 (this implies that only the preference scores which are equal or higher to 0.5

will be considered), the answer to the mentioned query is shown in Table 2.3. This set

Chapter 2 – Query Reformulation 17

may be a subset of the answers to the original query, but it is supposed to contain

interesting answers with respect to users’ preferences.

Table 2.2 Preferences for Types of Cuisines

Cuisine Type Interest Score

French 0.5

German 0.8

Greek 0.4

Indian 0.45

Italian 0.9

Mexican 0.6

Portuguese 0.55

Spanish 0.3

Table 2.3 Answers Set

Answers

Nostra Casa

Sapore D’Itália

Adega do Alfredo

Lion

Boulange Bistro

2.4. Existing Query Reformulation Approaches

Query reformulation techniques have been addressed in different computational

environments. In the following, we review existing related approaches and provide an

overall comparison among them.

2.4.1. Query Reformulation in a Single Database Using an Ontology

Necib and Freytag [Necib and Freytag 2004; Necib and Freytag 2005; Necib 2007] have

presented an approach for query reformulation within single relational databases using

ontology knowledge. They use ontologies to transform a user query into another query

that may provide a more meaningful answer to the user. To the authors, "meaningful

answer" is one that is more complete than the initial one w.r.t. (with respect to) user’s

intension. To this end, they define and specify different mappings that relate concepts of

an ontology with those of an underlying database. In addition, they propose a set of

semantic rules for transforming queries using terms derived from this ontology. The

rewriting rules are classified according to the result of the query transformation, as

follows:

• Extension rules: aim at extending the query answer with results that meet

user’s expectations. The rules are grouped into six categories: Synonymy

rule, Collection rule, Part-Whole rules, Support rules, Feature rules, and

Consistency rules.

Chapter 2 – Query Reformulation 18

• Reduction rules: aim at reducing the number of irrelevant tuples from the

query answer. In this case, the sensitivity rule is intended to provide answers

which contain as few as possible false positives.

As an illustration, we describe the part-whole rule. The basic idea of this rule is

the use of part-whole properties to discover new database objects (parts or wholes of a

concept), which are closely related to a given user query.

Assuming that we have an ontology O1 and a relational database DB1. O1

describes product concepts (Figure 2.5). DB1 contains information about technical items

of a store and includes two relations called Article and Component, as follows:

Article: A�ID (PK), Name, Model, Price

Components: S�ID (PK and FK to Article), M�ID (PK and FK to Article)

Figure 2.5 Product Ontology

Suppose that DB1 contains the instances shown in Tables 2.4 and 2.5. To extract

ontology semantics related to the content of the associated database, mappings between

the ontology and the database are established. If a user wants to retrieve information

about the article pc from the database DB1, his submitted query may be stated as: Q =

{(x1, x2, x3, x4) | (x1, x2, x3, x4) ∈ Article , x2 = "pc"}.

Chapter 2 – Query Reformulation 19

Table 2.4: Article

A-ID Name Model Price

123 Computer IBM 3000

124 Intel-PC Toshiba 5000
125 Notebook Dell 4000

127 PC Compaq 2500

128 Product HP 3000

129 Monitor ELSA 1000

135 Keyboard ITT 80
136 Desktop IBM 1000

140 MacPC Mac 2000

141 Calculator Siemens 1500

Table 2.5: Components

S-ID M-ID

123 129

123 135
123 136

124 129

124 135

125 135

127 129
127 135

127 136

128 129

128 135

128 136
140 129

140 135
140 136

141 135

Analyzing O1, it may be deduced that a pc is composed out of three parts: a

desktop, a monitor and a keyboard. Assuming that all PC-objects are composed exactly

out of these parts, which do not participate in the composition of any other object,

enables the identification of PCs by means of their components. Thus, the set of terms

{desktop, monitor, keyboard} and the term pc are considered semantically equivalent.

By applying this rule to the query Q we get the following reformulated query:

Q’ = {(a1, a2, a3, a4) | (a1, a2, a3, a4) ∈ Article , a2 = "pc"} ({(a1, a2, a3,

a4) | (a1, a2, a3, a4) ∈ Article , [∃ y1, y2|(y1, y2) ∈ Component , a1 = y1 , ∃ (b1,

b2, b3, b4) ∈ Article , (y2 = b1 , b2 = "monitor")] , [∃ z1, z2 |(z1, z2) ∈

Component , a1 = z1 , ∃ (c1, c2, c3, c4) ∈ Article ,(z2 = c1 , c2 = "keyboard")]

, [∃ u1, u2 |(u1, u2) ∈ Component , a1 = u1 , [∃ d1, d2, d3, d4 | (d1, d2, d3, d4) ∈

Article , u2 = d1 , d2 = "desktop")]}

2.4.2. Query Reformulation using Profile Knowledge

The work of Kostadinov [2007] is concerned with two issues: (i) data personalization

and (ii) query reformulation using profile knowledge. To deal with data personalization,

Kostadinov proposes three metamodels: (i) a profile metamodel which is composed by

five dimensions (domain of interest, personal data, quality data, security data and data

delivery); (ii) a context metamodel which concerns information about the environment

(location, time) and the interactions between users and the system and; (iii) a preference

metamodel that organizes the user preferences and depends on the previous ones.

In his work, the problem of query reformulation has been addressed in mediator-

based systems. Since personalization may occur in every step of a query life cycle, the

work studies two query reformulation approaches based on algorithms for query

enrichment and query rewriting, and proposes a new query reformulation approach. The

idea is to introduce data personalization by performing query enrichment based on user

Chapter 2 – Query Reformulation 20

profile and preferences, i.e., integrating elements of the user profile into the user’s query

(expressed on the virtual schema) so that it can be evaluated on the data sources.

The proposed query reformulation process is shown in Figure 2.6. It is

composed by the following steps: query expansion, relevant data sources identification,

relevant data sources combination and final enrichment. More precisely, the work deals

with the first and the third steps. The second is done using the MiniCon Algorithm

[Halevy and Pottinger 2001] and the fourth, using the Koutrika and Ioannidis algorithm

[Koutrika and Ioannidis 2005].

Regarding the query expansion, the algorithm works as follows. Consider SV a

virtual schema, PU an user profile interpretation over a query QU that has been

submitted over SV. To identify the meaningful virtual relations, the algorithm follows

four steps: (i) select the virtual relations that are linked to user profile predicates; (ii)

calculate the semantic distance between the selected virtual relations and the query; (iii)

measure the contribution of the new predicates to the given query and; (iv) choose the

virtual relations to be added for the query expansion.

Figure 2.6 Kostadinov’s Query Reformulation Process [Kostadinov 2007]

2.4.3. Query Reformulation in Piazza

Piazza [Halevy et al. 2005] is a PDMS where a formalism, named PPL (Peer-

Programing Language, pronounced “People”), is defined for mediating between peer

schemas. This formalism uses the GAV and LAV approaches to specify mappings. The

semantics of query answering is specified by a query reformulation algorithm for PPL.

For the sake of simplicity, the authors assume that the peers employ the

relational model, although in the implemented system, they share XML files and pose

queries in a subset of XQuery
2
. Also, they assume that each peer defines its own

2 http://www.w3.org/TR/xquery/

Chapter 2 – Query Reformulation 21

relational peer schema whose relations are called peer relations, so queries will be

posed over these relations. Peers may also contribute with data to the system in the

form of stored relations (analogous to data sources in a data integration system). As a

result, queries will be reformulated in terms of stored relations. The set of stored

relations is referred as the peer’s stored schema. Metadata is stored in the Piazza catalog

which is assumed to be acessible to all existing peers in the system.

There are two types of mappings: (i) Storage descriptions: describing the data

within the stored relations (generally with respect to one or more peer relations), and (ii)

Peer Mappings: between the schemas of the peers. In this sense, each peer contains a

(possibly empty) set of storage descriptions that specify which data it actually stores by

relating its stored relations to one or more peer relations. Formally, a storage description

is of the form A: R = Q, where Q is a query over the schema of peer A and R is a stored

relation at a peer. This description specifies that A stores in relation R the result of the

query Q over its schema. PPL also provides storage descriptions of the form A: R ⊆ Q.

As a result, storage descriptions may be both containment (inclusion) or equality storage

descriptions. For example, consider a storage description that relates the stored students

relation at a peer UPenn to the peer relations:

UPenn: students(Sid, name, advisor) ⊆ UPenn: Student(Sid, name, _),

 UPenn: Advisor(Sid, fid),

 UPenn: Faculty(fid, advisor, _,_)

This storage description says that UPenn: students stores a subset of the join of

Student, Advisor and Faculty.

Peer mappings provide semantic links between the schemas of different peers

and are classified into two types – inclusion/equality mappings, and definitional

mappings. The first ones are defined in a similar way to the concepts of storage

descriptions and are of the form Q1(A1) = Q2(A2) or Q1(A1) ⊆ Q2(A2), where Q1 and

Q2 are conjunctive queries with the same arity and A1 and A2 are sets of peers. This kind

of specification can accommodate both GAV and LAV-style mappings. The second

kind of peer mappings are called definitional mappings. Definitional mappings are

datalog rules whose head and body are both peer relations, i.e., the body cannot contain

a query. These mappings are written as equality ones.

In order to process the queries in the peers, Piazza provides a query

reformulation algorithm. The input of the algorithm is a set of peer mappings and

storage descriptions and a query Q. The output is a query expression Q’ that only refers

to stored relations at the peers. The algorithm is considered sound and complete since

Q’ will always produce certain answers to Q. According to PPL semantics, the

Chapter 2 – Query Reformulation 22

algorithm combines and interleaves unfolding (GAV) and rewriting (LAV)

reformulation techniques – depending on the directionality of the mapping available.

2.4.4. Query Reformulation in an Ontology based PDMS

Xiao and Cruz [2006] describe an ontology-based PDMS (OPDMS), specifically

focusing on the issue of query answering. In their work, local RDFS
3
 ontologies are

used to uniformly represent heterogeneous peer source schemas. In order to represent

the semantic mappings among the peer ontologies, they use a mapping language named

P2P Mapping Language (PML) which uses a meta-ontology called RDF Mapping

Schema (RDFMS). Thus, the mapping information is stored in terms of instances of

such meta-ontology. RDFMS provides one-to-one mappings such as equivalent

(represented by EquivalentMap), broader (BroaderMap), and narrower

(NarrowerMap). Regarding the case of one-to-many mappings, RDFMS defines

UnionMap and IntersectionMap respectively for two types of logic combinations (i.e.,

and and or) of the elements on the multiple-element side.

In this approach, the process of query answering includes three steps: query

execution, query rewriting, and answer integration. The user poses a query on a peer,

which is first executed on that peer. Meanwhile, the query is also forwarded to each of

the linked peers, where the query is reformulated into a new query that is executed

locally and propagated further. Finally, answers from every peer are returned to the host

peer, where they are integrated to produce the answer.

The work uses a first-order relation based method to interpret the inter-schema

mappings. Actually, both the mappings and heterogeneous queries are interpreted by a

set of first-order relations, so as to provide a unified environment for query rewriting.

The query rewriting is dealt with as a function Q2 = f(Q1,M), where Q1 is the local

query, M is the set of P2P mappings, and Q2 is the resulting remote query. Besides the

mappings, the query rewriting algorithm considers integrity constraints specified on

local data sources.

2.4.5. Query Reformulation in “What to Ask to a Peer”

The goal of this approach is to present some results on the problem of exploiting the

mappings between peers in order to answer queries posed to one given peer [Calvanese

et al. 2004]. To this end, it focuses on a simplified setting based on two interoperating

peers and investigate how to solve the “What-To-Ask” (WTA) problem: find a way to

answer queries posed to a peer by relying only on the query answering service available

at the queried peer and at the other peer. They study the WTA problem in a first-order

logic (FOL) context and provide an algorithm to compute it.

3 http://www.w3.org/TR/rdf-schema/

Chapter 2 – Query Reformulation 23

This work formalizes a knowledge-based peer as a tuple of the form P = ‹K, V,

M›, where: K is a knowledge base written in some subset of FOL; V is the exported

fragment of K; and M is a set of mapping assertions. Two peers are considered, namely

Pl = ‹Kl, Vl, Ml›, called local peer, which is the peer to which the client is connected,

and Pr = ‹Kr, Vr, Mr›, called remote peer. This last peer does not contain mapping

assertions. Clients pose their queries over the exported fragment V of a peer P.

Considering that, the reformulation algorithm first reformulates the client’s

query q into a set Q of conjunctive queries expressed over Kl, in which it compiles the

knowledge of the local knowledge base; then, according to the mapping Ml, the

algorithm reformulates the queries of Q into a set of queries that are accepted by the

remote peer. For each query q � Q, the algorithm checks if there exists an assertion

stating a semantic relationship among classes and roles of Kl that can be used to produce

a new query to be added to the set Q. Three kinds of assertions are taken into account:

(i) subsumption between classes, (ii) participation of classes in roles, and (iii)

mandatory participation of classes in roles.

2.4.6. Query Reformulation in SomeRDFS

The SomeRDFS PDMS has been developed using a data model based on RDF on top of

the SomeWhere infrastructure [Adjman et el. 2007]. SomeWhere is a PDMS where

there are neither super-peers nor a central server. In this system, query reformulation is

reduced to distributed reasoning over logical propositional theories by a propositional

encoding of the distributed schemas.

In SomeRDFS, schemas are represented as ontologies, mappings are expressed

in RDFS and data are represented in RDF. In this model, classes and properties can be

defined as well as domain and range of properties can be typed. Mappings are defined

as statements involving vocabularies of different peers and may be (i) an inclusion

statement between classes or properties of two distinct peers or (ii) a typing statement of

a property of a given peer with a class of another peer. Queries are conjunctive queries

that may involve the vocabularies of several peers.

Query reformulation in SomeRDFS is reduced to consequence finding over

logical propositional theories solved by DECA (Decentralized Consequence finding

Algorithm) – the algorithm of SomeWhere, where each peer theory is a set of

propositional clauses built from a set of propositional variables. Thus, the query

reformulation algorithm of SomeRDFS, namely DeCA
RDFS

, has been designed on top of

DeCA. The strategy of DeCA
RDFS

 is to rewrite the user query’s atoms independently

with DeCA and then to combine their rewritings in order to generate some conjunctive

Chapter 2 – Query Reformulation 24

rewritings of the user query w.r.t. a SomeRDFS PDMS. DeCA
RDFS

 guarantees that all

the maximal conjunctive rewritings of the user query are generated.

2.4.7. Query Reformulation by Concept Approximation

Stuckenschmidt [Stuckenschmidt 2002; Stuckenschmidt et al. 2005] has shown that

query translation can be done in an approximate way using terminological reasoning

and query relaxation. The idea is to compute approximate answers to conjunctive

queries by transforming the query into a concept expression and estimating its closer

position in a determined hierarchy of a remote peer. This hierarchy fixes the upper and

lower bounds of a concept name.

They define the structure of a terminological knowledge base and its

instantiation independent of a concrete language, using Description Logics. They

formalize terminological queries as the following: conjuncts of a query are predicates

that correspond to classes and relations of an ontology. They use a method for

translating such conjunctive queries into concept expressions (in a Boolean model) that

has been proposed by Horrocks and Tessaris [Horrocks and Tessaris 2000]. The idea is

to treat the query as a concept expression in the ontology and classify it with respect to

the concepts of the remote peer ontology. In this sense, the adaption of a query to

remote peers can be done by rewriting the concept names in the query by their

approximations (upper or lower) in the remote source. Thereby, instances of

subsumed/subsuming concepts are returned as result.

Since mappings between ontologies are usually sparse, objects that are meant to

be an answer to a query may not be returned because their description does not match

the query that is formulated using terms from a different ontology. To address such

problem, they also provide query relaxation, i.e., the query is simplified by weakening

constraints from the query expression that are responsible for that failure. The intuition

underlying that is to start with the original query and generate queries where each is

more general than the one before, i.e., each query following in the sequence returns all

results of the previous one, but might return more results.

As an example, consider two overlapping concept hierarchies belonging to the

domain of tourism (excerpts from them are depicted in Figure 2.7).

Regarding concept approximation, an example is provided through the concept

“Ferien-Wohnung” (a flat used as accommodation during holidays). First, interesting

approximations are searched in both peer hierarquies. In Peer A, sub-concepts of the

example concept are: “Bungalow” and “Appartment”. In Peer B, there is also the

concept “Ferienhaus” (house used during holiday) which falls under this category. The

Chapter 2 – Query Reformulation 25

upper approximation is obtained through the general concept “Unterkunft”

(accommodation) in both peers. After fixing the upper approximation, the method

determines all instances of the general concept to be potential members of the example

concept. Besides the members of the general concept, this also includes objects that are

members of the concepts “Hotel” and “Campingplatz” (camp site) in the view of the

answering peer B. The example does not report how they deal with the concepts of

lower approximation. Most of results obtained through upper approximation are

considered related to the example concept, because they are all accommodations used

during holidays. However, hotels and camp sites are not the kind of answer the user

would assume to get when asking for a flat, but may be considered approximate as well.

a) Peer A

b) Peer B

Figure 2.7 Hierarchies of two different peers on the same domain

PEERA_LOKATION

Shared_Unterkunft

SHARED_LUXUSHAUS

SHARED_FAMILIENHAUS

PEERA_CAMPINGPLATZ

SHARED_FERIENHAUS

PEERA_FERIENWOHNUNG

SHARED_HOTEL

SHARED_BUNGALOW

SHARED_APPARTMENT
PEERA_SCHOLOSSHOTEL

SHARED_LUXUSHOTEL

SHARED_SPORTHOTEL

Shared_Unterkunft

PEERB_FERIENHAUS

PEERB_ZELTPLATZ

PEERA_CAMPINGPLATZ

PEERA_FERIENWOHNUNG

PEERB_HOTEL

SHARED_BUNGALOW

SHARED_APPARTMENT

SHARED_CLUBHOTEL

SHARED_LUXUSHOTEL

SHARED_SPORTHOTEL

PEERB_KNOGRESShOTEL

PEERB_WELLNESSHOTEL

PEERB_BEAUTYFARM

PEERB_KURHOTEL

PEERB_BUNGALOW

SHARED_LUXUSHAUS

SHARED_FAMILIENHAUS

Chapter 2 – Query Reformulation 26

As an example of query relaxation, suppose a query which aims at obtaining

“the number of rooms of a hotel”. Such query would be translated to a concept

expression. But, since none of the ontologies except for the one the query is based on

contains information about the number of rooms of a hotel, it is impossible to prove that

a specific hotel is an answer to the query. As a result, they relax the query by removing

the restriction on the number of rooms. Consequently, they get all hotels as potential

answers. The authors argue that it is very likely that they could further improve the

accuracy of the approximation by using logical reasoning for finding alternatives for

class and relation names rather than removing them from the query.

2.4.8. Comparative Analysis

Table 2.6 summarizes the main features of the different query reformulation approaches

that have been covered in this section. These approaches have been developed in

different settings: most of them have been developed in distributed environments,

excepting the work of Necib [2007], which has been implemented within single

databases. In general, the works use the relational model to data sources, SQL and

conjunctive queries to express queries, and some formalisms including First Order

Logic and Description Logics to formalize their concepts and query reformulation

approaches.

Regarding mappings/correspondences specification, most of them considers

mappings between peer ontologies (Piazza considers mappings among peer schemas).

The mappings considered are usually restricted to equivalence and subsumption

(SomeRDFS also considers disjunction). As a result , the majority of them deal with

query reformulation by means of query translation, without considering any kind of

semantics. Exceptions to that are the work of Kostadinov [2007] and the work of

Stuckenschmidt et al. [2005]. The former introduces data personalization inside a

mediator-based system based on user preferences. The latter uses terminological

reasoning by concept approximation and query relaxation to provide query translation.

Also, the work of Necib [2007] uses semantic knowledge provided by a domain

ontology. Thereby, these last three works have a different query reformulation approach

by means of some kind of semantics usage.

Chapter 2 – Query Reformulation 27

Table 2.6: Comparative Analysis of Query Reformulation Approaches

Approach Environment Representation
Model

Formalism Query
Language

Mapping/Correspondence
Types

Semantics Usage Reformulation Rules

[Necib 2007] Single
Databases

Relational Term Rewriting
Systems

SQL Equivalence (between database
schema and ontology)

Ontology as
additional knowledge

Extension Rules (e.g.
part-whole)

Reduction Rules (e.g.
sensitivity)

[Kostadinov 2007] Mediator-based
System

Relational Conjunctive
Query

SQL LAV mappings User Profiles Enrichment Rules

Translation rules using
LAV approach

Piazza [Halevy et al.
2005]

PDMS Relational and
XML

Conjunctive
Query

XQuery or
Conjunctive

Query

Equivalence, Inclusion and
Definitional Mappings

Metadata in a
Catalog

Translation Rules, using
GAV/LAV approaches

OPDMS [Xiao and
Cruz 2006]

PDMS RDF FOL (First
Order Logic)

Conjunctive
RQL Query

Equivalence, Broader, Narrower,
Union and Intersection

Mapping Ontology Translation Rules

WTA [Calvanese et
al. 2004]

PDMS Knowledge-
based

(First Order
Logic - FOL)

FOL (First
Order Logic)

FOL Query Subsumption between classes,
Participation of classes in roles,

Mandatory participation of
classes in roles

Translation Rules

SomeRDFS [Adjman
et al. 2007]

PDMS/Semantic
Web

RDF DL (Description
Logics) and
FOL (First

Order Logic)

FOL Query Equivalence, Inclusion,
Disjunction

Translation Rules

Concept
Approximation

[Stuckenschmidt et
al. 2005]

Weakly-
Structured

Environments

Terminological
Knowledge

base using DL

DL (Description
Logics)

Boolean
Query

Equivalence, Specialization
(Lower Approximation),
Generalization (Upper

Approximation)

Terminological
reasoning and query

relaxation

Concept Approximation in
terms of Lower and Upper

Bounds

Chapter 2 – Query Reformulation 28

2.5. Concluding Remarks

In this chapter, we provided an overview of query reformulation in Data Integration

Systems and Peer Data Management Systems. We introduced query reformulation by

using semantics, including terms expansion and query personalization. Finally, we

presented a survey of some query reformulation approaches proposed in the literature.

Most query reformulation approaches have mainly concentrated on translating a

source query to an exact target query by using traditional correspondences such as

equivalence and, sometimes, subsumption. Nevertheless, dynamic distributed

environments, such as PDMS, also need techniques to improve the relevance of query

answers, considering that users are usually more interested in answers that fit their

needs, or that are closer to what they define as relevant at query formulation time. In

Chapter 5, we propose a new query reformulation approach that is targeted at fulfilling

these requirements.

CCCCCCCCHHHHHHHHAAAAAAAAPPPPPPPPTTTTTTTTEEEEEEEERRRRRRRR 33333333
“The meaning of things lies not in the things themselves,

but in our attitude towards them.”

 Antoine de Saint-Exupery

Semantic Issues

In a general sense, semantics is the study of meanings of the message underlying the

words or underlying certain elements that need to be interpreted in a given task or

situation. In dynamic distributed environments, semantics may be identified considering

the user's perspective, the peers’ perspective or even the query formulation. Since such

environments perform services over data from existing heterogeneous sources, they

must be able to deal with different categories of heterogeneity such as structural and

semantic heterogeneity. As a result, metadata must be used to describe the content of the

data sources in a comprehensive and uniform way. To provide a shared understanding

of the terms that are being evaluated, a domain ontology may be used as a semantic

reference. In addition, context may be used to improve the system’s services.

In this chapter, we provide an overview of some semantic issues, particularly,

ontologies, context and the Description Logics formalism. These issues are been

increasingly used as a means for enhancing query answering in distributed

environments. Thus, this chapter covers the following contents: Section 3.1 defines

ontology and related notions, presenting its potential benefits in distributed settings’

processes; Section 3.2 describes Description Logics, providing some background

understanding of this formalism; Section 3.3 introduces the concept of context and how

it can be used. Finally, Section 3.4 concludes the chapter with some considerations.

3.1. Ontology

In the last years, the term “ontology” has been increasingly used in diverse

computational areas, including Artificial Intelligence, Databases and Information

Retrieval. However, there are many views of what an ontology is supposed to denote.

Chapter 3 – Semantic Issues 30

The Webster dictionary online
4
 defines the term ontology as “the metaphysical study of

the nature of being and existence”. In Artificial Intelligence, an ontology was initially

defined as an “explicit specification of a conceptualization”, where a conceptualization

is an abstract, simplified view of the world that we wish to represent for some purpose

[Gruber 1993]. As an illustration, for a biologist, a conceptualization may include that

animals can be classified in groups called species and that the animals belonging to

species have similar eating habits. Based on these eating habits, the species can be

subcategorized into herbivores, carnivores and omnivores [Borst 1997].

Studer and his group [Studer et al. 1998] go further and define ontology as a

formal, explicit specification of a shared conceptualization, where formal means

machine-readable, explicit specification entails that the concepts, properties, relations,

constraints and axioms are explicitly defined, shared means consensual knowledge and

conceptualization is an abstract model of some phenomenon in the world.

In summary, we can say that an ontology is a representation of a shared

understanding of concepts in a particular domain of interest as agreed by a community.

This representation must be clear, concise, and consistent for such community [Necib

2007], where a community can be a group of people or computer systems that interact

with one another within a common domain of interest. In order to make up an ontology,

we need to deal with a vocabulary of the basic terms, a precise specification of what

those terms mean and how they relate to each other.

Typical real-world ontologies include taxonomies on the Web (e.g., Yahoo!

categories) and top-level ones, i.e., ontologies with general concepts (e.g., SUMO -

Suggested Upper Merged Ontology
5
). There are also domain ontologies which describe

the vocabulary related to a given domain (e.g., Health or Geography) and are the most

commonly found ones. Some examples of domain ontologies which have been

constructed over the years are: UMLS
6
, Gene Ontology

7
 and Core Legal Ontology

8
.

3.1.1. Basic Notions

Although there are different definitions of the term “ontology”, some basic notions

regarding its structure are shared by most approaches. Considering that an ontology can

be represented by a hierarchy of concepts and a hierarchy of relations, we describe some

of its elements and their meaning as follows [Noy and McGuinness 2001]:

4 http://www.websters-online-dictionary.org/
5 http://www.ontologyportal.org/
6 http://www.nlm.nih.gov/research/umls/
7 http://www.geneontology.org/
8 http://www.estrellaproject.org/lkif-core/
6 http://wordnet.princeton.edu/

Chapter 3 – Semantic Issues 31

• Concept (also known as class): A concept is a representation for a conceptual

grouping of similar terms. For example, a Vehicle could be represented as a

concept which would have many sub-concepts such as Car, Motorbike.

• Properties (also known as slots): A property is seen as a relation, since it is

used to describe a relationship between two terms. The first term must be a

concept that is the Domain of the relation and the second must be a concept

that is the Range of the relation. For example, drives could be represented as

a relation such that its domain is Person and its range is Vehicle. The range

of a property may also be a datatype such as string, integer, real or boolean.

A relation may have sub-relations. For example, firstName, lastName and

title could be sub-relations of the relation designation.

• Instance: An object is an instance of a concept whether it is a member of the

set denoted by that concept. For instance, Anna is an instance of Person.

The knowledge captured in ontologies can be used, among other things, to

annotate data, generalize or specialize concepts, and infer entirely new (implicit)

information. Some semantic relationships can be usually identified in an ontology:

• Subsumption: the relationship between a concept and its sub-concepts or

between a property and its sub-properties is called an “is_a” (or

specialization) relationship. This relation can be either declared in an

ontology or inferred through transitivity.

• Disjointness: it means that two terms do not overlap. This relationship can

also be declared or inferred.

• Sibling: this relationship occurs when two terms share a common ancestor (a

common super-concept), which can be either a direct or an indirect parent.

 Taking into account the structure of an ontology, we can determine the semantic

distance of two concepts. In general, semantic distance denotes the degree of semantic

association between concepts [Scriver 2006]. Considering the taxonomy (hierarchy of

concepts) of an ontology, we provide some notions which are relevant when

determining the semantic distance between concepts:

• Length: The length between two concepts C1 and C2 is the shortest

allowable path connecting C1 and C2 (measured in nodes) in the taxonomy.

• Depth: The depth of a concept C in a taxonomy is the length of the path from

the root to the concept C.

• Height: The height of a concept C in a taxonomy is the length of the path

from the concept C to the deepest leaf. The height of a taxonomy is the

height of the root.

Chapter 3 – Semantic Issues 32

As an example, consider the Animal taxonomy as depicted in Figure 3.1. Some

illustrative obtained measures are presented as follows:

Figure 3.1 An excerpt from an Animal Taxonomy

3.1.2. Ontology Reasoning and Representation

An ontology provides the mechanisms for modeling a domain of interest and reasoning

upon it, and has to be represented in terms of a well-defined language. According to

Lenzerini and his group [2009], “reasoning over an ontology” means any mechanism

that makes explicit facts that are represented implicitly in an ontology. Methods for

reasoning about ontologies are required for several reasons, including [Lenzerini et al.

2009]: (i) validation, which means ensuring that the ontology is a good representation of

the domain of discourse and (ii) analysis which provides the inference of new facts

about the domain that are implicitly represented.

Ontologies are usually expressed in an ontology language. Since they are a

knowledge representation technique based on Description Logics (DL) [Baader et al.

2003], it is common to find ontologies expressed in such formalism. Due to the use of

DLs in this work, we provide a more complete presentation of their syntax and

semantics in Section 3.2. Here we briefly discuss the Web Ontology Language – OWL9

which is considered the standard language for the representation of ontologies on the

Semantic Web [Berners-Lee et al. 2001] and which is itself based on Description

Logics.

OWL is an XML-based markup language which allows the construction of the

different elements of an ontology based on RDF graphs. In RDF, elements are

represented using a triple pattern logic [Chamiel and Pagnucco 2008]. Each element in

the RDF graph has to be a literal or an RDF resource. For example, the following tag

9 http://www.w3.org/TR/owl-features/

Length(Seal, Fox) = 6;

Depth(Dog) = 4;

Height(Fissipedae) = 2;

Chapter 3 – Semantic Issues 33

constructs an OWL class (concept) named Food: <owl:Class rdf:ID="Food">. Here,

the subject is a class definition, the predicate is the class id and the object is the string

“Food”. Properties and individuals can be created in the same manner. For example, the

following tag constructs a new individual food <Food rdf:ID="Carrot">.

OWL is based on the SH family of Description Logics [Horrocks 2005], which

besides the traditional boolean constructs and quantification, allows for enforcing roles

(i.e., binary predicates) to be transitive, and for forming role hierarchies [Lenzerini et al.

2009]. OWL has three flavors of expressivity: OWL Lite, OWL DL and OWL Full.

3.1.3. Ontology in Distributed Environments

There is a growing interest in ontologies for enhancing data management in distributed

environments. Due to the fact that ontologies provide good supports for understanding

the meaning of data, they have been used in data integration systems to overcome

problems caused by the heterogeneity of data and to optimize query answering among

the distributed sources. In these settings, they have been used for some purposes,

including [Xiao 2006]: (i) metadata representation, where metadata in each data source

are represented by a local ontology; (ii) global conceptualization, providing a

conceptual view over the schematically heterogeneous source schemas; (iii) support for

high-level queries, where, given a global ontology, the user can formulate a query

without specific knowledge of the different data sources.

In addition, mainly due to semantic heterogeneity, research on PDMS has also

considered the use of ontologies as a way of providing a domain reference and

describing data sources in a uniform notation. Considering a given knowledge domain,

an agreement on its terminology can occur through the definition of a domain ontology

which may be used as a semantic reference or background knowledge in order to

enhance processes such as ontology matching.

 Since ontologies are usually used to represent peer schemas in distributed

environments, there are several forms of heterogeneity between them. These

heterogeneities are classified as follows [Euzenat and Shvaiko 2007].

• Syntactic heterogeneity: occurs when two ontologies are not expressed in the

same ontology language, e.g., when two ontologies are modeled by using

different representation formalisms, such as OWL and F-logic.

• Terminological heterogeneity: occurs due to variations in names when

referring to the same entities in different ontologies. This can be caused by

the use of different natural languages, e.g., Paper vs. Articulo, different

technical sublanguages, e.g., Paper vs. Memo, or the use of synonyms, e.g.,

Paper vs. Article.

Chapter 3 – Semantic Issues 34

• Conceptual heterogeneity: also called semantic heterogeneity, stands for the

differences in modeling the same domain of interest. It can happen due to the

use of different axioms for defining concepts or due to the use of totally

different concepts, e.g., geometry axiomatised with points as primitive

objects or geometry axiomatised with spheres as primitive objects. More

specifically, it may occur due differences in [Benerecetti et al. 2001]:

o Coverage: occurs when two ontologies describe different, possibly

overlapping, regions of the world at the same level of detail and from

a unique perspective. This is, e.g., the case of two partially

overlapping geographic maps.

o Granularity: occurs when two ontologies describe the same region of

the world from the same perspective but at different levels of detail.

This applies, e.g., to geographic maps with different scales, i.e., one

displays buildings, while another depicts whole cities as points.

o Perspective: also called difference in scope, occurs when two

ontologies describe the same region of the world, at the same level of

detail, but from a different perspective. This occurs, e.g., for maps

with different purposes such as a political map and a geological map

which do not display the same objects.

• Semiotic heterogeneity: also called pragmatic heterogeneity, is concerned

with how entities are interpreted by people. Indeed, entities which have

exactly the same semantic interpretation are often interpreted by humans

with regard to the context of how they have been ultimately used.

In order to deal with such heterogeneities, matching processes are used.

Matching is the process of finding relationships or correspondences between elements

of different ontologies, and alignment is a set of correspondences between two or more

ontologies, i.e., the output of the matching process [Euzenat and Shvaiko 2007]. Still, a

correspondence is the relation holding between elements of different ontologies. These

elements can be concepts, individuals, properties or formulas.

Nevertheless, in order to make an effective use of existing agreed ontologies

(which may be used as domain ontologies), we have to verify if they are correct. This

means verifying whether the modeled entities and properties in an ontology correctly

represents entities in the world being modeled. To this end, a methodology for

validating the ontological adequacy of taxonomic relationships, called OntoClean, has

been presented by Guarino and Welty [2002]. As an example, DOLCE
10

 is an upper

ontology built on the principles of OntoClean.

10 http://www.loa-cnr.it/DOLCE.html

Chapter 3 – Semantic Issues 35

OntoClean is based on general ontological notions drawn from philosophy, like

rigidity (essence), identity, and unity. These notions are described as follows

[Fernández-López and Gómez-Pérez 2002]:

• Rigidity: This notion is defined based on the idea of essence. A property is

essential to an individual if and only if it necessarily holds for that

individual. Thus, a property is rigid (+R) if and only if it is necessarily

essential to all its instances. A property is non-rigid (-R) if and only if it is

not essential to some of its instances, and anti-rigid (~R) if and only if it is

not essential to all its instances. For example, the concept person is usually

considered rigid, since every person is essentially such, while the concept

student is normally considered anti-rigid, since every student can possibly

be a non-student a few years later.

• Identity: A property carries an identity criterion (+I) if and only if all its

instances can be (re)identified by means of a suitable “sameness” relation. A

property supplies an identity criterion (+O) if and only if such criterion is not

inherited by any subsuming property. For example, person is usually

considered a supplier of an identity criterion (for example the fingerprint),

while student just inherits the identity criterion of person, without supplying

any further identity criteria.

• Unity: an individual is a whole if and only if it is made by a set of parts

unified by a relation R. For example, the enterprise Iberia is a whole because

it is composed by a set of people that are linked by the relation having the

same president. A property P is said to carry unity (+U) if there is a common

unifying relation R such that all the instances of P are wholes under R. For

example, the concept enterprise-with-president carries unity because every

enterprise with president is made up people linked through the relation

having the same president. A property carries anti-unity (~U) if all its

instances can possibly be non-wholes. Properties that refer to amounts of

matter, like gold, water, etc., are good examples of anti-unity.

In cleaned ontologies which hold such notions, these meta-properties are

assigned to concepts. For example, the ontology depicted in Figure 3.2 is an example of

a cleaned ontology. These meta-properties impose constraints on the subsumption

relation, which can be used to check the ontological consistency of taxonomic links. For

example, the class student cannot subsume the class person if the former is anti-rigid

and the latter is rigid. For more details and a complete example of usage, we refer the

work of Guarino and Welty [2004]. Next section, we describe the Description Logics

formalism.

Chapter 3 – Semantic Issues 36

Figure 3.2 An excerpt from a cleaned Ontology [Guarino and Welty 2004]

3.2. Description Logics

Description Logics (DLs) are considered a family of knowledge representation

formalisms that allow representation of domain knowledge and reasoning with it in a

formally well understood way [Baader et al. 2003; Horrocks 2005]. They provide the

specification of concepts (classes), individuals (instances) and roles (properties).

Operators, such as negation (¬) or conjunction (*), can be used in order to build more

complicated composite concepts. As an initial example, consider the following concept:

Female * ≥≥≥≥ 2hasChild * ∀∀∀∀haschild.Female

This axiom describes females who have at least two children and all of whose

children are female.

By using a DL language, users can build a terminology of agreed terms and use

a knowledge representation system to store and reason about such terminology. A

terminology, also called a TBox, is a set of axioms that induce a concept taxonomy. The

basic form of declaration in a TBox is a concept definition, that is, the definition of a

new concept in terms of other previously defined concepts. For instance, a woman can

also be defined as a female person by writing an equivalence declaration, as follows:

Woman ≡≡≡≡ Person * Female

Inclusion axioms of the form C m D, where C and D are arbitrary concept

expressions, can also be defined. An example is given by the axiom Professor m

Person, meaning that the concept Professor is a specialization of the concept Person

and hence every instance of the concept Professor must also be an instance of the

concept Person. Description Logics may also allow for a role hierarchy, also called an

Entity -I-U+R

Location

++++OOOO----U+RU+RU+RU+R
Amount of Matter

++++O~UO~UO~UO~U +R+R+R+R
Physical Object

++++O+U+RO+U+RO+U+RO+U+R Red
----IIII----UUUU ----RRRR

Living Being
+O+U+O+U+O+U+O+U ----D+RD+RD+RD+R

Geographical

Region
++++IIII----U+RU+RU+RU+R

Food
++++IIII----O~UO~UO~UO~U~R~R~R~R

Fruit
++++O+U+RO+U+RO+U+RO+U+R

Apple
++++O+U+RO+U+RO+U+RO+U+R

Red Apple
++++IIII----O+O+O+O+U~U~U~U~RRRR

Animal
++++O+U+RO+U+RO+U+RO+U+R

Lepdopteran
++++O+U+RO+U+RO+U+RO+U+R

Vertebrate
++++IIII----O+U+RO+U+RO+U+RO+U+R

Person
++++O+U+RO+U+RO+U+RO+U+R

Caterpillar
++++I+I+I+I+U~U~U~U~RRRR

Butterfly
++++I+I+I+I+U~U~U~U~RRRR

Chapter 3 – Semantic Issues 37

RBox, where, e.g. the axiom hasSon m hasChild states that all pairs of individuals that

are related through the role hasSon are also related through the role hasChild [Glimm

2007]. If a DL supports transitive roles, one can state that the role hasDescendent is

transitive. In turn, a DL reasoner can deduce that, if hasDescendent(Anna, John) and

hasDescendent(John, Carl) holds, then hasDescendent(Anna, Carl) also holds.

Assertions about individuals have the form Female(Anna), hasChild(Anna,

John), or Anna ≠ Ana, and are called concept assertions, role assertions, and

inequality assertions, respectively. A collection of assertions about individuals is called

an ABox. Therefore, a TBox, RBox (if supported by the DL language), and ABox

together constitute a knowledge base (that may be implemented as an ontology).

3.2.1. Description Logics Languages

Particular DL languages are mainly characterized by: (i) a set of constructors for

building complex concepts and roles from simpler ones and (ii) a set of axioms for

asserting facts about concepts, roles and individuals. In this section, we present the

ALC language.

The name ALC stands for “Attributive concept Language with Complement”.

It is obtained from AL by adding the complement operator (¬). Formally, ALC syntax

is defined as follows [Baader et al. 2007]: Let NNNNCCCC be a set of concept names and NNNNRRRR be a

set of role names. The sets of ALC-concept descriptions are the smallest ones such

that:

1. ¨, ⊥, and every concept name A ∈ NNNNCCCC is an ALC-concept.

2. If C and D are ALC-concepts and r � NNNNRRRR, then C ⊓⊓⊓⊓ D, C ⊔⊔⊔⊔ D, ¬C, ∀∀∀∀r.C and

∃∃∃∃r.C are ALC-concepts.

The ALC constructors are: conjunction, disjunction, negation, existential

restriction and value restriction.

One important application of DLs is being used as the formal foundation for

ontology languages. OWL is an example of DL based ontology language, as explained

in Section 3.1.2. In particular, ALC has been extended with several features that are

important in an ontology language, including number restrictions, inverse roles,

transitive roles, subroles, concrete domains, and nominals. With number restrictions, it

is possible to describe the number of relationships of a particular type that individuals

can participate in, e.g., we may say that a person is married to at most one other

individual: Person m ≤1married. With qualified number restrictions, we can

additionally describe the type of individuals that are counted by a given number

Chapter 3 – Semantic Issues 38

restriction. We can define a HappyMan including the fact that instances of HappyMan

have at least two children who are doctors, such as [Baader et al. 2007]: HappyMan ≡

Human * ¬Female * (∃married.Doctor) * (∀hasChild.(Doctor + Professor)) *

≥2hasChild.Doctor * ≤4hasChild. Also, with inverse roles, transitive roles, and

subroles, we can, in addition to hasChild, use its inverse hasParent, specify that

hasAncestor is transitive, and specify that hasParent is a subrole of hasAncestor.

The name given to a particular DL usually reflects its expressiveness, with

letters indicating the provided constructors. The letter SSSS is often used as an abbreviation

for the “basic” DL consisting of ALC extended with transitive roles. The letter H

represents subroles (role Hierarchies), O represents nominals (nOminals), I represents

inverse roles (Inverse), N represent number restrictions (Number), and Q represent

qualified number restrictions (Qualified). The integration of a concrete domain/datatype

is indicated by appending its name in parenthesis, but sometimes a “generic” D is used

to express that. Composing such representative identifications, we have the so-called

extended DL SHOIN(D) which corresponds to the OWL DL ontology language and

includes all these mentioned constructors [Glimm 2007].

3.2.2. Distributed Description Logics

Distributed Description Logics (DDL), introduced by Borgida and Serafini [2003] are a

natural generalization of the DL framework designed to formalize multiple ontologies

interconnected by semantic mappings [Homola 2007]. For instance, suppose we have

two information sources IS1 and IS2, each using some (potentially different) description

logic to describe its contents. We can establish connections between them, e.g.,

GradStudent mint Student would indicate that every graduate student in IS2 is also a

student in the overlapping part of the world described by IS1.

In DDL, a distributed T-Box consists of local T-Boxes Ti, described using

ordinary DLs, and bridge-rules relating them. In order to support directionality, it is

necessary to define two sets of bridge rules B12 and B21 from IS1 to IS2, and vice-versa.

A bridge rule from i to j is an expression of the following two forms [Ghidini and

Serafini 2006]: (i) i:x j:y, named into bridge rule or (ii) i:x j:y, denoted as onto

bridge rule, where x and y are either two concepts, or two roles, or two individuals of

DLi and DLj, respectively. In this sense, the into-bridge rule i:x j:y states that, the

concept x in i is less general than its local concept y. Similarly, the onto-bridge rule i:x

j:y expresses the fact that, x in i is more general than y in j. Hence, bridge rules

from i to j represent the possibility of j’s ontology to translate (under some

Chapter 3 – Semantic Issues

approximation) the concepts of foreign

Serafini 2006].

Example

To illustrate DDLs semantics and syntaxes, we consider the following DDL system that

contains two peers with their ontologies describing their

and Table 3.2 (and graphically in Figure

an “Education” domain and include concepts

Each ontology is formalized as a T

both ontologies, we have a set of bridge

we consider two concepts from each ontology and a primitive (root) concept called

thing. Furthermore, we consider three kinds of bridge rul

where an equivalence bridge rule is defined as the conjunction of into and onto bridge

rule.

Table 3.1 Ontologies O

O1

(TBox)

Teacher m

Publication

Teacher(∀∀∀∀

Publication(

(ABox) Teacher(John, 323)

Publication(323, 2005, John)

O2

(TBox)

Professor

Pub m Thing

Professor

Pub((∀∀∀∀num

(ABox) Professor((Anna,

Pub(245, 2003, (Anna, Gomes))

Table 3.2 Bridge

B12 O1.Teacher

O1.Teacher(name)

O1.Teacher(hasPublication)

O1.Publication

O1.Publication(number)

O1.Publication(isPublishedBy)

B21 O2.Professor

O2.Professor(first_name

O2.Professor(isAuthorOf)

O2.Pub O

O2.Pub(num)

O2.Pub(hasAuthor)

concepts of foreign i’s ontology into its internal model [G

o illustrate DDLs semantics and syntaxes, we consider the following DDL system that

contains two peers with their ontologies describing their schemas, depicted in Table 3.1

(and graphically in Figures 3.3 and 3.4). The schemas are concerned with

an “Education” domain and include concepts such as Professor and its Publications

Each ontology is formalized as a T-Box (including an R-Box) and an A-Box. Between

both ontologies, we have a set of bridge-rules (B12 and B21). For the sake of simplicity,

we consider two concepts from each ontology and a primitive (root) concept called

. Furthermore, we consider three kinds of bridge rules (into, onto and equivalent),

where an equivalence bridge rule is defined as the conjunction of into and onto bridge

Table 3.1 Ontologies O1 and O2 (TBox and ABox)

m Thing

Publication m Thing

∀∀∀∀name * ∃∃∃∃hasPublication)

Publication(∀∀∀∀number * ∃∃∃∃year * ∃∃∃∃isPublishedBy)

Teacher(John, 323);

Publication(323, 2005, John)

Professor m Thing

Thing

Professor((∀∀∀∀first_name * ∀∀∀∀last_name) * ∃∃∃∃isAuthorOf)

num * ∃∃∃∃year * ∃∃∃∃hasAuthor)

Professor((Anna, Gomes), 245);

Pub(245, 2003, (Anna, Gomes))

Table 3.2 Bridge-Rules between O1 and O2

 O2.Professor

.Teacher(name) O2.Professor(first_name * last_name)

.Teacher(hasPublication) O2.Professor(is_Author_of)

.Publication O2.Pub

.Publication(number) O2.Pub(num)

.Publication(isPublishedBy) O2.Pub(hasAuthor)

.Professor O1.Teacher

(first_name * last_name) O1.Teacher(name)

(isAuthorOf) O1.Teacher(hasPublication)

O1.Publication

.Pub(num) O1.Publication(number)

.Pub(hasAuthor) O1.Publication(isPublishedBy)

39

’s ontology into its internal model [Ghidini and

o illustrate DDLs semantics and syntaxes, we consider the following DDL system that

schemas, depicted in Table 3.1

. The schemas are concerned with

Publications.

Box. Between

). For the sake of simplicity,

we consider two concepts from each ontology and a primitive (root) concept called

es (into, onto and equivalent),

where an equivalence bridge rule is defined as the conjunction of into and onto bridge

Chapter 3 – Semantic Issues 40

Figure 3.3 Ontology O1 (using OntoViz11 Notation)

Figure 3.4 Ontology O2

Another kind of semantic knowledge is context [Dey 2001]. Next section, we

introduce such concept with related relevant notions and applications.

3.3. Context

The notion of context, which firstly emerged in Psychology and Philosophy [Chalmers

2004], has recently become an active field of research in areas related to Computer

Science, such as Ubiquitous Computing (UC), Human-Computer Interaction (HCI) and

Data Integration (DI). Early work considered context to be related to the user´s

location, nearby people and the resources that could be accessed [Schilit et al. 1994].

Other work has also tried to predict users’ needs [Cai et al. 2003], helping in their

activities, as well as adapting the system’s behavior according to some situational

11 http://protege.cim3.net/cgi-bin/wiki.pl?OntoViz

Ontology O1

Ontology O2

Chapter 3 – Semantic Issues 41

circumstances that change over time. In works regarding Data Integration, context has

been mainly used to represent different understanding of data and schema elements

[Kashyap and Sheth 1996; Goh 1997; Belian 2008].

Context is usually concerned with some specific situation, usually perceived as a

set of variables that may be of interest for an agent [Bolchini et al. 2007]. Context may

also be understood as the circumstantial elements that make a situation unique and

comprehensible [Dey 2001]. More abstractly, Vieira [2008] makes a distinction between

the concepts of contextual element (CE) and context. The former is any piece of data or

information that enables to characterize an entity in a domain. The latter is the set of

instantiated contextual elements that are necessary to support a task at hand.

Bazire and Brézillon [2005] have collected a set of approximately 150

definitions of context coming from different domains. The two main conclusions drawn

from their work are: (i) the context acts like a set of constraints that influence the

behavior of a system embedded in a given task and; (ii) the definition of context

depends on the field of knowledge that it belongs to. As a result, the standpoints from

which the notion of context is considered are different: in UC, the context is specifically

analyzed in terms of its physical sources and parameters; in HCI, the context is mainly

taken into account through the history of the user-application dialogues; in DI, context

information is employed to improve schema integration and query answering.

Although there are diverse definitions of what context means, most of

researchers agree in some points [Vieira et al. 2006]: (i) context only exists when

related to another entity (e.g., task, class); (ii) context is defined as a set of items (e.g.,

properties, rules) associated to an entity; and (iii) each item is considered as part of a

context only if it is useful to support the problem at hand. For example, the proposition

“it is raining” is defined as part of the context in a traffic jam support system, since rain

has implications in visibility, speed and in the traffic. However, the same proposition is

not considered contextual information in a museum guide system.

3.3.1. Context-Sensitive Systems

Context-sensitive computing deals with the ability of computer systems to obtain

contextual knowledge in order to improve services or tasks. As a consequence, it creates

a new generation of applications – called context-sensitive systems (CSS) - in which the

user-application interaction or a common service provided by the system (e.g., query

answering) is enhanced by perceiving/sensing the surrounding context. An interesting

CSS example is the Dynamic Tour Guide (DTG) [Kramer et al. 2005]. DTG is a mobile

agent enabling a personalized spontaneous guided tour. It plans an individual tour,

selecting attractions, providing navigational guidance and offering environmental

information. To this aim, it gathers all available information (e.g., location, personal

Chapter 3 – Semantic Issues 42

interests, current time, walking speed) and filters them. As a result, the system adapts

the tour according to this set of contextual information.

Despite different context views, one issue is a consensus: developing CSS

implies in managing contextual information. A CSS should include a context

management service which would be responsible for handling contextual information.

This functionality may be developed as a framework, a middleware or a set of web

services in a modular way, so other applications or services can interact with it.

 Based on our analysis of the available CSS state-of-the-art, we have selected a

set of tasks usually accomplished by a context management service. In the following,

we briefly discuss each one.

• Acquisition. The quality of context-aware services is dependent on the

quality of information collected from the context sources. Context data may

be captured in four ways: (i) from physical or hardware sensors (e.g., GPS,

microphones); (ii) from logical sensors – intelligent agents or services that

are able to collect context; (iii) from explicit input – some information may

be provided explicitly by the user (e.g., preferences) or (iv) from static

sources - by user profiles or by information stored in databases.

• Representation. A challenge to be faced in context management is the fact

that there is not still a standard model for representing contextual

information. On the other hand, it is common sense that context

representation is therefore becoming a necessity in most application

domains. Current research has worked with a considerable number of

context representation techniques, such as Contextual Graphs [Brézillon

2005], Ontologies [Souza et al. 2008], Topic Maps [Power 2003]. Due to its

relevance to our work, we provide more details regarding context

representation in Section 3.3.2.

• Reasoning. As soon as the context data is acquired, it should be interpreted

to provide for the appropriate system reaction or adaptation. Thus, reasoning

mechanisms may be used to process contextual information, i.e., to deduce

high-level implicit context from low-level explicit context.

• Storage. Almost every piece of contextual information is supposed to be

stored in a way that enables later recovery. Sometimes, however, if the CSS

reasoning only depends on the current value of sensors, then the context

storage is not necessary and may be taken away.

• Sharing. A scenario with lots of users and applications entails the necessity

of context-sharing. It also implies on defining privacy and security.

Chapter 3 – Semantic Issues 43

• Reusability. Context should be reused in future, saving new effort. Besides,

users would not be required to answer questions or to define preferences

more than once. Reusability would also avoid continuous acquisition.

• Evolution. Context evolution is hard to predict. It is essential that some

mechanism may be used to plan context changing when applications also

need change.

• Accountability. Context sensitiveness implies allowing users to make

informed decisions based on context. The context management service

should provide feedback to users and control to them in cases of conflict of

interests [Bellotti and Edwards 2001].

Benefits such as adaptation, personalization, and awareness (i.e., pro-activity),

are expected from a CSS [Vieira et al. 2006]. Adaptation means to adjust a service or

information according to available contextual elements. It includes operations such as

filtering of information or invocation of additional services. Personalization means to

adapt an application to different people, such that they perceive the application

differently at the same time, according to each person’s preferences or skills.

Aawareness is the service which delivers or pushes information to a client without

explicit request. This service works autonomously as a background process, informing

the user as configured.

3.3.2. Context Representation

In order to allow context usage, it is crucial to define how context will be represented.

Some issues should be considered when evaluating techniques to represent context: (i)

the model must be portable; (ii) it should have validation tools for edition, type

checking and conversion between formats; (iii) formality is welcome since it eases

definition, reasoning and reusability; and (iv) it must allow reasoning.

Current research has worked with a considerable number of context

representation techniques [Strang and Linnhoff-Popien 2004], such as Contextual

Graphs [Brézillon 2003], Topic Maps [Power 2003] and Ontologies [Wang et al. 2004;

Souza et al. 2006]. A contextual graph is an acyclic directed graph and allows a context-

based representation for operational processes by taking into account the working

environment [Brézillon 2003]. Topic maps are an attempt to connect pieces of data into

a graph which represent the relationship between them while providing a lightweight

way of navigating the information [Power 2003]. Shared ontologies, as explained in

Section 3.1, are fundamental for reusing knowledge, serving as a means for integrating

problem-solving, domain representation and knowledge acquisition modules [Wang et

al. 2004].

Chapter 3 – Semantic Issues 44

According to the issues pointed out above and to some recent works [Wang et al.

2004; Souza et al. 2008], ontologies seem to be one of the best options for context

representation. There are several advantages for developing ontology-based context

models [Wang et al. 2004; Souza et al. 2008], namely: to provide knowledge sharing

(services are supposed to deal with the same set of concepts), to enable knowledge

reuse, to define semantics independently from data representation, and finally to enable

the use of existing inference engines. On the other hand, a drawback related to

ontologies [Vieira 2008], is that the tools and standards for manipulating ontologies are

still immature and hard to use. In addition, using ontologies requires care since

reasoning over them may impact the application performance.

3.3.3. Context in Databases and Data Integration

Almost every statement we make is imprecise and hence meaningful only if understood

with reference to an underlying context [Goh 1997]. As an illustration, imagine a

database which stores the following: Street(‘Epitacio Pessoa’, 3000, ‘Good’). How

can these values be interpreted? When trying to figure out the sentence’s meaning, some

possibilities may be considered: (i) Street(name, length, conservation level), or (ii)

Street(name, width, cleanliness level). This means that each database maintains its

own assumptions about the data it stores in an independent way. In this sense, context

may be used to specify the assumptions made in database design to understand the

underlying semantics. Nevertheless, there has been little work on integrating context

into distributed environments that make use of database technologies.

Distinguishing useful information from noise (i.e., not relevant) is not a trivial

task, neither in a single database nor in a distributed environment. An example of

context-based data tailoring approach is the work of Bolchini and her group [2008].

They have used context to define context-aware data views over large information

systems. In their work, they propose the definition of a context-guided methodology to

support the designer in identifying, for a given application scenario, the contexts and the

correspondingly interesting subsets of data. Such methodology is composed by three

basic elements: (i) a context model, capturing all the aspects – the so-called dimensions,

that allows the implicit representation of the possible application contexts; (ii) a strategy

for identifying, for each dimension, a relevant portion of the entire data schema, i.e.,

partial views; and (iii) a suite of operators for combining these views to derive the final

view(s) associated with each context. Through this methodology, they allow the

tailoring of the data, providing a personalized subset of the available information.

Context may also be used in a broader way to improve data integration

processes, such as query answering and schema reconciliation. In a schema

reconciliation process, usually some tasks are considered [Belian 2008]: i) the

Chapter 3 – Semantic Issues 45

preprocessing routine that translates the schemas into a common format; ii) the schema

comparison which establishes the meaning of schema elements producing inter-schema

mappings; and iii) the merging and restructuring tasks which group corresponding

elements to generate the integrated schema. In this process, element names can have

different meanings depending on the context in which they are related. Hence,

contextual elements may improve the semantic interpretation of an entity by restricting

or modifying the meaning of an element according to a specific context [Souza et al.

2008]. Works dealing with conflicts resolution (i.e., semantic and/or schematic

conflicts) were the first ones to use contextual information in data integration settings.

Examples of these are the works of Kashyap and Sheth [1996], Goh [1997], Ram and

Park [2004] and Belian [2008].

Regarding query answering, context is any information that may influence the

result given to users in response to their queries [Yu et al. 2005]. A context-based query

answering process in a dynamic distributed environment is usually accomplished by the

following steps: (i) query submission and analysis; (ii) relevant data sources’

identification; (iii) query reformulation according to semantic mappings; (iv) query

execution and results’ integration; and (v) result presentation. Applying context

reasoning to query answering enriches the complete process as well as provides what

has been called context-sensitive queries - those whose results depend on the context at

the time of their submission [Stefanidis et al. 2005]. In this sense, when a user poses a

query, all the surrounding contextual elements will be analyzed to avoid ambiguity,

indicating the data that are really relevant to the user’s specific situation. Besides,

specific data conflicts arise mostly when query answers are assembled to produce a final

result [Goh 1997]. Therefore, user profile, query model and interface, data sources’

availability and semantic correspondences are examples of contextual elements that may

be used to contextualize queries, providing users with more useful results.

An example of context-based query answering approach is the work of

Stefanidis and his group [2005]. In Stefanidis et al. [2005], they investigate the use of

context in relational database management systems by means of a preference database

system that supports context-sensitive queries. In this work, context is modeled as a

finite set of special-purpose attributes, called context parameters. Examples of context

parameters are location, weather and the type of computing device in use. A context

state is an assignment of values to context parameters. Thus, users express their

preferences on specific database instances based on a single context parameter. Then,

such basic preferences are combined to compute aggregate preferences that include

more than one context parameter. The dependencies between context-dependent

preferences and database relations are stored through data cubes, and the queries over

them are processed using OLAP techniques, what allows for the manipulation of the

Chapter 3 – Semantic Issues 46

captured context data at various levels of abstraction. For instance, in the case of a

context parameter representing location, preferences can be expressed for example at

the level of a city, the level of a country or both.

3.4. Concluding Remarks

Nowadays, dynamic distributed settings, such as PDMS, face challenging problems in

dealing with the huge amount of data and the variety of its format. As a consequence,

they not only need additional supports for manipulating data but also for understanding

its meaning. To provide meaning and assist tasks such as query answering, semantic

knowledge in the form of ontologies and context has proven to be helpful. Moreover,

there is an increasing interest on combining context and ontology to define such

semantics.

Ontologies, that make explicit the usually implicit data modeling assumptions

regarding semantics of the data sources, play important roles in the reconciliation of

semantic differences across data sources [Wache et al. 2001]. Also, carrying semantics

for particular domains, ontologies are largely used for representing domain knowledge,

and can be used as background knowledge in processes like ontology matching or query

answering. On the other hand, context may be employed as a way to improve decision-

making over heterogeneity reconciliation in data integration processes since it helps to

understand the data schema semantics as well as the data content semantics.

Furthermore, it can improve query answering capabilities, providing users with more

meaningful answers according to the context acquired at query submission time.

It is possible to find formal and informal approaches defining ontology and

context models. Both models must be represented in terms of a well-defined language,

and, once such a representation is available, there ought to be well-founded methods for

reasoning upon it. To this end, some formalisms such as XML-related languages and

Description Logics (DLs) may be used. Among the formers, the most prominent is

OWL, which has been developed by the W3C and maintains compatibility with other

pre-existing languages like RDF. OWL is intended to be the standard Semantic Web

ontology language. DLs are a family of logic-based knowledge representation

formalisms designed to represent and reason about the knowledge of a given domain. In

fact, they are the OWL theoretical underlying formalism.

Using semantics from an underlying ontology and from the gathered context

might enhance query answers in a dynamic distributed environment. More precisely,

query reformulation should take into account such semantics in order to produce both

enriched and exact queries. A proposed solution for this problem is presented in the next

chapters.

CCCCCCCCHHHHHHHHAAAAAAAAPPPPPPPPTTTTTTTTEEEEEEEERRRRRRRR 44444444
"Strength does not come from physical capacity.

It comes from an indomitable will."

Gandhi

Using Ontologies in Data

Management

Data management solutions have been continuously evolving during the last years in

order to answer users’ needs and face new technology challenges. To help matters,

semantic knowledge in the form of ontologies has proven to be a helpful support for the

techniques used for managing data [Necib and Freytag 2005; Xiao and Cruz 2006]. As

such, ontologies are considered a key technology used to describe the semantics of data

at different sources, helping to overcome problems of semantic interoperability and data

heterogeneity, and thus assisting query answering over the distributed data sources. In

our work, we use ontologies in a threefold manner: (i) as background knowledge in

order to identify semantic correspondences between matching ontologies; (ii) as a

mechanism to represent and store contextual information and (iii) as a means for

defining Ontology-based PDMS and representing peer conceptual schemas.

In this sense, this chapter presents the way we use ontologies in our approach.

To this end, Section 4.1 presents our approach for identifying semantic correspondences

between ontologies; Section 4.2 presents CODI – a context ontology to represent and

store contextual elements. Ontology-based PDMS are defined in Section 4.3. Finally,

Section 4.4 concludes the chapter with some remarks.

4.1. Using Domain Ontologies to Identify Semantic Correspondences

In ontology-based distributed environments, several ontologies are usually developed

with meaningful content overlapping among them. This means that when two ontologies

overlap, they can be linked together in order to enable exchange of their underlying

knowledge. Nevertheless, ontologies are developed by different people or systems, with

Chapter 4 – Using Ontologies in Data Management 48

diverse goals and design assumptions. These assumptions have the effect of creating

several forms of heterogeneity between them, even between those on the same domain

[Euzenat and Shvaiko 2007]. Reconciling such ontologies is still a relevant research

issue, mainly in distributed settings.

The common approach for supporting ontology reconciliation in such settings is

based on ontology matching techniques, what provides the definition of semantic

relationships between elements belonging to the different ontologies, called in our work

as correspondences. A simple example of correspondence is the one stating that the

concept Professor in one ontology is equivalent to the concept Professeur in other

ontology. Correspondences among ontologies can be used for various tasks, including

ontology merging, query answering, or for navigation on the Semantic Web.

Since traditional approaches to ontology matching mainly rely on linguistic

and/or structural techniques, and these techniques are not so precise, some works have

considered the use of additional descriptions, called background knowledge [Sabou et

al. 2006; Reynaud and Safar 2007]. The use of background knowledge, through

ontologies or thesaurus, can enhance the correspondences identification by extending

the ones commonly found. In fact, existing matchers have shown that concepts from

two matching ontologies are rarely precisely equivalent, but rather have some semantic

overlap. Thereby, finding such degree of semantic overlap (or not, in case of

disjointness) becomes more useful for tasks such as query answering.

We consider that there are four main activities connected to the problem of

correspondences in a dynamic distributed environment composed by ontologies

[extended from Haase and Wang 2007]:

i. Identifying correspondences between the overlapping ontologies;

ii. Representing these correspondences in an appropriate formalism;

iii. Using the correspondences for a given task (e.g., query answering, data

integration, ontology merging); and

iv. Maintaining correspondences according to ontologies evolution.

We focus on the i, ii and iii above mentioned issues. The correspondences’

maintenance problem is out of our scope. Regarding issue i, we focus on identifying

semantic correspondences between two given ontologies, taking into account a domain

ontology as background knowledge. Regarding issue ii, we use the ALC-DL notation in

order to formalize the correspondences, since it is a formalism which can be instantiated

and reused in real environments, according to their specific requirements. Finally,

concerning issue iii, we enhance query reformulation by using semantics derived from

the set of identified semantic correspondences between peers. This latter issue will be

dealt with by presenting our query reformulation approach in Chapter 5.

Chapter 4 – Using Ontologies in Data Management 49

Next section, we present our approach to deal with issues i and ii. The goal of

our approach is to overcome the limitations of traditional ones by using domain

ontologies as background knowledge. We go one step further as, besides the common

correspondences (e.g., equivalence and subsumption), we also identify other semantic

ones (e.g., disjointness and closeness), providing various and semantically-rich degrees

of similarity between ontology elements.

4.1.1. Correspondences Specification

In our approach, ontologies are used as uniform conceptual representation of data

sources schemas. These data sources, which are abstractly called peers, are grouped

within the same knowledge domain (e.g., Education or Health) and an ontology

describing the domain is available to be used as background knowledge.

Correspondences between peers’ ontologies are established to provide a common

understanding of their data sources. We consider that correspondences are determined

between pairs of peers which have been semantically related according to a clustering

process. Ontologies belonging to such peers overlap at some semantic degree.

Therefore, we define our setting as a distributed one composed by a set of peer

ontologies interconnected with correspondences. For the sake of simplicity, in this

chapter, we call peer ontologies by ontologies (O).

Correspondences are considered first-class objects, since they are stored

independently from their relating ontologies. In our approach, three aspects are

considered in defining correspondences:

• Directionality: A correspondence can be unidirectional or bidirectional. In

the former, we specify how to map elements in a target ontology using

elements from a source ontology in a way that is not commonly invertible.

The latter works both ways, i.e., an element in a target ontology is expressed

using elements of a source one and vice-versa. In our setting, we consider

unidirectional correspondences. This means that if C is a unidirectional

correspondence between two concepts i and j, Cij is not the inverse of Cji.

• Homogeneity/heterogeneity: homogeneous correspondences allow mapping

concepts into concepts and properties into properties (attributes and

relationships). Heterogeneous correspondences are the ones which provide

correspondences between properties and concepts, i.e., a concept in an

ontology Oi and a property in an ontology Oj or vice-versa. Such

correspondences have been considered necessary to express the semantic

relationships between two ontologies, when the information represented as a

concept in the former is represented as a relationship in the latter, or vice

versa [Ghidini and Serafini 2006]. As an example, we may consider a first

Chapter 4 – Using Ontologies in Data Management

ontology Oi which has the concept Family and the property spouseIn. Family

represents the set of families, and spouseIn relates a Human with the family

in which s/he is one of the

property spouse, which represents the relationship of marriage between two

Humans. When integrating

can be mapped into a married couple in

concept Family can be mapped into the property spouse. In our specification,

correspondences may be heterogeneous, although

implemented solution

• Cardinality: It may be necessa

from one ontology to a number of different elements in another ontology.

Hence, we can have 1:1 or 1:n correspondences. In our specification, we

restrict the cardinality of the correspondences to be 1:1.

We say that {C} = {Cij

ontology (Oi) with a target ontology (

matching step in which the initial representation of two

a common format suitable for similarity computation, we

Oi and Oj have been converted

element names from Oi and

element names found in the Domain Ontology

Domain Ontologies (DO) contain concepts and properties of a particular

knowledge domain. In our setting, we consider DO as reliable references that are made

available on the Web. Particularly, we use them in order to bridge the conceptual

differences or similarities between two

concepts and properties from the two

concepts/properties in the DO and then their semantic correspondence is inferred based

on the existing semantic relationship between the DO elements. More specifically, when

comparing two concepts x and

DO), we compare k and z, and, if they are semantically related, infer that

semantically related as well.

semantic relationship exists between

correspondence may be established between

Figure 4.1 shows an overview of our approach for specifying the semantics of the

correspondences between two given

DO:k and O2:y ≡ DO:z. Since

relationship occurs between x

denoted by O1:x O2:y.

Using Ontologies in Data Management

which has the concept Family and the property spouseIn. Family

represents the set of families, and spouseIn relates a Human with the family

he is one of the spouses. Another ontology Oj contains the

property spouse, which represents the relationship of marriage between two

Humans. When integrating Oi and Oj we may state that every family in

can be mapped into a married couple in Oj, or in other words, that the

concept Family can be mapped into the property spouse. In our specification,

correspondences may be heterogeneous, although currently

solution, they are stated as homogeneous.

Cardinality: It may be necessary to map an element (concept or property)

from one ontology to a number of different elements in another ontology.

Hence, we can have 1:1 or 1:n correspondences. In our specification, we

restrict the cardinality of the correspondences to be 1:1.

ij}i≠j refers to the set of correspondences between

target ontology (Oj). Since terminological normalization is a pre

matching step in which the initial representation of two ontologies are transformed into

a common format suitable for similarity computation, we consider that both ontologies

have been converted to a uniform representation format. In other words,

and Oj have been adjusted to become compatible with the

Domain Ontology.

Domain Ontologies (DO) contain concepts and properties of a particular

In our setting, we consider DO as reliable references that are made

able on the Web. Particularly, we use them in order to bridge the conceptual

differences or similarities between two overlapping ontologies. In this sense, first

concepts and properties from the two matching ontologies are mapped to equivalent

operties in the DO and then their semantic correspondence is inferred based

on the existing semantic relationship between the DO elements. More specifically, when

and y having equivalent concepts k and z (respectively in the

, and, if they are semantically related, infer that x

semantically related as well. Using such knowledge, we can identify what kind of

semantic relationship exists between k and z and consequently specify what type of

correspondence may be established between x and y (from the matching ontologies).

shows an overview of our approach for specifying the semantics of the

two given ontologies O1 and O2. In this overview,

. Since k is subsumed by z in the DO, we infer that the same

 and y. Then, we conclude that O1:x is subsumed by

50

which has the concept Family and the property spouseIn. Family

represents the set of families, and spouseIn relates a Human with the family

contains the

property spouse, which represents the relationship of marriage between two

we may state that every family in Oi

, or in other words, that the

concept Family can be mapped into the property spouse. In our specification,

currently in our

ry to map an element (concept or property)

from one ontology to a number of different elements in another ontology.

Hence, we can have 1:1 or 1:n correspondences. In our specification, we

between a source

normalization is a pre-

ontologies are transformed into

both ontologies

to a uniform representation format. In other words,

have been adjusted to become compatible with the

Domain Ontologies (DO) contain concepts and properties of a particular

In our setting, we consider DO as reliable references that are made

able on the Web. Particularly, we use them in order to bridge the conceptual

In this sense, first

ontologies are mapped to equivalent

operties in the DO and then their semantic correspondence is inferred based

on the existing semantic relationship between the DO elements. More specifically, when

(respectively in the

x and y are

sing such knowledge, we can identify what kind of

and consequently specify what type of

ontologies).

shows an overview of our approach for specifying the semantics of the

In this overview, O1:x ≡

in the DO, we infer that the same

is subsumed by O2:y,

Chapter 4 – Using Ontologies in Data Management

Figure 4.1 Using a DO to Specify Semantic Correspondences between Ontologies

In order to specify the correspondences, we take into account four aspects:

i. The semantic knowledge found in the DO;

ii. Whether the ontologies’ concepts share super

iii. If these super-concepts are different from the root

iv. The depth of concepts measured in nodes.

Next, we present the definition of semantic correspondences together with the

set of rules that identify their types. The notation we use is based on Distributed

Description Logics (DDL) [Borgida and Serafini 2003

concerned with proposing new algorithms for DL or DDL, we rely on existing

equivalence and subsumption ones [

Definition 1 - Semantic Correspondence

as one of the following expressions:

1. O1:x O2:y, an isEquivalentTo

2. O1:x O2:y, an isSubConceptOf

3. O1:x O2:y, an isSuperConceptOf

4. O1:x O2:y, an isPartOf

5. O1:x O2:y, an isWholeOf

6. O1:x O2:y, an isCloseTo

7. O1:x O2:y, an isDisjointWith

where x and y are elements

ontologies O1 and O2.

Next, we describe each one of the existing correspondences types.

definitions clearer, we provide examples using an illustrative scenario

O1

x

Using Ontologies in Data Management

to Specify Semantic Correspondences between Ontologies

In order to specify the correspondences, we take into account four aspects:

The semantic knowledge found in the DO;

Whether the ontologies’ concepts share super-concepts in the DO;

oncepts are different from the root; and

concepts measured in nodes.

Next, we present the definition of semantic correspondences together with the

set of rules that identify their types. The notation we use is based on Distributed

Borgida and Serafini 2003]. Since our approach is not

concerned with proposing new algorithms for DL or DDL, we rely on existing

equivalence and subsumption ones [Baader et al. 2003] as the basis for our definitions.

Semantic Correspondence. A semantic correspondence is defined

as one of the following expressions:

isEquivalentTo correspondence

isSubConceptOf correspondence

isSuperConceptOf correspondence

isPartOf correspondence

isWholeOf correspondence

isCloseTo correspondence

isDisjointWith correspondence

are elements (concepts/properties) belonging to the

we describe each one of the existing correspondences types.

definitions clearer, we provide examples using an illustrative scenario

Domain Ontology (DO)

O2

≡
≡

x
y

k
z

m

51

to Specify Semantic Correspondences between Ontologies

In order to specify the correspondences, we take into account four aspects:

concepts in the DO;

Next, we present the definition of semantic correspondences together with the

set of rules that identify their types. The notation we use is based on Distributed

]. Since our approach is not

concerned with proposing new algorithms for DL or DDL, we rely on existing

] as the basis for our definitions.

. A semantic correspondence is defined

belonging to the matching

we describe each one of the existing correspondences types. To make

definitions clearer, we provide examples using an illustrative scenario which is

Chapter 4 – Using Ontologies in Data Management

concerned with electronic devices

Figure 4.2, we present the DO

Figure 4

Equivalence

The correspondence isEquivalentTo

al. 2003]. In our approach, using the domain ontology, if

in the DO and O2:y points to the same concept

properties describe the same

equivalence correspondence is defined as follows.

Definition 1.1 - isEquivalentTo

isEquivalentTo O2:y if O1:x

represented by O1:x O2:y.

Considering the illustrative scenario, as an example of this correspondence

identification, we have:

O1:PC ≡ DO:PC and

O2:PersonalComputer ≡

O1

Using Ontologies in Data Management

electronic devices, including computers and their components

DO, while in Figure 4.3, we depict the matching ontologies.

Figure 4.2 An Illustrative Domain Ontology

Figure 4.3 Matching Ontologies

isEquivalentTo has already been defined in several ways [

]. In our approach, using the domain ontology, if O1:x points to a concept/role

points to the same concept k, we can infer that both concepts or

properties describe the same real world concept/property (See Figure 4.4)

equivalence correspondence is defined as follows.

isEquivalentTo Correspondence. An element

:x ≡ DO:k and O2:y ≡ DO:k. This correspondence is

Considering the illustrative scenario, as an example of this correspondence

≡ DO:PC

O2 O3

52

components. In

ontologies.

has already been defined in several ways [Baader et

points to a concept/role k

both concepts or

(See Figure 4.4). The

. An element O1:x

. This correspondence is

Considering the illustrative scenario, as an example of this correspondence

Chapter 4 – Using Ontologies in Data Management

Then O1:PC O2:PersonalComputer

Figure 4.4 Specify

Specialization and Generalization

The semantics of isSubConceptOf

works (e.g., [Ghidini and Serafini 2006

domain ontology, as depicted in Figure

correspondence denoted as O

is less general than its related concept (or property)

isSuperConceptOf correspondence

in O1 is more general than y in

Figure 4.5 Specifying the

Definition 1.2 - isSubConceptOf

isSubConceptOf O2:y if O1:x

correspondence is represented by

An example of such correspondence is:

O2:PersonalComputer ≡

O3:ElectronicDevice ≡ DO:ElectronicDevice

O

IsEquivalentTo

O1

≡

m
x

k

IsSubConceptOf

Using Ontologies in Data Management

:PersonalComputer

Specifying the isEquivalentTo Correspondence

Specialization and Generalization

isSubConceptOf and isSuperConceptOf has also been defined in some

idini and Serafini 2006]). In our work, we redefine both using the

as depicted in Figure 4.5. In this sense, the isSubConceptOf

O1:x O2:y states that the concept (or property)

is less general than its related concept (or property) y in O2. On the other hand, the

correspondence denoted as O1:x O2:y expresses the fact that

in O2. We provide these definitions as follows.

ing the isSubConceptOf and isSuperConceptOf Correspondences

isSubConceptOf Correspondence. An element

:x ≡ DO:k and O2:y ≡ DO:z and DO:k m DO:z

correspondence is represented by O1:x O2:y.

An example of such correspondence is:

≡ DO:PC and

DO:ElectronicDevice and

DO

O1 O2

C

≡
≡

x
y

k

IsEquivalentTo

≡

DO

O2

≡

y

z

DO

O1 O

≡

≡

x
y

k

z

IsSuperConceptOf

}

53

has also been defined in some

. In our work, we redefine both using the

isSubConceptOf

states that the concept (or property) x in O1

. On the other hand, the

expresses the fact that x

ondences

An element O1:x

DO:z. Such

O2

≡

Chapter 4 – Using Ontologies in Data Management

DO.PC m DO:ElectronicDevice

Then O2.PersonalComputer

Definition 1.3 - isSuperConceptOf

isSuperConceptOf O2:y if O1

correspondence is represented by

An example is:

O1:Computer ≡ DO:Computer

O2:PersonalComputer

DO:Computer } DO:PC

Then O1.Computer

Using the transitivity property, we can infer that

and O1.Computer O2.MacintoshPC

Aggregation

In many applications of information sharing,

components or the inverse (i.e., components with the whole) may be

particularly in query expansion. Defining

enrich queries in order to provide users with

For instance, when querying for

additional answers.

We have defined both kinds of a

4.6. The correspondence isPartOf

of the related concept y in O2,

x in O1 is an aggregate of y in

are provided in the following.

Figure 4.6 Specify

O1

≡

x

k

z
IsPartOf

@

Using Ontologies in Data Management

DO:ElectronicDevice

.PersonalComputer O3.ElectronicDevice

isSuperConceptOf Correspondence. An element

1:x ≡ DO:k and O2:y ≡ DO:z and DO:k } DO:z

correspondence is represented by O1:x O2:y.

DO:Computer and

:PersonalComputer ≡ DO:PC and

DO:PC

 O2.PersonalComputer

Using the transitivity property, we can infer that O1.Computer O

.MacintoshPC.

In many applications of information sharing, relating aggregated objects

components or the inverse (i.e., components with the whole) may be of key importance

in query expansion. Defining part-whole correspondences may be used to

enrich queries in order to provide users with another level of concept approximation.

For instance, when querying for team, the team’s participants can also be provided as

e have defined both kinds of aggregation correspondences, as shown in

isPartOf states that the concept x in O1 is a part or component

, and the correspondence isWholeOf expresses the fact that

in O2, i.e., x in O1 is composed by y in O2. Both definitions

Specifying the isPartOf and isWholeOf Correspondences

DO

O2

≡

y

DO

O1 O

≡

≡

x
y

k

z

IsWholeOf

0

54

An element O1:x

DO:z. This

O2.IntelPC

aggregated objects with their

of key importance,

correspondences may be used to

another level of concept approximation.

can also be provided as

, as shown in Figure

is a part or component

expresses the fact that

. Both definitions

O2

≡

Chapter 4 – Using Ontologies in Data Management

Definition 1.4 - isPartOf

O1:x ≡ DO:k and O2:y ≡ DO:z

represented by O1:x O2:y.

As an example, consider:

O3:Keyboard ≡ DO:keyboard

O1:PC ≡ DO.PC and

DO:keyboard @ DO:PC

Then: O3.Keyboard

Definition 1.5 - isWholeOf

O2:y if O1:x ≡ DO:k and

correspondence is represented by

 An example is in the follow

O1:Notebook ≡ DO.Notebook

O3.Monitor ≡ DO.Monitor

DO.Notebook 0 DO.Monitor

Then: O1:Notebook

Closeness

In order to enrich queries and provide users with meaningful

sometimes we need to add semantically

two concepts of relating ontologies

to a common relevant context or meaning

world concept (the same ancestor in the domain ontology).

Considering the domain ontology

degree. If they do not overlap, they must be

disjoint axioms. Thereby, sibling concepts which are not stated as disjoint may be close.

In this sense, reflecting on some

close concepts organized under the same ancestor category

mainframe which are sub-concepts

sub-concepts of reading material

the only sufficient condition to be set as close concepts.

Another important aspect concerns the intended meaning of the concepts that

make up a domain ontology. According to the

Welty 2002], discussed in Section 3.1.

anti-rigid, meaning the degree of essentiality such concept has in the ontology. We

Using Ontologies in Data Management

isPartOf Correspondence. An element O1:x isPartOf

DO:z and DO:k @ DO:z (isPartOf). This correspondence is

.

As an example, consider:

DO:keyboard and

DO:PC

 O1.PC

isWholeOf Correspondence. An element O1:x

and O2:y ≡ DO:z and DO:k 0 DO:z (isWholeOf

correspondence is represented by O1:x O2:y.

following:

DO.Notebook and

DO.Monitor and

DO.Monitor

 O3.Monitor

In order to enrich queries and provide users with meaningful and related

sometimes we need to add semantically close concepts to the query. In our approach,

ontologies are close if they are perceived as belonging together

to a common relevant context or meaning, i.e., two concepts are under the same

(the same ancestor in the domain ontology).

domain ontology, two sibling concepts usually overlap in some

they do not overlap, they must be explicitly made disjoint by the use of

. Thereby, sibling concepts which are not stated as disjoint may be close.

eflecting on some existing domain ontologies, examples of semantically

close concepts organized under the same ancestor category are notebook, palmtop

concepts of computers, or magazine and book

reading material. However, being siblings that are not disjoint is not

the only sufficient condition to be set as close concepts.

Another important aspect concerns the intended meaning of the concepts that

make up a domain ontology. According to the OntoClean methodology [Guarino and

Section 3.1.3, a concept must be labeled as rigid, non

degree of essentiality such concept has in the ontology. We

55

isPartOf O2:y if

This correspondence is

 isWholeOf

isWholeOf). This

and related answers,

the query. In our approach,

if they are perceived as belonging together

the same real

ally overlap in some

by the use of

. Thereby, sibling concepts which are not stated as disjoint may be close.

semantically

palmtop and

book which are

. However, being siblings that are not disjoint is not

Another important aspect concerns the intended meaning of the concepts that

[Guarino and

non-rigid or

degree of essentiality such concept has in the ontology. We

Chapter 4 – Using Ontologies in Data Management 56

consider that the common ancestor of two close concepts must be labeled as rigid, i.e., a

concept carries a rigid property if, for all its instances, such property is rigid. Such

property is intended to guarantee that the common ancestor of two close concepts is an

important concept in such conceptualization.

Other aspects are concerned with the depth of the common ancestor in the

domain ontology and the depth of close concepts in relation to their ancestor. The

former is important to guarantee that the ancestor is not a very general concept in the

DO, and the latter aims to guarantee a degree of proximity of each concept in relation to

its common ancestor. These aspects are indeed completely dependent on the domain

ontologies’ granularity and size. They are verified by the use of two thresholds: (i)

thresholdRoot which provides a limit for the position of the common ancestor in

relation to the root; and (ii) thresholdCommonAncestor which provides a limit for the

position of each matching concept in relation to the common ancestor.

In this light, we consider that two concepts k and z are close if:

i. They share a common ancestor in the DO;

ii. This common ancestor is not the root (¨) and it is labeled as rigid;

iii. The concepts do not hold any subsumption nor disjointness relationship

between themselves; and

iv. The measured depths are evaluated to true, according to the referred

thresholds.

Implicitly, taking into account these conditions, we infer the semantic path

between the concepts, thus, verifying the degree of closeness between them. The

closeness correspondence is specified as follows (see Figure 4.7).

Figure 4.7 Specifying the isCloseTo Correspondence

Definition 1.6 - isCloseTo Correspondence. An element O1:x isCloseTo O2:y

if (O1:x ≡ DO:k and O2:y ≡ DO:z) and (DO:k m DO:a and DO:z m DO:a) and DO:a ≠

DO

O1 O2

≡
≡

¼
x

y

k z

IsCloseTo

a

Chapter 4 – Using Ontologies in Data Management

¨ and DO:a isRigid and (depth(DO:a, DO:

and (depth(DO:k,DO:a) b

thresholdCommonAncestor)

Where ¬(DO:k ⊥ DO:z)

Assuming that DO:Computer

been set to 1, and thresholdCommonAncestor

example as follows.

O1:Notebook ≡ DO:Notebook

O2:MacintoshPC ≡ DO:MacPC

DO:Notebook } DO:Computer

DO:MacPC } DO:Computer

DO:Computer ≠ ¨ and

DO:Computer isRigid

depth(DO:Computer, DO:

depth(DO.Notebook,DO.Computer) = 1

depth(DO.MacPC, DO.Computer) = 2

Then: O1.Notebook

Disjointness

Recently, several ontology editors have

concepts are disjoint. In description logics

their taxonomic overlap (i.e.,

2007]. In other words, concepts

common. For example, the Red wine

can be simultaneously red and

system to validate the ontology better

the Red wine and the White wine

is a subclass of both, the

Nevertheless, it is very likely that ontolog

disjointness axioms, simply because they are not aware of the fact that

not explicitly declared to be disjoint will be considered as overlapping.

Considering that, we have defined the

identify the strongest dissimilarity between peer ontology elements. In terms of

matching, this correspondence is not so important, but regarding query answering and

query reformulation, it is essential, mainly whe

queries. Thus, the correspondence

are disjoint if their DO corresponding concepts

Using Ontologies in Data Management

depth(DO:a, DO:¨) r tresholdRoot) and ¬(DO:k

 thresholdCommonAncestor and depth(DO:z,DO:a)

thresholdCommonAncestor). This correspondence is represented by O1:x

DO:z) means that k and z are not disjoint.

DO:Computer has been labeled as rigid, thresholdRoot

hresholdCommonAncestor has been set to 3, we provide an

DO:Notebook and

DO:MacPC and

DO:Computer and

DO:Computer and

and

isRigid and

depth(DO:Computer, DO:¨) = 1 and

depth(DO.Notebook,DO.Computer) = 1 and

depth(DO.MacPC, DO.Computer) = 2

 O2.MacintoshPC.

Recently, several ontology editors have allowed to explicitly specify whether two

disjoint. In description logics, two concepts are considered as disjoint if

, the set of common individuals) is empty [Volker et al.

In other words, concepts are disjoint if they cannot have any instances in

Red wine and the White wine classes are disjoint: no wine

can be simultaneously red and white. Specifying that classes are disjoint enables the

system to validate the ontology better [Noy and McGuinness 2001]. Thus, if we declare

White wine concepts to be disjoint and later create a concept

 system can indicate that there is a modeling error.

it is very likely that ontology engineers sometimes forget to introduce

disjointness axioms, simply because they are not aware of the fact that classes which are

not explicitly declared to be disjoint will be considered as overlapping.

Considering that, we have defined the isDisjointWith correspondence in order to

identify the strongest dissimilarity between peer ontology elements. In terms of

matching, this correspondence is not so important, but regarding query answering and

query reformulation, it is essential, mainly when we have negation over concepts in

queries. Thus, the correspondence isDisjointWith states that two concepts O1:x

are disjoint if their DO corresponding concepts k and z, respectively, are disjoint, i.e., in

57

(DO:k ⊥ DO:z)

depth(DO:z,DO:a) b

O2:y.

thresholdRoot has

has been set to 3, we provide an

whether two

are considered as disjoint if

[Volker et al.

disjoint if they cannot have any instances in

classes are disjoint: no wine

white. Specifying that classes are disjoint enables the

f we declare

oncept that

system can indicate that there is a modeling error.

to introduce

classes which are

correspondence in order to

identify the strongest dissimilarity between peer ontology elements. In terms of

matching, this correspondence is not so important, but regarding query answering and

n we have negation over concepts in

:x and O2:y

, respectively, are disjoint, i.e., in

Chapter 4 – Using Ontologies in Data Management 58

the domain ontology k and z have been defined as disjoint. This means that x in O1 does

not overlap with y in O2. Such type of correspondence is depicted in Figure 4.8 and

defined as follows.

Figure 4.8 Specifying the isDisjointWith Correspondence

Definition 1.7 - isDisjointWith Correspondence. An element O1:x

isDisjointWith O2:y if O1:x ≡ DO:k and O2:y ≡ DO:z and DO:k ⊥ DO:z. This is

represented by O1:x O2:y.

As an illustration of disjointness correspondence, consider now the domain

ontology depicted in Figure 4.9. Such ontology concerns organisms, such as animals,

minerals and plants. In this DO, disjoint axioms have been stated between some

elements, including Animal ⊥ Mineral, Animal ⊥ Plant, Bird ⊥ Mammal, Mammal ⊥

Amphibian, and Bird ⊥ Amphibian. Using the transitivity property, for example, we

can also infer that Animal ⊥ Salt, and Animal ⊥ MineralWater.

Figure 4.9 A Domain Ontology about Organisms

DO

O1 O2

≡

≡

x

y

k z

IsDisjointWith

⊥

⊥

Chapter 4 – Using Ontologies in Data Management 59

Figure 4.10 Matching Ontologies

Suppose that the ontologies shortly presented in Figure 4.10 are to be

semantically matched. Considering the disjoint axioms, we can infer the following

disjoint correspondence:

O1:Animal ≡ DO:Animal and

O2:Plant ≡ DO:Plant and

DO:Animal ⊥ DO.Plant

Then O1:Animal O2:Plant

In the same way, other disjoint correspondences can be identified, including:

O1:Mineral O2:Plant

O1:Bird O2:Mammal

O1:Mammal O2:Amphibian

4.1.2. A More Complete Example

We demonstrate our approach more accurately using a real and practical example. In

this current scenario, we consider a setting composed by two peers P1 and P2. The peers

store and share data about conferences whose works (e.g., papers) are submitted

electronically. Each peer is described by an ontology – O1 and O2, as shown in Figure

4.11. In addition, we have considered as background knowledge a Domain Ontology

(DO) depicted in Figure 4.12.

In order to identify the semantic correspondences between O1 and O2, first, we

found out the equivalences between concepts of O1 and concepts in the DO, and the

equivalences between concepts of O2 with their related ones in the DO. Then, the set of

described rules was applied. As a result, the set of semantic correspondences between

O1 and O2 was identified. We present this resulting set in Table 4.1.

O1 O2

Chapter 4 – Using Ontologies in Data Management 60

Figure 4.11 Excerpts from Conference Ontologies OOOO1111 and Oand Oand Oand O2222

Figure 4.12 Excerpt from Conference Domain Ontology

 Table 4.1. Semantic correspondences between OOOO1111 and OOOO2222

OOOO1111 Concept Correspondence Type OOOO2222 Concept

article isDisjointWith review

article isEquivalentTo article

article isSubConceptOf document

author isCloseTo chair

author isCloseTo reviewer

author isEquivalentTo author

author isSubConceptOf person

conference isEquivalentTo conference

conference isSubConceptOf event

conference isWholeOf program

document isDisjointWith event

document isDisjointWith person

document isDisjointWith program

document isEquivalentTo document

document isSuperConceptOf article

document isSuperConceptOf review

event isDisjointWith document

event isDisjointWith person

Conference O1 Conference O2

Conference Domain Ontology

partOf

partOf

partOf

Chapter 4 – Using Ontologies in Data Management 61

OOOO1111 Concept Correspondence Type OOOO2222 Concept

event isDisjointWith program

event isEquivalentTo event

event isSuperConceptOf conference

paperpaperpaperpaper isCloseToisCloseToisCloseToisCloseTo articlearticlearticlearticle

paperpaperpaperpaper isCloseToisCloseToisCloseToisCloseTo reviewreviewreviewreview

paperpaperpaperpaper isSubConceptOfisSubConceptOfisSubConceptOfisSubConceptOf documentdocumentdocumentdocument

participantparticipantparticipantparticipant isCloseToisCloseToisCloseToisCloseTo authorauthorauthorauthor

participantparticipantparticipantparticipant isCloseToisCloseToisCloseToisCloseTo chairchairchairchair

participantparticipantparticipantparticipant isCloseToisCloseToisCloseToisCloseTo reviewerreviewerreviewerreviewer

participantparticipantparticipantparticipant isSubConceptOfisSubConceptOfisSubConceptOfisSubConceptOf personpersonpersonperson

pc_meetingpc_meetingpc_meetingpc_meeting isDisjointWithisDisjointWithisDisjointWithisDisjointWith conferenceconferenceconferenceconference

pc_meeting isSubConceptOf event

person isDisjointWith document

person isDisjointWith event

person isDisjointWith program

person isEquivalentTo person

person isSuperConceptOf author

person isSuperConceptOf chair

person isSuperConceptOf reviewer

review isDisjointWith article

review isEquivalentTo review

review isSubConceptOf document

reviewer isCloseTo author

reviewer isCloseTo chair

reviewer isEquivalentTo reviewer

reviewer isSubConceptOf person

session isDisjointWith conference

session isPartOf program

session isSubConceptOf event

In this resulting set, we can see, for instance, the equivalence correspondence

between conference in O1 and O2. Equivalence is an example of a commonly

identified correspondence type in traditional ontology matching approaches. On the

other hand, we can see that, taking into account the semantics underlying the DO, we

can identify other unusual correspondences. For example, participant has been

identified as close to author, chair and reviewer; person has been identified as

superconcept of author, chair and reviewer; review as disjoint with article and

session as part of program.

Particularly, analyzing some identified correspondences in Table 4.1, we verify

that some concepts in O1 do not have corresponding equivalent ones in O2. The

concepts are: paper, participant, pc-meeting and session (they are highlighted in

Table 4.1). For these cases, the unusual identified correspondences make a difference

since they provide levels of semantic relationship which somehow approximate the

Chapter 4 – Using Ontologies in Data Management 62

concepts with other ones in O2. Thereby, the existence of these semantic

correspondences avoids producing an empty reformulation and further enhances the

query reformulation process with some kind of enrichment. In Chapter 5, we will

provide details regarding how such strategy is accomplished.

Therefore, we give evidence that the use of background knowledge really allows

producing semantically richer correspondences between two ontologies, providing

different degrees of semantic overlapping between them. Using such background

knowledge, we can obtain kinds of correspondences which would not be possible, if we

have considered only syntactic or linguistic criteria. Moreover, the semantics

underlying these correspondences may effectively contribute to enhance query

reformulation, and query answering as a whole, providing an enrichment of query

original terms and, consequently, a set of resulting expanded answers to users.

4.1.3. Comparing Existing Approaches with Ours

A few semantic-based approaches have considered the use of background knowledge as

a way to improve the determination of correspondences between two ontologies.

Aleksovski and his group [Aleksovski et al. 2006] present a matching case where the

source and the target ontology are of poor semantics (flat lists). They use the DICE

ontology as background knowledge to provide descriptions of the properties of the

concepts involved. The work described by Reynaud and Safar [2007] makes use of

WordNet and implements a system named TaxoMap. This system performs a two-step

process: a sub-tree is first extracted from WordNet, corresponding to the senses

assumed to be relevant to the domain of the involved ontologies. Second, mappings are

identified in this sub-tree, and the correspondences between the ontologies are

identified. The work of Sabou et al. [2006], differently, uses online available ontologies

as background knowledge. The idea is that these ontologies can be selected dynamically

(e.g., using Swoogle
12

), thus circumventing the need for an a priori, manual ontology

selection. S-Match is a semantic-based matching tool [Giunchiglia et al. 2004] which

takes two trees, and for any pair of nodes from the two trees, it computes the strongest

semantic relation holding between the concepts of the two nodes. For this, it uses

relations between synsets in WordNet, and the structure of the tree. CTXMatch [Serafini

et al. 2006] is an algorithm for discovering semantic mappings across hierarchical

classifications (HCs) using logical deduction. It takes two inputs and, for each pair of

concepts, returns their semantic relation.

Like our approach, most of the mentioned works use some kind of background

knowledge in order to figure out correspondences between ontologies, excepting

CTXMatch. However, the correspondences are usually restricted to equivalence

12 http://swoogle.umbc.edu/

Chapter 4 – Using Ontologies in Data Management 63

(CTXMatch consider subsumption and disjointness). We go one step further in our

process as we also identify other types of semantic correspondences (e.g., closeness and

aggregation), providing various and semantically-rich degrees of similarity between

ontology elements. Moreover, to the best of our knowledge, closeness is a type of

semantic correspondence that is not found in any related work.

4.1.4. Considerations

In our approach, since the two ontologies being mapped may be defined at different

levels of granularity, our correspondence identification technique deals with a degree of

flexibility capable of accommodating a variety of scenarios. This means that our

approach is able to match two ontologies with different levels of details, i.e., they may

differ in terms of size, partition of concepts or conceptual organization.

Another important remark is that our correspondences identification approach is

part of a general semantic matching process which makes use of the domain ontology to

complement linguistic and structural matching techniques. In this matching process,

besides identifying semantic correspondences, the objective is also to calculate the

overall similarity between the two matching ontologies. To this latter end, the semantic

correspondences are used in conjunction with linguistic and structural correspondences

to produce a more accurate semantic similarity measure (SSM) between the ontologies.

The SSM is used to identify semantically related peers in our working PDMS (which

will be described in Section 6.1) to cluster them and enhance query answering. The

strategy for calculating the SSM is being object of study in another work [Pires 2009].

4.2. Using an Ontology to Represent Context

Considering a dynamic distributed environment, the semantics and control information

surrounding the running processes (e.g., queries) are rather important to produce results

with relevance according to users’ needs and environment’s capabilities. These may be

obtained using contextual information, as discussed in Chapter 3.

We are able to understand context when identifying how humans use it in

practice. Humans seem to be able to build complex contexts instinctively [Mills and

Goossenaerts 2005]: first context is recognized and understood; then the relevant set of

items (e.g., location, interests) required to deal with that context is automatically

assembled. In our work, we define context as follows.

Definition 2 - Context. Context is a set of elements surrounding a domain entity

of interest which are considered relevant in a specific situation during some time

interval.

Chapter 4 – Using Ontologies in Data Management 64

The domain entity of interest may be a person, a procedure, a file, a set of data or

even a semantic correspondence. Furthermore, we use the term contextual element (CE)

referring to pieces of data, information or knowledge that can be used to define the

Context, in accordance with the definition provided by Vieira [2008].

When a user poses a query, all the surrounding contextual elements will be

analyzed in order to denote the data that is relevant to the user’s specific situation.

According to the query and user context, the reformulated queries may be enriched, i.e.,

relevant concepts or properties may be added in order to obtain more complete

reformulations, and, consequently, expanded query answers. User preferences, peers’

availability, or even semantic correspondences between peers’ ontologies are examples

of contextual elements that are used to execute more contextualized queries in such a

way that users will be provided with more relevant results.

In order to store and use context, an important issue is how to represent its

elements, as discussed in Section 3.3.4. A challenge to be faced is the fact that there is

not a standard model for representing it yet. Context ontologies have been considered an

interesting approach because they enable sharing and reusability and may be used by

different reasoning mechanisms [Wang et al. 2004; Souza et al. 2006]. Hence, in this

work, we have designed an ontology, named CODI, to represent and store contextual

information [Souza et al. 2008]. This ontology aims to assist the common tasks of a

generic data integration process such as query answering or schema integration [Belian

2008]. We present CODI in the following.

4.2.1. CODI – A Context Ontology for Data Integration

CODI (Contextual Ontology for Data Integration) is an ontology for representing

context according to some Data Integration (DI) and PDMS issues discussed in Chapter

2 [Souza et al. 2008]. In order to establish the relevant contextual elements (CEs), at

first, we have identified the domain entities that we needed to work with. A domain

entity is anything in the real world that is relevant to describe the domain (e.g., data

sources, users and applications) [Vieira 2008]. In our work, we consider that CEs are

used to characterize a given domain entity. Therefore, we determined six main domain

entities around which we consider the CEs: user, environment, data, procedure,

association and application. To figure out these domain entities and their related CEs,

our approach has been guided by a participatory and incremental design methodology.

The ontology was developed during a series of face-to-face meetings between DI and

PDMS experts who are concerned with issues such as schema reconciling, query

answering, connectivity and reasoning. Furthermore, we have also examined

systematically in the literature some DI and PDMS systems and related problems. As a

Chapter 4 – Using Ontologies in Data Management 65

result, we draw the domain entities’ concepts, their properties and more specifically the

related contextual elements that would be relevant to deal with.

We present the domain entities’ taxonomy as well as some contextual elements

relevant to them in Figure 4.13. CODI is indeed a conjunction of those domain entities

and the CEs which are related to them. More precisely, next we describe each one of the

domain entities with their CEs.

• User. One of the key factors for accurate access to information is users’

context. The CEs that make up users' context are concerned with their profile

(interests, role, group), location, region, query interface type and preferences

concerning the way they desire query answering and query reformulation

(Figure 4.14). For instance, according to the user’s query interface type, the

system may define the way query answers result will be presented.

 Figure 4.13 The Domain Entities’ taxonomy and some CODI’s CEs

Figure 4.14 CEs for the User domain entity

• Association. Associations are important to characterize relationships between

elements. In our approach, two kinds of associations are dealt with: mapping

expressions and semantic correspondences (Figure 4.15). The formers are

DomainEntity

Data

Association

UserApplication
Peer

ProcedureEnvironment

Query

QueryResult

Semantic

Correspondence

Contextual

Element

Condition

Domain Region Profile Location

SchemaElement Type

Constraint

Legend:

Domain Entity

Contextual Element

Chapter 4 – Using Ontologies in Data Management 66

used in a data integration system (or in a PDMS mediation-level) in order to

allow query reformulation and answers integration (mapping expressions

will be better explained in Section 6.1.3). The latter ones are rather essential

to query reformulation between a pair of peers, considering any distributed

query answering environment.

• Procedure. A procedure is an ordered collection of actions [Brézillon 2003].

In our setting, a procedure is mainly characterized by queries and their

execution processes (Figure 4.16). A procedure has CEs including constraint

and goal, and it is usually composed by steps. In particular, besides the

inherited Procedure’s CEs, a query has its own CEs, such as its model, the

schema elements which are necessary to work with and the operators which

are to be executed. Those CEs will be acquired at query formulation time.

Figure 4.15 CEs for the Association domain entity

Figure 4.16 CEs for the Procedure domain entity

• Application. Each application has its particular features (Figure 4.17).

Thereby, the use of information may vary regarding to different levels of

granularity, vocabularies and/or scopes of a domain. An important CE to

application regards its domain. Each domain has a vocabulary, usually

represented by a domain ontology and its specific terms.

Chapter 4 – Using Ontologies in Data Management 67

• Data. Data CEs are classified into Schema Element Content and Query

Result (Figure 4.18). A Schema element content is related to its schema

element. Schema element constitutes one of the main concepts both to query

answering and schema integration, since it is possible to infer semantic

associations from its meaning (achieved when identifying its corresponding

concept in the domain ontology). The Query Result represents results of

individual queries as well as the final result obtained from the integration of

several individual query results.

Figure 4.17 CEs for the Application domain entity

Figure 4.18 CEs for the Data domain entity

• Environment. Concerns the environment where the user interacts and the

application is executed. In CODI, it may be a Data Integration System or a

Chapter 4 – Using Ontologies in Data Management 68

PDMS, as shown in Figure 4.19. In both cases, we are dealing with dynamic

and autonomous data sources that may join and leave the network at any

time. Environment CEs must be acquired on the fly (e.g., data source

availability). In this sense, Data Integration Systems, PDMS, data sources,

peer and source schemas are the domain entities from which the CEs will be

acquired. In general, the main environment CEs are: Type, Region, Platform

and Condition. Depending on the system, other specific elements may be

added or refined.

Figure 4.19 CEs for the Environment domain entity

Contextual Elements can either be explicit or implicit. An explicit CE is

obtained from static sources, such as a profile. An implicit one is perceived in the

dynamic environment or is derived through some reasoning process. For example,

considering a geospatial application, a spatial relationship (e.g., touch, cross, distance

[Egenhofer 1991]) is inferred through the analysis of two objects locations. Still, the

scale a user is working with may be identified through his/her application parameters.

Another illustration concerns the presentation of query results. A query’s result set may

contain different data representations, e.g., different unit formats that are used in the

distributed data sources. Thus, depending on the context of query submission, a specific

unit may be chosen and a conversion and merging process may be performed

automatically.

Chapter 4 – Using Ontologies in Data Management 69

4.2.2. CODI in Practice

In this section, we present an example of query answering in order to illustrate the

applicability of CODI. To this end, we consider a geospatial application concerning the

Brazilian Hydrographic System which has been developed in a PDMS environment.

For the sake of simplicity, we only consider two peers A and B, which store geospatial

data sources with the ontologies representing their schemas, as depicted in Figure 4.20.

Peer A is at scale of 1:1000’000, while peer B is more detailed and is at scale of

1:250’000. Peer A contains three concepts – Lake, StreamofWater and Town which

inherit some characteristics from Geographical_entity. The three concepts have a

geometry attribute. Peer B contains Lake, River and City which are sub-concepts of

Basic_geo_entity. These concepts have a shape attribute.

Figure 4.20 Ontologies for Peers A and B

In this scenario, the ontologies are not normalized (i.e., neither terminologically

nor syntactically normalized), thus we consider some conflicts which arise due to the

heterogeneity of the peers. The semantic conflicts related to schema level are: (i)

different entity names – Geographical_entity vs. Basic_geo_entity, StreamofWater

vs. River and Town vs. City; (ii) different attribute names – geometry vs. shape; and

also different data types – integer vs. string (GID) and point vs. polygon (lake, and

town and city). These conflicts are resolved in schema reconciling time, when

correspondences are identified. Other relevant conflicts (found in query answering) are

the instance level ones. Here we have different scales 1:1000’000 (Peer A) vs.

1:250’000 (Peer B) and the multi-representation problem, since lake is represented by a

Peer A

Peer B

Chapter 4 – Using Ontologies in Data Management 70

point in Peer A and by a polygon in Peer B. For simplicity, both peers are considered to

be vector.

We present CODI’s usage for a context-based query execution process

performed by the following steps: query submission, query analysis, relevant peers’

establishment, query reformulation, query execution and answers integration, and result

presentation. We provide views of CODI’s instantiation which have been produced

using OntoViz
13

. In this format, instances are associated with their concepts through the

io relationship and subtypes are associated with their supertypes through the isa

relationship. The diagrams presented next are fragments from the overall ontology, and

do not show neither the whole class hierarchy nor the complete set of instances.

Assuming that the correspondences between the peer ontologies have already

been generated, we focus on executing a given query. Suppose that a user poses the

following spatial query Q: “SELECT R.Name, C.Name FROM River R, City C WHERE

Cross(R.Shape,C.Shape)=1;”. The topological spatial operator Cross(geometry1,

geometry2) is a Boolean operation which returns true if a geometry1 intersects with

another geometry2 [Egenhofer 1991]. Thus, Q’s submission is done in Peer B and

means: “For all the rivers, find the cities through which they pass”.

At submission time (Step 1), context concerned with the user, the query and the

environment are acquired or perceived as depicted in Figure 4.21. In this case, the user

profile, her preferences, location and the kind of interface she is using are CEs that are

gathered. Also, information about the environment, i.e., the PDMS, such as the

composing peers and data sources as well as their domain are important information that

will be dealt with when the relevant peers are set. To this end, we have to know for

example which peers are available, if they have a common knowledge domain and the

existing elements in each peer’s schema. Besides, as context of the query, it is observed

where it has been submitted and what kind of interface has been used.

In Step 2, the query is completely analyzed (Figure 4.22). The required entities,

spatial operators, attributes, constraints and conditions are gathered to identify the

semantics of the query. As a result, this semantics will be taken into account to verify

which peers are relevant for such query and how it can be reformulated in these peers.

Next, in Step 3, the peers that are considered relevant (in our example, Peer A)

are also observed and their context acquired and used (Figure 4.23). For instance, we

have to see if such peers are available for query reformulation and if they can execute

the spatial operator that has been required, since not all DBMS are able to execute

properly the set of existing spatial operators.

13 a Protégé plug-in

Chapter 4 – Using Ontologies in Data Management 71

Figure 4.21 CEs at Query Submission Time

Figure 4.22 CEs at Query Analysis Time

Next step is reformulating query Q to a reformulation that is compatible with

each relevant peers’ schemas. In this example, Peer A is relevant, so the process takes

into account the correspondences between Peer B and Peer A and reformulates Q into

another query QRef. Since we have not presented our complete query reformulation

Step 1: Query Submission

User’s Context (User = Claire)

Q’s Context

PDMS’s Context

Step 2: Query Analysis

Chapter 4 – Using Ontologies in Data Management 72

approach yet (Chapter 5), we restrict this current example to only equivalence

correspondences. Thus, Figure 4.24 depicts some correspondences which, for us, are

treated as contextual information and are used to allow query reformulation. Figure 4.25

presents the context of the reformulated query QRef in Peer A.

Figure 4.23 CEs at Relevant Peer’s Establishment Time

Figure 4.24 Some Correspondences between Ontologies B and A

It is important to note that, in this example, query Q will be executed both in

Peer B (submission peer) and in Peer A (through a reformulation). In Step 5, when the

executed queries results are assembled to produce the final answer, the system analyzes

other CEs such as multi-representation and scales difference. Considering that the

formulating scale is about 1:100’000, this means that the user is working with a more

detailed view of the themes. Thus the graphical result will be taken from Peer B whose

scale of origin is closer and whose City’s geometric representation (polygon) is more

Step 3: Relevant Peers’ Establishment

Some Correspondences between Peer B and Peer A

Chapter 4 – Using Ontologies in Data Management 73

adequate to that level of detail. Therefore, since the user interface is able to present

geographical results, the final result (Step 6) will be depicted to the user both

graphically and textually (e.g., in the map and in a table format). Sometimes, in a

PDMS, the final result may be produced from the answers obtained in several peers if

they return complementary information, for example, when some attributes are present

in one peer but are absent in another.

Figure 4.25 CEs at Query Reformulation Time

This is a brief description of how the use of CODI can help to enhance query

answering. All information from the geospatial integration world that is to be reasoned

over may be dealt with as context. Consequently, from explicit CEs, gathered from the

peers, from the correspondences and from the query formulation, the system can infer

and derive other implicit CEs. Since the environment (PDMS) is highly dynamic and,

for each submitted query, the whole query execution process instantiation may change,

the context around the query (its semantics), the peers (availability), correspondences

(may be of different types, as our semantic correspondences) and the user (preferences)

are essential information that have to be dealt with. In our work, such information is

treated as context.

By using context, the system is able to adapt and react to different users’ queries

and needs. Without context, query answering would be limited by not dealing with

some information that can just be acquired on the fly. As an illustration, in our example,

the kind of the interface where the query has been submitted and the working scale can

only be acquired in such given time. Another example concerns the user preferences:

not all user preferences are relevant all the time, and only those that are semantically

Step 4: Query Reformulation

Chapter 4 – Using Ontologies in Data Management 74

close to the current query should be used, disregarding those ones that are out of

context. We can think in the same way for the other domain entities: environment,

application, data, procedure and associations.

4.2.3. Considerations

CODI aims to structure entities and their CEs in such a way that they may be used for

diverse DI and PDMS processes. The idea is that CODI may be used by developers to

identify, model and represent contextual information in their applications.

Our query reformulation approach uses the concept of context as a way to

enhance the overall process. To analyze the semantics around a submitted query, we

propose to take into account the context of the user, of the query and of the

environment. The users’ context is acquired through a set of contextual variables

allowing them to express their preferences regarding the reformulation process. These

variables express the kind of approximation the user wants in order to guide the

reformulation process, e.g., they will state that the user wants answers that are more

general than the concepts of the initial query. The context of the query is derived from

the corresponding submitted query and will consist of concepts and operators. Finally,

the context of the environment will be captured using some parameters describing the

way the queries will be routed among the peers. The use of context in our query

reformulation approach will be described in Section 5.3.

4.3. Using Ontologies to Define OPDMS

Data management in dynamic distributed environments such as PDMS is a challenging

and difficult problem considering the excessive number of peers, their autonomous

nature and the heterogeneity of their schemas. PDMS perform their services over data

from existing heterogeneous sources. As a result, they must be able to deal with

different categories of heterogeneity: (i) structural heterogeneity, involving different

data models; (ii) syntactical heterogeneity, concerning to different languages and data

representations; (iii) system heterogeneity, related to hardware and operating systems;

and (iv) semantic heterogeneity, involving different concepts and their interpretations

[Wache et al. 2001]. As discussed in Section 3.1, the provision of ontologies enables

PDMS interoperability at different levels of abstraction.

Xiao [2006] has introduced the concept of OPDMS through two important

issues: (i) ontologies are used in local sources as a uniform conceptual metadata

representation; and (ii) ontology mappings are established between peers to allow query

answering. We argue that ontologies may be used in a broader way to enhance PDMS

services. Moreover, ontologies may be used as a way to enrich PDMS services and

Chapter 4 – Using Ontologies in Data Management 75

provide users with more complete results. Considering that, in this work, we propose an

extension to the OPDMS description [Pires et al. 2008], as follows.

Definition 3 - OPDMS. An OPDMS is a PDMS which is conceived for

supporting dynamic ontology-based knowledge sharing, and this knowledge must be

employed to improve its services.

Essentially, an OPDMS, as a typical PDMS, keeps the properties of all PDMS

such as autonomy, flexibility, single global schema absence, data location and query

answering. Nevertheless, an OPDMS addresses data management issues mostly using

ontologies. Furthermore, we consider that an OPDMS is a semantic-based PDMS as

well, since it deals with semantic issues through knowledge obtained from ontologies.

Based on our analysis of the state-of-the-art on PDMS, we have identified a set

of high-level requirements that an OPDMS should fulfill [Pires et al. 2008]. Next, we

briefly discuss each one:

i. Exported schema representation: peer’s metadata should be mapped onto an

ontological description, using a common and standard model;

ii. Global conceptualization: a global ontology may be used to provide a high-

level view over the heterogeneous peer schemas;

iii. Support for correspondences identification: an ontology may also be used to

assist the identification of correspondences between peer ontologies (i.e.,

peer schemas);

iv. Support for query answering: query answering in a PDMS may use a global

ontology in a twofold way: a) as a high-level view of the sources; and b) as a

terms’ reference for query reformulation between peers. The former is

concerned with query formulation, i.e., the user can formulate a query using

the global ontology without specific knowledge of the different data sources

stored in the peers. The latter is concerned with query reformulation, i.e., the

query is reformulated into a target query over other connected peers,

according to the defined correspondences among them;

v. Semantic Index: a semantic index can be built according to the main terms or

categories referring to a set of ontologies. Such index must enable efficient

location of peers;

vi. Semantic matchmaking capabilities: a semantic matching component is

needed for matching ontologies in order to find out which concepts match in

different ontologies and (possibly) at which level. Such capability can be

used for the organization of peers in the network and the definition of

correspondences between peers.

Chapter 4 – Using Ontologies in Data Management 76

A system should take into account the previous requirements not only to be

considered an OPDMS, but also to take advantage of using ontologies for semantic

enrichment. In order to fulfill those requirements, Pires [Pires 2007] has proposed an

OPDMS architecture which is used in this work as our running setting. Such

architecture will be described in Chapter 6.

4.4. Concluding Remarks

In this chapter, we described the way we use ontologies in order to: (i) identify semantic

correspondences between ontologies; (ii) represent and store context; and (iii) extend

the definition of an OPDMS. Regarding the first usage, we presented an approach which

identifies, besides the traditional types of correspondences (equivalence and

subsumption), some other ones (e.g., closeness and disjointness). To this end, we make

use of background knowledge by means of domain ontologies. As we have seen, such

knowledge is useful in the reconciliation process, mainly when the context of

interpretation of the involved matching concepts is precisely known (considering that

the ontologies belong to the same domain).

 Concerning issue (ii), representing context using an ontology brings various

benefits. It provides concept subsumption, concept consistency and instance checking

(including object properties checking). Efficient implementation of these operations

allows a distributed setting (e.g., a PDMS) to organize knowledge, maintain its

consistency, answer queries considering contextual elements and recognize conditions

that trigger rule firings.

Finally, OPDMS are the result of blending the benefits of PDMS with the

employment of the richer semantics obtained using ontologies. In this sense, we have

proposed an extension to the OPDMS definition through the identification of high-level

requirements that an OPDMS should fulfill. The idea is that ontologies are essentially

employed for the definition and application of semantics in all services of a PDMS.

CCCCCCCCHHHHHHHHAAAAAAAAPPPPPPPPTTTTTTTTEEEEEEEERRRRRRRR 55555555
“Everyone has a voice deep down inside them; a voice that says, "shine".

Some have loud voices; some have quiet ones.

Some people's voice is so quiet they never get to hear it.

Some of the people that get to hear it choose not to listen.

Unfortunately, only a few decide to act on this voice –

the stars, the lifters who influence others to listen themselves."

Aaron Betesta

The SemRef Approach

Sometimes, query answers which are not an exact match, but which are a close match to

the requirements specified at query submission time, can still serve the purpose of users,

depending on their preferences and on the dynamicity of the environment. Considering

that, the main contribution of this thesis is to bring together the concept of query

reformulation and the concept of query enrichment in dynamic distributed

environments. To this end, we use semantics derived from the correspondences among

the ontologies which represent peer schemas as well as semantics obtained from the

context of the user, of the query and of the environment. The purpose underlying our

approach, named SemRef, is to enhance query reformulation by using these kinds of

semantics in such a way that we can provide users with a set of expanded answers.

Exact and enriched query reformulations will be produced as a means to obtain this set

of answers. In this chapter, we present important definitions regarding the use of

semantics. Furthermore, we present the algorithms underlying our approach which may

be instantiated in any ontology-based distributed environment.

This chapter covers the following contents: Section 5.1 introduces an overview

of the SemRef approach; Section 5.2 defines query enrichment and set of expanded

answers; Section 5.3 discusses how context is used in our work; Section 5.4 presents the

SemRef algorithm; Section 5.5 provides an example showing SemRef in practice;

Section 5.6 compares existing query reformulation approaches with ours. Finally,

Section 5.7 concludes the chapter with some remarks.

Chapter 5 – The SemRef Approach 78

5.1. Overview of the Approach

The environments we are considering in our work are characterized by having a

diversity of perspectives, dynamic data, and the possibility of intermittent participation.

As we have stated in Chapter 1, they are generally composed by a set of autonomous

and heterogeneous peers which are associated by means of correspondences. To help

matters, ontologies have been considered as a basis for making explicit the content of

these data sources and, consequently, as a means for promoting information integration.

In this perspective, the crucial point we address is how to reformulate queries among the

peers in such a way that the resulting set of answers closely expresses what the users

intended to obtain, taking into account what kind of data the sources may contribute

with and the dynamicity of the system.

Some aspects should be addressed when dealing with query reformulation. First,

retrieving relevant information wherever it may be or querying overlapping sources of

information should be transparent and useful for users. By transparent, we mean that

users are not supposed to be aware about where obtained data are stored, or even how

they have been integrated. By useful, we mean that resulting query answers should be in

conformance with users’ preferences, since they usually want to obtain additional

related information stored in other peers that are not possible to get using only their

local data. On the other hand, it is not useful for users when they do not receive any

answer at all. A second aspect is that concepts from a source peer do not always have

exact corresponding concepts in a target one, what may result in an empty reformulation

and, possibly, no answer to the user. In this sense, if it is not possible to produce an

exact answer to a given query or if users define that it is relevant for them to receive

semantically related answers, it may be better to produce an approximate or enriched

answer than to produce no answer at all. Therefore, regarding the former aspect, we

argue that user preferences and the current status of the environment should be taken

into account at query reformulation time; regarding the latter, the original query should

be adapted to bridge the gap between the two sets of concepts, using not only

equivalence correspondences but also other ones that can approximate and/or enrich the

queries.

In this light, we present a query reformulation approach, named SemRef, which

uses semantics as a way to better deal with the afore mentioned aspects. Thus, in order

to capture user preferences, query semantics and environmental parameters, we use

contextual information. We accomplish query reformulation and adaptation by means

of query enrichment. To this end, besides equivalence, we use other correspondences

which go beyond the ones commonly found, namely: specialization, generalization,

aggregation, disjointness and closeness, as defined in Section 4.1. By using this set of

Chapter 5 – The SemRef Approach 79

semantic correspondences, we are able to produce two different kinds of query

reformulations [Souza et al. 2007; Souza et al. 2009]:

iii. an exact one, considering only equivalence correspondences; and

iv. an enriched one, resulting from the set of the other correspondences.

In order to present more clearly the problem of reformulating and, at the same

time, enriching queries in dynamic distributed systems, we make some simplifying

assumptions. First of all we will only consider two peers P1 and P2 that want to

communicate. Then we assume that there are only two ontologies involved, a source

one named O1 (at submission peer P1) and a target one named O2 (at P2), as well as a

set of semantic correspondences between them {Co12}. We further assume that both

ontologies are encoded on the same language and belong to the same knowledge

domain with considerable overlapping content between them. Figure 5.1 illustrates this

setting.

Figure 5.1 Query Reformulation Setting

Regarding this simplified setting, we define our problem as follows: given an

ontology O1 (at peer P1), a user query Q expressed in terms of the concepts of O1, a

target ontology O2, our goal is to find reformulated queries of Q expressed in terms of

the concepts of O2 in such a way that these reformulated queries not only include the

best possible one, i.e., exact (considering equivalence correspondences) but also the

Ontology O1 Ontology O2

O1:C O2:O

O1:A O2:A

O1:E O2:N

O1:G O2:M

Semantic

Correspondences Co12

QQQQ over O1 SemRef

QQQQexactexactexactexact over O2

(considering

correspondence)

QQQQenrichedenrichedenrichedenriched over O2

(considering the other

correspondences)

...

Context of

the Query

Context of

the User

Context of the

Environment

Chapter 5 – The SemRef Approach 80

ones provided by other semantic correspondences between the ontologies. The reasons

underlying that are twofold:

i. We consider that answers which are not an exact match, but which are a

close match to the requirements specified in the query, can still serve the

purpose of users, if these answers are in conformance with their preferences;

ii. We want to provide users with a set of expanded answers, in the light of the

differences between the existing sets of concepts in the peers, and taking into

account the context surrounding the query. This set of expanded answers will

be obtained by executing exact (i.e., best) and enriched reformulations.

Furthermore, SemRef uses the concept of context, as a way to enhance the

overall query reformulation process and to deal with information that can only be

acquired on the fly. In order to analyze the semantics around a submitted query, we

propose to take into account the context of the user, of the query and of the

environment. The users’ context is acquired through a set of contextual variables

allowing them to express their preferences regarding the reformulation process, i.e., the

degree of approximation users want. The context of the query is derived from the

submitted query and the way it will be reformulated. Finally, the context of the

environment will be captured using some parameters defined by users and taking into

account the availability of peers.

5.2. Enriching Queries and Producing Expanded Answers

Although a considerable effort has been employed in recent years to provide

reformulation techniques which enrich user queries before their execution, this has been

often limited to a single data source setting. We argue that query enrichment may be

even more crucial in a dynamic distributed environment, where queries are usually

interpreted according to targeted peers, and users are generally provided with limited

answers in response to such queries.

In this work, we consider query enrichment as both a combination of query

expansion and query personalization. Regarding the former, whenever we employ any

kind of extra knowledge to adapt or expand the query, we perform query enrichment.

Regarding the latter, whenever query enrichment is carried out taking into account the

user profile or user preferences, we perform query personalization. In this sense, we

define query enrichment as follows.

Definition 4 - Query Enrichment. Query enrichment is the process of analyzing

an initial query expression in order to find out some extra semantic knowledge that can

be added, so its resolution will provide expanded answers.

Chapter 5 – The SemRef Approach 81

When identifying semantically related concepts to query terms, we say that these

concepts are candidates for query enrichment, where a term can be added or even

removed from the original query. The process of query enrichment, considering some

kind of refinement by using additional knowledge, is not only concerned with adding

terms, but perhaps with removing them. We say that query enrichment may occur by:

i. Substituting some terms with other ones that are semantically equivalent; or

ii. Expanding user queries by adding synonym or semantically related terms; or

iii. Reducing the scope of queries by removing some of its terms, in order to

optimize the query and reduce the number of incorrect or redundant answers.

 We present an example of each one of the previous possibilities. To this end,

consider the SQL query Q = “Select name from Professor, Lecturer;”. By using

additional knowledge, for example an ontology or semantic correspondences, we verify

that Professor is equivalent to Teacher, and a close concept of Educator; and

Lecturer is equivalent to Instructor and a sub-concept of Educator. Therefore,

analyzing the described options i, ii and iii, we would perform the following

reformulations:

i. Substituting original terms by equivalent ones, we have: Q1 = “Select name

from Teacher, Instructor;”

ii. Expanding original terms by other semantic ones, we have: Q1’ = “Select

name from Teacher, Educator, Instructor, Educator;”

iii. There is a redundancy in query Q1’, i.e., the concept Educator has been used

as a semantically related one of both original concepts Professor and

Lecturer, what resulted in its repetition. We can optimize the final

reformulated query by removing one of these repetitions. Thus, the final

reformulated query would be: Q’ = “Select name from Teacher, Educator,

Instructor;”.

In our approach, we work with query enrichment by means of items i and ii, in

such a way that the original query is expanded with additional semantically related

terms at query reformulation time.

Considering a dynamic distributed environment, there are, at least, three context-

dependent factors which influence the answer to a given user query: (i) the current

status of the network, mainly in terms of the available peers; (ii) the semantics

underlying the submitted query and (iii) the users’ preferences regarding the query

answering process. As a result, we can see that the context has an impact on the quality

and content of the produced answer, and thereby, we cannot guarantee that the complete

set of answers will always be returned to users. On the other hand, considering these

contextual elements, we can enrich queries, and thus produce a set of answers that

Chapter 5 – The SemRef Approach 82

match users’ preferences while hold environmental conditions. Moreover, by applying

query enrichment at query reformulation time, we can guarantee that a set of expanded

answers will be returned to users, defined as follows.

Definition 5 – Set of Expanded Answers. Expanded answers are query answers

provided by the available peers, by using the set of existing semantic correspondences,

in such a way that these answers are semantically related to the user’s preferences when

formulating the original query.

This notion is context-dependent, relying on many aspects: what the user wants,

the status of the network, its connectivity, the subject and goal of the query, and other

circumstances. It means that in dynamic distributed settings, answers to user requests in

most cases are not supposed to be complete, as they usually are in other integration

approaches. However, the answers shall be as close as possible to users’ needs, and they

shall reflect the current status of the environment. The set of expanded answers should

conform to users’ preferences, as we will explain in the next Section. The goal of our

work is to produce exact and enriched query reformulations as a means to provide users

with such set of expanded answers.

5.3. Using Context to Enhance Query Reformulation

In our setting, for each submitted query, the whole query execution process instantiation

may change completely, thus the context around the query (its semantics), the peers

(availability), semantic correspondences (their different types) and the user

(preferences) are essential information that have to be dealt with. In our approach, we

make use of three types of context:

i. the context of the users, represented by the set of preferences that they

define;

ii. the context of the query, acquired from the identification of its semantics

(including concepts, properties and operators) and its query reformulation

mode; and

iii. the context of the environment, where we identify the relevant peers to send

the reformulated queries.

The context of the users is acquired when they initialize a query session. At this

moment, they may state their preferences concerning the reformulation policy. Since the

exact reformulation of a given query Q will always be produced (it is the default

option), these preferences involve setting four variables which specify what should be

considered when Q is also to be enriched. Enriching variables are defined as follows:

• Approximate: includes concepts that are close to the ones of Q;

Chapter 5 – The SemRef Approach 83

• Specialize: includes concepts that are sub-concepts of some concepts of Q;

• Generalize: includes concepts that are super-concepts of some concepts of

Q; and

• Compose: includes concepts that are part-of or whole-of some concepts of Q.

If all variables are set to false, this indicates that the user wants only the exact

reformulation (considering equivalence correspondences). However, if at least one of

them is set to true, it means that the algorithm (which will be presented in next Section)

should consider such preference when producing an enriched reformulation. For

example, if approximate is set to TRUE, the algorithm will verify closeness

correspondences in order to reformulate the original query. These variables help to

guide the execution of the query reformulation algorithm. They may be defined for

some period of time (e.g., for 30 queries or for the whole query session), i.e., they are

not related to the execution of the algorithm for a single query, since it seems not

realistic to force the user to specify the values of these variables for each query.

Nevertheless, whenever users want, they can redefine the variables.

The context of the query is obtained in a twofold way: (i) through the analysis of

its semantics, i.e., its essential features and goal, and (ii) through the query

reformulation mode, which is defined by the user, at query submission time. In the

former, the query’s required concepts, properties and operators are identified and dealt

with in the query reformulation algorithm. The latter is concerned with the way the

reformulation algorithm will operate. There are two reformulation modes:

• Restricted: it is the default option. In this case, the priority is to produce an

exact reformulation, although if this reformulation results empty, then an

enriched reformulation may be provided in place of the empty exact one; and

• Expanded: in this option, both exact and enriched reformulations are to be

produced.

The context of the environment is acquired at two different moments: (i) at

Query Session Configuration time, when users define another variable, named

Path_Length, where they delimitate the number of subsequent reformulations

(forwardings) in the set of relevant peers and; (ii) at Query Submission time, when the

system identifies in which peer the query has been submitted (submission peer’s

identification), and the system also establishes the context of the submission peer

neighbors (peer’s availability, whether or not it can apply the required operators). Based

on this set of contextual elements, the system defines where to route and reformulate the

queries.

Most contextual information that is used in this work is acquired at query

submission time. Some are gathered from the users’ preferences, i.e., the way they

Chapter 5 – The SemRef Approach 84

expect the reformulation algorithm operates. Others are inferred on the fly according to

the environment’s capabilities. In this current version of the work, we have already

represented both kinds of context using CODI (for more details, we refer the reader to

Section 4.2). However, at the moment, we only deal with the context acquired from the

user preferences (enriching variables, path_length and query reformulation mode). In

this light, taking into account the users’ perspective at query submission time, we

provide an overview of the steps users are supposed to go over when they set their

preferences regarding the query reformulation process. This overview is presented by

the UML
14

 activity diagram depicted in Figure 5.2.

Figure 5.2 Activity Diagram for User’s Query Submission

As an illustration of the query submission process, suppose a user “Anna” wants

to query the system. She accesses the query submission module interface. Initially, she

does not want any kind of enrichment, so she lets enriching variables disabled, i.e., she

skips variables configuration. She also starts to submit queries. In this case, queries will

be reformulated considering default configuration, i.e., restricted reformulation mode

and no enrichment option. After submitting 20 queries, she is a bit disappointed and

verifies that some queries have no answers. At this moment, she enables two enriching

14 Unified Modeling Language

Submit Q

Access Query Interface

Configure Variables

Set Query

Path_ Length

Set Enriching Variables

Enable/Disable

APPROXIMATE

Enable/Disable

COMPOSE

Enable/Disable

GENERALIZE

Enable/Disable

SPECIALIZE

Enable/Disable

APPROXIMATE

Enable/Disable

COMPOSE

Enable/Disable

GENERALIZE

Initialize Query

Submission

Configure Query Reformulation Mode

Set Restricted/CompleteSet Restricted/Complete

Enable/Disable

SPECIALIZE

User

Chapter 5 – The SemRef Approach 85

variables, namely, approximation and specialization. She submits 10 queries, still in

restricted mode. However, enabling the two refereed variables, she has allowed the

algorithm to produce an enriched reformulation in place of empty exact reformulations.

As a result, she receives answers from the majority of submitted queries. At end, she

decides to choose the expanded reformulation mode. By doing so, she is able to

receive both exact and close answers, i.e., expanded answers, resulting from exact and

enriched reformulations.

Next section, we will present the SemRef algorithm. The considered contextual

information will help to guide the generation of diverse types of reformulations.

5.4. The SemRef Algorithm

Query reformulation is considered the most important aspect of query answering in a

distributed environment, since it is crucial for the system’s ability to answer user

queries. The goal of our approach is to enhance the query reformulation capabilities

using semantics derived from the correspondences among peer ontologies, according to

the contextual information which has been obtained [Souza et al. 2009]. In this section,

we present the Semantic Query Reformulation algorithm, namely SemRef. To this end,

considering the query reformulation scenario presented in Figure 5.1, we make the

following assumptions:

i. There are two peers – a submission peer P1 and a target peer P2;

ii. Each peer is described by an ontology O1 and O2, respectively;

iii. The peers (and their ontologies) are within the same knowledge domain;

iv. An ontology describing the domain is available (DO) and

v. The set of semantic correspondences Co[O1,O2] between the considered

two peer ontologies has been generated.

Our query reformulation approach has been encoded in ALC-DL [Baader et al.

2007]. The basic elements in ALC-DL are concepts, roles and individuals. Concepts

(class of individuals) and roles (relations between individuals) are either primitive

(named concepts or roles) or complex (recursively defined with constructors and other

concepts or roles). The supported constructors are: ¬C (negation), C * D (conjunction),

C + D (disjunction), ∀R.C (universal restriction) and ∃R.C (limited existential

restriction) where C and D are concepts and R is a role. We use these definitions in

order to describe the peers’ ontologies, their semantic correspondences and the

submitted and reformulated queries.

Peer ontologies (or ontologies, in general) are composed of axioms asserting

truth about a knowledge domain. In our approach, we formalize an ontology as a triple

Chapter 5 – The SemRef Approach 86

O = 〈C, R, I〉, where C is a set of ALC-concepts, R is a set of ALC-role definitions

and I is a set of individuals or instances.

A query Q over a peer ontology Oi is a concept expression, Q = C, where C is

an ALC concept. However, since an ALC concept may be an atomic concept or a

complex concept including roles, quantifiers, conjunctions or disjunctions, we

generalize a query formula Q as a disjunction of queries which are themselves

conjunctions of ALC concepts C1, …, CN where n ≥ 1, as follows.

Definition 6 - Query. Q is a query expressed over Pi’s ontology, having the

following form: Q = Q1 + Q2 +...+ QM, where Qi = C1 * C2 *...* CN, and where each

Cj is an atomic concept, a negated atomic concept of a quantified atomic concept (in

other terms: Cj, ¬Cj, ∀R.Cj or ∃R.Cj).

We state that all submitted and/or reformulated queries follow this general query

formula. Indeed, the class of formulas we are considering here is the so-called

disjunctive normal forms (or DNFs) [Tonin and Bittencourt 2000], i.e., disjunctions of

conjunctions of ALC concepts. Therefore, well-formed query formulas may include a

disjunction of n conjunctions, a conjunctive query expression (which can be

transformed to a disjunction with one element) or, simply, an ALC concept such as C,

¬C, ∀R.C or ∃R.C, ¨, or ⊥.

Supposing a peer ontology concerning an academic research center, with

concepts such as Teacher, GraduateStudent, Student and Researcher, we provide

some examples of queries following Definition 6:

Q1 = ¬Teacher, which asks for all non-teacher people belonging to a research center.

Q2 = GraduateStudent, which asks for the existing graduate students.

Q3 = [Teacher * Researcher] + [Student * Researcher], which asks for people

who are teachers and researchers or students that are also researchers.

Considering the user’s perspective when posing queries such the ones provided

before, we argue that users should be aware that they may need not only exact answers,

but also those answers that meet or complement their initial intention. Moreover, they

may prefer an alternative answer to their query than not receiving any answer at all.

Thus, if it is not possible to produce an exact answer to a given query or if users define

that it is relevant for them to receive semantically related answers, it may be better to

produce an approximate or enriched answer than to produce no answer at all. In this

sense, we consider that a query formulated in terms of a source peer ontology may be

reformulated exactly or approximately into a query using terms of a target peer

ontology, according to the set of semantic correspondences between them. Regarding

Chapter 5 – The SemRef Approach

the defined query formula, the query reformulations are produced according to the

following definitions:

Definition 7 - Exact Reformulation

be exact (denoted as Qexact) if each concept (or property)

concept (or property) C of Q

equivalence correspondences).

Definition 8 - Enriched Reformulation

to be enriched (Qenriched) if each concept (or property)

(or property) C of Q by a Co

(the set of specialization, generalization

correspondences).

Exact reformulations are always produced by

sometimes they may result empty

correspondence between concepts in the submitted query and concepts in the target

ontology). On the other hand,

situations:

i. If the user requires

specialize, generalize

mode; or

ii. If the user has set the

reformulation mode was defined as

reformulation resulted empty.

The possible reformulation modes

described in Table 5.1. This table also

combination of choices that a user may define

SemRef will be able to produce.

For instance, consider that now user “Anna” sets the

variables to TRUE, the query reformulation mode to

query Q = C. The SemRef

reformulations of Q. As a result, Anna will receive from the target peer a set of

expanded answers that comprise instances of equivalent, sub

concepts of C. Later, Anna comes back and no

restricted, although she does not change the enriching variables. She submits query

= C1. SemRef tries to produce an exact reformulation of

there is no corresponding equivalent concept of

empty. Since enriching variables

will produce an enriched reformulation

SemRef Approach

the defined query formula, the query reformulations are produced according to the

Exact Reformulation. A reformulation Q’ of a query Q

) if each concept (or property) C’ of Q’ is related to a

Q by a Co correspondence, where Co ∈ { } (

).

Enriched Reformulation. A reformulation Q’ of a query

) if each concept (or property) C’ of Q’ is related to a concept

Co correspondence, where Co ∈ { , , ,

generalization, closeness, part-of, whole-of and disjointness

Exact reformulations are always produced by SemRef Algorithm, although

sometimes they may result empty (this happens when there is no equivalence

correspondence between concepts in the submitted query and concepts in the target

. On the other hand, enriched reformulations will be produced in two

the user requires enrichment by defining enriching variables (approximate

generalize and/or compose) and expanded query reformulation

f the user has set the enriching variables (at least one of them)

mode was defined as restricted, but the produced

reformulation resulted empty.

The possible reformulation modes and resulting query reformulations

. This table also presents the various possibilities concerning the

combination of choices that a user may define and the kind of reformulated queries that

will be able to produce.

For instance, consider that now user “Anna” sets the specialize and generalize

variables to TRUE, the query reformulation mode to expanded, and then submits

SemRef algorithm will produce both exact and

. As a result, Anna will receive from the target peer a set of

expanded answers that comprise instances of equivalent, sub-concepts and/or super

. Later, Anna comes back and now changes the reformulation mode to

, although she does not change the enriching variables. She submits query

tries to produce an exact reformulation of Q1, but, due to the fact that

there is no corresponding equivalent concept of C1 in the target peer, Qexact

empty. Since enriching variables specialize and generalize are still set, the algorithm

will produce an enriched reformulation Qenriched of Q1 in place of the empty Q

87

the defined query formula, the query reformulations are produced according to the

Q is said to

is related to a

} (the set of

of a query Q is said

is related to a concept

, , }

disjointness

Algorithm, although

(this happens when there is no equivalence

correspondence between concepts in the submitted query and concepts in the target

nriched reformulations will be produced in two

approximate,

reformulation

(at least one of them), the

produced exact

and resulting query reformulations are

presents the various possibilities concerning the

of reformulated queries that

generalize

and then submits

and enriched

. As a result, Anna will receive from the target peer a set of

concepts and/or super-

w changes the reformulation mode to

, although she does not change the enriching variables. She submits query Q1

, but, due to the fact that

exact results

are still set, the algorithm

Qexact.

Chapter 5 – The SemRef Approach 88

Table 5.1 User Preferences and Produced Reformulations

Enriching
Variables

Approximate

 Compose

Specialize

Generalize

Mode

Produced Reformulated
Queries

Expanded

Restricted

At least one is
TRUE

TRUE FALSE Exact

Enriched

All are FALSE TRUE FALSE Exact

At least one is
TRUE

FALSE TRUE Exact

Enriched, if Exact is EMPTY

All are FALSE FALSE TRUE Exact

In this light, the SemRef algorithm receives as input a given query Q, submitted

in a peer P1, the target peer P2, Co[O1, O2] (the set of semantic correspondences

between O1 and O2), and the context that has been set by the user (enriching variables

and query reformulation mode values). As output, it produces one or two reformulated

queries (Qexact and/or Qenriched), according to the possibilities shown in Table 5.1. A

high level view of SemRef is sketched in Figure 5.3. The complete SemRef algorithm is

detailed in Figure 5.4.

Figure 5.3 High Level View of the SemRef Algorithm

 SemRefSemRefSemRefSemRef (Q,(Q,(Q,(Q, PPPP 1111,,,, PPPP2222,,,, Co[OCo[OCo[OCo[O1111,O,O,O,O2222],],],], MODE,MODE,MODE,MODE, REF_VARREF_VARREF_VARREF_VAR,,,, QQQQexactexactexactexact,,,, QQQQenrichedenrichedenrichedenriched))))

Input: Input: Input: Input: Q, P1, P2, Co[O1,O2], MODE, REF_VAR

Output: Output: Output: Output: Qexact, Qenriched

1. For each conjunctive query Qk in Q

2. Find exact reformulation Qk_exact of Qk

3. If (one of APPROXIMATE, COMPOSE, SPECIALIZE, GENERALIZE is TRUE)

4. Then

5. Find enriched reformulation Qk_enriched of Qk

6. End For;

7. If (at least one of Qk_exact ≠ ∅)

8. Then

9. Build final exact reformulation Qexact of Q

10. Else Qexact ← ∅

11. If ((MODE is expanded) or (MODE is restricted and Qexact is empty)) and

12. (at least one of Qk_enriched ≠ ∅)

13. Then

14. Build final enriched reformulation Qenriched of Q

15. Else Qenriched← ∅

16. End SemRef;

Chapter 5 – The SemRef Approach 89

Figure 5.11. The SemRef Algorithm

SemRefSemRefSemRefSemRef (Q, P(Q, P(Q, P(Q, P1111, P, P, P, P2222, Co[O, Co[O, Co[O, Co[O1111,O,O,O,O2222], MODE, REF_VAR, Q], MODE, REF_VAR, Q], MODE, REF_VAR, Q], MODE, REF_VAR, Qexactexactexactexact, Q, Q, Q, Qenrichedenrichedenrichedenriched))))

For each Qk in Q /* for each conjunctive query in Q */

B ← TRUE /* B will be used to stop the search if some concept of Qk has no
correspondent concept in P2 */

 While (there is still a concept Cj in Qk to process) and (B=TRUE)

 S1Cj ← ∅ /* set of concepts that are equivalent to Cj */

 S2Cj ← ∅ /* set of concepts related to Cj by other kind of correspondence,
except disjointness */

 Neg_S2Cj← ∅ /* set of concepts related to Cj by disjointness correspondence */

For each equivalence assertion between Cj and a concept C’ /* C’ is in O2 */
 Add C’ to S1Cj
 End For;

For each other kind of assertion involving Cj /* different from equivalence */

 If SPECIALIZE = TRUE
Then

If there is a concept C’ in P’ such that C’ m Cj /* subConceptOf */
Then

Add C’ to S2Cj
End If;

 End If;

 If APPROXIMATE=TRUE
Then

If there is a concept C’ in P’ such that C’ ≈ Cj /* closeTo */
Then

Add C’ to S2Cj
End If;

 End If;

 If GENERALIZE= TRUE

Then
If there is a concept C’ in P’ such that C’ } Cj /* superConceptOf */
Then
 Add C’ to S2Cj
End If;

 End If;

 If COMPOSE= TRUE

Then
If there is a concept C’ in P’ such that C’ @ Cj or C’ 0 Cj /* related through
a part of or a whole of correspondence*/
Then
 Add C’ to S2Cj
End If;

 End If;

 If Cj is negated

Then

If there is a concept C’ in P’ such that C’⊥ Cj /* they are disjoint */
Then
 Add C’ to Neg_S2Cj
 BNeg ← TRUE
End If;

 End If;

 End If;

 End For; /* End of the loop related to the assertions different from ≡ */

Chapter 5 – The SemRef Approach 90

Figure 5.11. The SemRef Algorithm

Figure 5.4 The SemRef Algorithm

If (S1Cj = ∅ and S2Cj = ∅ and Neg_S2Cj = ∅)
 Then
 B ← FALSE /* there is no correspondence between Cj and concepts of P2 */
 End If;
 End While; /* End of the loop processing concepts */

B1 ← TRUE;

 If any S1Cj = ∅
 Then B1 ← FALSE
 End If; /* Checking if there was an empty set concerning exact correspondences */

 B2 ← TRUE;

 If any S2Cj = ∅
 Then B2 ← FALSE
 End If; /* Checking if there was an empty set concerning enriching correspondences*/

 If B1 = TRUE

 /* if there were exact correspondences and no resulting empty set, then we can build the exact
reformulation for the current Q */

 Then
 Qk_exact ← Build_Exact_Reformulation (Qk, S1C1, S1C2, …, S1Cp)
 Else

 Qk_exact ← ∅
 End If;

 If B2 = TRUE or BNeg = TRUE

 /* if there were enriching correspondences and no resulting empty set, then we can build the
enriched reformulation for the current Q */

 Then
 Qk_enriched ← Build_Enriched_Reformulation (Qk, S2C1, … S2Cp, Neg_S2C1, … Neg_S2Cp)
 Else

 Qk_enriched ← ∅
 End If;

End For; /* End of the loop processing the conjunctive queries Qk */

If (at least one of Qk_exact ≠ ∅) /* at least one of Qk’s exact reformulations is not empty */
 Then
 Qexact ← Build_Final_Exact_Reformulation (Q, Q1_exact, …, Qm_exact)
 Else

 Qexact ← ∅
End If;

If ((MODE is expanded) or (MODE is restricted and Qexact is empty)) and

 (at least one of Qk_enriched ≠ ∅)

 /* If MODE is expanded or MODE is restricted and Qexact is empty; and
 at least one of Qk’s enriched reformulations is not empty */

 Then
 Qenriched ← Build_Final_Enriched_Reformulation (Q, Q1_enriched,…, Qm_enriched)
 Else

 Qenriched ← ∅
 End If;

End_End_End_End_SemRefSemRefSemRefSemRef;;;;

Chapter 5 – The SemRef Approach 91

More precisely, in order to obtain the reformulations, the algorithm performs the

following tasks:

I. It receives query Q as a disjunction of conjunctions of ALC concepts, i.e.,

Q = Q1 + Q2 +...+ QM. For each conjunctive query Qk in Q, while there are

concepts Cj in Qk to process, it adds corresponding concepts (according to

existing semantic correspondences) to three kinds of sets:

• S1Cj: the set of concepts that are equivalent to Cj;

• S2Cj: the set of concepts related to Cj by other kind of correspondence

(closeness, specialization, generalization, part-of and whole-of). This set

is produced if the reformulation mode is expanded or it is restricted and

S1Cj is empty; and

• Neg_S2Cj: if there is a negation over Cj, SemRef searches for

disjointness correspondences in order to directly get the opposite

concept. In this case, the concept is added to Neg_S2Cj set. If there is no

disjoint correspondence, a variable BNeg is set to TRUE and later in the

algorithm, the negation is done over the corresponding concept found

through the set of other semantic correspondences (equivalence,

specialization, generalization, part-of, whole-of or closeness).

II. After processing all the concepts of a conjunctive query, SemRef verifies if

there were exact correspondences and if the conjunction did not fail (i.e., all

the existing concepts in the conjunction had corresponding ones). If so, it

builds the exact reformulation for the current conjunctive query Qk.

III. In the same way, if there were enriching correspondences and the

conjunction did not fail, then SemRef builds the enriched reformulation for

the current conjunctive query Qk.

IV. Finally, after processing all the conjunctive queries Qk of Q, SemRef

produces the final Qexact, as the disjunction of the resulting exact

conjunctions and the final Qenriched as the disjunction of the resulting

enriched conjunctions.

We have defined some complementary functions which are called by SemRef

algorithm. The Build_Exact_Reformulation function is responsible for building a given

reformulation for one conjunction, considering the resulting set of corresponding

concepts obtained from equivalence. Similarly, we have the

Build_Enriched_Reformulation function which shows how we build a given

reformulation for one conjunction, taking into account the resulting sets of

corresponding concepts obtained from the specialization, generalization, closeness, part-

of, whole-of and disjointness. In quite the same way, the

Build_Final_Exact_Reformulation and Build_Final_Enriched_Reformulation consider

Chapter 5 – The SemRef Approach

the already produced Qm_exact

respectively Qexact and Qenriched

In the following, we show t

termination, meaning that it always terminates; (ii)

that every produced query reformulation is a “correct” reformulatio

completeness, implying that it always

present the proofs, we need to

• The original submitted query

ontology O1. It follows the general formula (Definition

+ … + Qn, where Q

concept of the initial ontology

• R(Q, O1, O2) is

algorithm for a given query

R(Q, O1, O2) is expressed over the target ontology

The following theorem assures th

enriched reformulations of a submitted query Q and that these produced reformulations

are correct. In addition, we prove that the algorithm terminates.

Theorem 1 (Soundness of

• If Q is reformulated into

then Q’ is an exact reformulation of

• If Q is reformulated into

aggregation, closeness and/or disjointness correspondences, then

enriched reformulation of

• Each reformulated query

algorithm, is a correct reformulation.

Proof. We need to prove that every

reformulation of Q and is either an exact or an enriched reformulation of

suppose that Q’ is a query, such that

reformulation of Q (i.e., it is

R(Q, O1, O2) is not a correct reformulation of

Q’ such that for each concept C

• ¬(C’ C)

• ¬(C’ C)

• ¬(C’ C)

• ¬(C’ C)

• ¬(C’ C)

Approach

exact and Qm_enriched to generate the final disjunction of them,

enriched. These functions are presented in Appendix A.

In the following, we show the main properties of the SemRef Algorithm: (i)

, meaning that it always terminates; (ii) soundness or correctness, meaning

that every produced query reformulation is a “correct” reformulation solution

, implying that it always gives a solution when there is one. In order to

need to state some hypotheses:

The original submitted query Q is posed at a peer P1, by means of an

. It follows the general formula (Definition 6), i.e., Q = Q

Qi is a conjunctive query C1 * C2 * …. * Cm, and

concept of the initial ontology O1; and

is the set of reformulated queries returned by the

algorithm for a given query Q posed over the ontology O1; each query

is expressed over the target ontology O2.

The following theorem assures that SemRef is able to produce both

reformulations of a submitted query Q and that these produced reformulations

are correct. In addition, we prove that the algorithm terminates.

of SemRef). Let Q be a query in ontology O1, then

is reformulated into Q’ over ontology O2 by equivalence correspondence,

is an exact reformulation of Q.

is reformulated into Q’ over ontology O2 by specialization, generalization,

aggregation, closeness and/or disjointness correspondences, then

ormulation of Q.

ach reformulated query Q’ in R(Q, O1, O2), returned by the

algorithm, is a correct reformulation.

We need to prove that every reformulation Q’ in R(Q, O1, O2) is a

and is either an exact or an enriched reformulation of Q. To this end,

such that Q’ is in R(Q, O1, O2), but Q’ is not a correct

(i.e., it is neither an exact nor an enriched reformulation

is not a correct reformulation of Q, then, there is at least a concept

C in Q the following assertions hold:

92

to generate the final disjunction of them,

in Appendix A.

Algorithm: (i)

or correctness, meaning

n solution; and (iii)

In order to

, by means of an

Q = Q1 + Q2

, and Cj is a

queries returned by the SemRef

; each query Q’ in

is able to produce both exact and

reformulations of a submitted query Q and that these produced reformulations

, then

by equivalence correspondence,

by specialization, generalization,

aggregation, closeness and/or disjointness correspondences, then Q’ is an

returned by the SemRef

is a correct

. To this end,

is not a correct

reformulation). If Q’ in

here is at least a concept C’ in

Chapter 5 – The SemRef Approach

• ¬(C’ C)

• ¬(C’ C)

If C’ is not related to

correspondences, then C’ ∉ S

Build_Exact_Reformulation

arguments S1C, and S2C and

consequence, C’ is not in the resulting

to our hypothesis.

Therefore, if, for each concept

concept C in O1 such that one of the

of R(Q, O1, O2) is a correct reformulation of

reformulation of Q, and the SemRef

Termination of the SemRef

number of reformulated queries that can be generated by the algorithm is finite,

produces zero, one or two reformulations (

Q.

The above theorem highlights the crucial role played by the

correspondences in the generation of query reformulations. Moreover, it shows that no

wrong reformulation is returned

The following theorem

Theorem 2 (Completeness

the SemRef algorithm is able to find all the existing solutions

R(Q, O1, O2).

Proof. Suppose now that Q’ is a query over

Q’ is a correct reformulation of

R(Q, O1, O2) then Q’ is not an exact reformulation of

reformulation of Q. However, i

Q, then there is at least a concept

Neg_S2C, i.e., C’ is not related to any concept

seven semantic correspondences

is contradictory to our hypothesis.

As a conclusion, if a query

then there is a concept C’ in this query

Approach

is not related to C using any of the seven kinds of

S1C, C’ ∉ S2C and C’ ∉ Neg_S2C. The two

 and Build_Enriched_Reformulation are called with

and Neg_S2C, without C’ in any of the three sets. As a

is not in the resulting set of reformulated queries, what is contradictory

or each concept C’ in any query Q’ of R(Q, O1, O2), there is a

such that one of the seven semantic correspondences hold, then e

is a correct reformulation of Q, i.e., Q’ is either an exact or enriched

SemRef algorithm is sound.

SemRef algorithm is immediately implied by the fact that the

queries that can be generated by the algorithm is finite,

produces zero, one or two reformulations (Qexact and/or Qenriched) of a submitted query

The above theorem highlights the crucial role played by the

correspondences in the generation of query reformulations. Moreover, it shows that no

returned by SemRef.

The following theorem presents the condition for the algorithm to be complete.

Completeness of SemRef). Given an original submitted query

algorithm is able to find all the existing solutions (reformulations) for

is a query over O2 such that Q’ is not in R(Q, O

is a correct reformulation of Q. If a query Q’ is not in the resulting set of queries

is not an exact reformulation of Q and Q’ is not an enriched

er, if Q’ is neither an exact nor an enriched reformulation of

, then there is at least a concept C’ in Q’ such that C’ ∉ S1C, and C’ ∉ S2C

is not related to any concept C of the initial query using any of the

correspondences. Thus, the query Q’ is not a correct reformulation

hypothesis.

f a query Q’ is not in the resulting set of reformulated

in this query which is not semantically related to any concept

93

of semantic

The two functions

are called with

the three sets. As a

contradictory

, there is a

, then each Q’

is either an exact or enriched

algorithm is immediately implied by the fact that the

queries that can be generated by the algorithm is finite, i.e., it

) of a submitted query

�

The above theorem highlights the crucial role played by the semantic

correspondences in the generation of query reformulations. Moreover, it shows that no

condition for the algorithm to be complete.

Given an original submitted query Q,

(reformulations) for Q in

R(Q, O1, O2), but

is not in the resulting set of queries

is not an enriched

is neither an exact nor an enriched reformulation of

C and C’ ∉

of the initial query using any of the

is not a correct reformulation, what

reformulated queries,

ally related to any concept

Chapter 5 – The SemRef Approach

of the initial query; therefore,

reformulations of Q are in R(Q, O

This theorem means that

result set.

As a brief illustration of

corresponding ontologies and the following semantic correspondences between them:

O1:Animal O2:Plant; O1

Now, assume that the query Q =

starts by initializing three important sets:

receive all the concepts that match

correspondences. Since there is no such correspondences, this set results empty (

{ }). The second set will receive the concepts resulting from the

superConceptof, isCloseTo,

corresponding enriching variables (

have been set to TRUE by the user.

TRUE and the reformulation mode has been defined to

to {Beast} (according to the closeness correspondence between

O2:Beast). The third set will receive

negation over the concept Animal

the query is composed by only one concept,

to build the exact and enriched reformulations.

reformulation for this given query. However,

the algorithm builds the enriched reformulation providing the negation over the concept

Beast (from the closeness correspondence) and the union of this negated concept with

the other found ones, taking into account the disjoint correspon

Qenriched is set to [¬Beast + Mineral

5.5. A More Complete Example

Our example scenario is composed by two peers

“Education” knowledge domain. In this scenario, peers have complementary data about

academic people and their works (e.g.

very likely that a query may obtain a more complete result ac

data sources. Each peer has got one ontology

(UnivBench.owl), respectively describing their schemas.

considered as background knowledge a

UnivCSCMO.owl. For the sake of space, we present excerpts from them using OWLViz

Approach

of the initial query; therefore, Q’ is not a correct reformulation of Q. If all the correct

R(Q, O1, O2), the SemRef algorithm is complete.

This theorem means that no existing solution is missing in the reformulation

illustration of SemRef’s execution, consider two peers with their

corresponding ontologies and the following semantic correspondences between them:

1:Animal O2:Mineral; and O1:Animal

Q = ¬Animal was submitted in P1. The SemRef

starts by initializing three important sets: S1C1, S2C1 and Neg_S2Cj. The first set will

receive all the concepts that match Animal according to isEquivalent

correspondences. Since there is no such correspondences, this set results empty (

{ }). The second set will receive the concepts resulting from the subConceptOf

, isPartOf and isWholeOf correspondences, if the

variables (generalize, specialize, compose and approximate

have been set to TRUE by the user. Assuming that all four variables have been set to

TRUE and the reformulation mode has been defined to EXPANDED, then S

to the closeness correspondence between O1:Animal

The third set will receive animal’s disjoint concepts, since there is a

Animal. Thus, Neg_S2C1 = {Mineral, Plant}. Then, since

the query is composed by only one concept, SemRef verifies the described sets and tries

to build the exact and enriched reformulations. As S1C1 is empty, there is no exact

reformulation for this given query. However, S2C1 and Neg_S1C1 are not empty, so

the algorithm builds the enriched reformulation providing the negation over the concept

correspondence) and the union of this negated concept with

the other found ones, taking into account the disjoint correspondences. As a result,

Mineral + Plant].

A More Complete Example

scenario is composed by two peers P1 and P2 which belong to the

“Education” knowledge domain. In this scenario, peers have complementary data about

academic people and their works (e.g., research) from different institutions.

very likely that a query may obtain a more complete result according to such diverse

Each peer has got one ontology – O1 (Semiport.owl

, respectively describing their schemas. In addition, we have

considered as background knowledge a public domain ontology (DO

For the sake of space, we present excerpts from them using OWLViz

94

ll the correct

�

reformulation

’s execution, consider two peers with their

corresponding ontologies and the following semantic correspondences between them:

 O2:Beast.

SemRef algorithm

. The first set will

quivalentTo

correspondences. Since there is no such correspondences, this set results empty (S1C1 =

subConceptOf,

correspondences, if the

approximate)

variables have been set to

S2C1 is set

:Animal and

’s disjoint concepts, since there is a

. Then, since

verifies the described sets and tries

is empty, there is no exact

are not empty, so

the algorithm builds the enriched reformulation providing the negation over the concept

correspondence) and the union of this negated concept with

dences. As a result,

which belong to the

“Education” knowledge domain. In this scenario, peers have complementary data about

. Thus, it is

cording to such diverse

Semiport.owl) and O2

In addition, we have

DO) named

For the sake of space, we present excerpts from them using OWLViz

Chapter 5 – The SemRef Approach 95

(a Protégé plug-in) in Figure 5.5 and Figure 5.6. The complete taxonomies are depicted

in Appendix B15.

In order to identify the semantic correspondences between O1 and O2, first, our

matching tool found out the equivalences between concepts of O1 and concepts in the

domain ontology UnivCSCMO, and the equivalences between concepts of O2 and

UnivCSCMO as well. Then, the set of rules described in Section 4.1 was applied. As a

result, the set of semantic correspondences between O1 and O2 was identified. Since the

correspondences are unidirectional, first we present a fragment of the correspondences’

set concerning the concept FullProfessor (from O1) with its respective related concepts

in O2, in Table 5.2.

Figure 5.5 Excerpts from the Ontologies of PPPP1111 and PPPP2222

Figure 5.6 Excerpt from the Education Domain Ontology

15 The complete ontologies are available at http://www.cin.ufpe.br/~speed/ontologies/Ontologies.html

O1 O2

Education Domain Ontology

Chapter 5 – The SemRef Approach

Table 5.2. Some Semantic Correspondences between

O1:FullProfessor

O1:FullProfessor

O1:FullProfessor

O1:FullProfessor

O1:FullProfessor

O1:FullProfessor

In this illustrative set, we can see the equivalence correspondence between

FullProfessor in O1 and O2

type in traditional query reformulation approaches.

account the semantics underlying the DO,

identify other unusual correspondences. In this fragment,

identified as: (i) close to VisitingProfessor

with AssociateProfessor; and; (i

able to determine such correspondences using the domain ontology knowledge.

Now considering the opposite direction (between

illustration concerns the concept

in O1 (i.e., no equivalent concept). Nevertheless, using the set of correspondence rules,

we can determine five

O1:UndergraduateStudent,

O1:AssistantProfessor, O2

O1:Project. Thus, at query reformulation time, th

kind of semantic information which will somehow approximate

semantically related concepts (or not, in case of disjointness)

reformulation enrichment, if the user enables this option. In summary, us

ontology, we can obtain kinds of correspondences which would not be possible, if we

have considered only syntactic or linguistic criteria. Moreover, using these

semantic correspondences, SemRef

At this moment, using this scenario, we provide

examples, presenting the SemRef

= FullProfessor was submitted in

Table 5.2. The SemRef algorithm starts by initializing the sets

Neg_S2C1. The first set receives the concepts that match

the equivalence correspondence, i.e.,

the concepts resulting from the other correspondences (except disjoint

to the enriching variables definition. Assuming that the

TRUE, and the reformulation mode has been defined to

to {VisitingProfessor, Professor,

Approach

2. Some Semantic Correspondences between OOOO1111 and OOOO2222

CoCoCoCo12121212 for O1:FullProfessorFullProfessorFullProfessorFullProfessor

:FullProfessor O2:FullProfessor

:FullProfessor O2:Professor

:FullProfessor O2:VisitingProfessor

:FullProfessor O2:AssociateProfessor

:FullProfessor O2:Course

:FullProfessor O2:ResearchProject

In this illustrative set, we can see the equivalence correspondence between

2. This is the most commonly identified correspondence’

type in traditional query reformulation approaches. We can also see that, taking into

account the semantics underlying the DO, through the existing relationships

correspondences. In this fragment, FullProfessor

VisitingProfessor; (ii) subconcept of Professor; (iii)

; and; (iv) part of Course and of Research Project

able to determine such correspondences using the domain ontology knowledge.

Now considering the opposite direction (between O2 and O1

illustration concerns the concept O2:Course which has no direct corresponding concept

(i.e., no equivalent concept). Nevertheless, using the set of correspondence rules,

five unusual semantic ones: O2:Course

, O2:Course O1:GraduateStudent, O2:Course

2:Course O1:FullProfessor and O2:Course

. Thus, at query reformulation time, these correspondences may provide a

kind of semantic information which will somehow approximate O2:Course

semantically related concepts (or not, in case of disjointness), making possible a query

reformulation enrichment, if the user enables this option. In summary, using the domain

ontology, we can obtain kinds of correspondences which would not be possible, if we

have considered only syntactic or linguistic criteria. Moreover, using these

SemRef can produce a larger set of query reformulations.

At this moment, using this scenario, we provide three query reformulation

SemRef main steps in practice. First, assume that the query

was submitted in P1 and consider the set of correspondences shown in

algorithm starts by initializing the sets S1C1,

. The first set receives the concepts that match FullProfessor according to

correspondence, i.e., S1C1 = {FullProfessor}. The second set

the concepts resulting from the other correspondences (except disjointness), according

variables definition. Assuming that the four variables have been set to

TRUE, and the reformulation mode has been defined to EXPANDED, then S

Professor, Course, ResearchProject}. The third set would

96

In this illustrative set, we can see the equivalence correspondence between

identified correspondence’

see that, taking into

through the existing relationships, we can

FullProfessor has been

; (iii) disjoint

Research Project. We are

able to determine such correspondences using the domain ontology knowledge.

1), another

which has no direct corresponding concept

(i.e., no equivalent concept). Nevertheless, using the set of correspondence rules,

:Course

:Course

:Course

may provide a

:Course of their

, making possible a query

ing the domain

ontology, we can obtain kinds of correspondences which would not be possible, if we

have considered only syntactic or linguistic criteria. Moreover, using these unusual

query reformulations.

query reformulation

First, assume that the query Q

nces shown in

, S2C1 and

according to

. The second set receives

), according

variables have been set to

S2C1 is set

. The third set would

Chapter 5 – The SemRef Approach

receive disjoint concepts, if there was a negation over the concept

the query is composed by only one concept and there is no negation over such c

the algorithm verifies that both sets (

builds the exact and enriched reformulations. The final exact

reformulations are the following:

• Qexact = [FullProfessor]

• Qenriched = [VisitingProfessor

ResearchProject]

 The second query reformulation example regards the query

¬TechnicalStaff + Lecturer

reformulation, consider the set of existing semantic correspondences concerning the

concepts O1:TechnicalStaff

assume that the user has set to TRUE the

specialize, compose and approximate)

has been chosen.

Table 5.3. Some other

O1 Concept

TechnicalStaff

Lecturer

In this light, Q is a disjunction of two queries

Lecturer. SemRef algorithm first deals with

set to empty. Since there is

TechnicalStaff in query Q1, the set

hand, there are some unusual correspondences (closeness and generalization), thus the

set S2C1 receives {Assistant

{AdministrativeStaff}, due to the negation over the concept in

correspondence between this concept and

the correspondences and including matching concepts in the related sets, the algorithm

checks the sets which are not empty. In this case,

reformulation for Q1. Nevertheless, there is an enriched reformulation for

Q1_enriched is set to [¬Assistant

Such partial result is produced by the

provides the negation over the concepts from set

the set Neg_S2C1.

Approach

receive disjoint concepts, if there was a negation over the concept FullProfessor

the query is composed by only one concept and there is no negation over such c

the algorithm verifies that both sets (S1C1 and S2C1) are not empty and consequently

builds the exact and enriched reformulations. The final exact and enriched

s are the following:

= [FullProfessor]

= [VisitingProfessor + Professor + Course

ResearchProject].

The second query reformulation example regards the query

Lecturer submitted in P1, as well. In order to explain such

reformulation, consider the set of existing semantic correspondences concerning the

and O1:Lecturer, presented in Table 5.3. In addition, we

assume that the user has set to TRUE the four enriching variables (generalize,

specialize, compose and approximate), although a RESTRICTED reformulation mode

Some other Semantic Correspondences between OOOO1111 and OOOO2222

Semantic Correspondences

O1:TechnicalStaff O2:Worker

O1:TechnicalStaff O2:Assistant

O1:TechnicalStaff O2:Faculty

O1:TechnicalStaff O2:AdministrativeStaff

O1:Lecturer O2:Faculty

O1:Lecturer O2:PostDoc

O1:Lecturer O2:Professor

is a disjunction of two queries Q1 = ¬TechnicalStaff

algorithm first deals with Q1. At first S1C1, S2C1 and Neg_S

is no equivalence correspondence concerning the concept

, the set S1C1 remains empty (S1C1 = { }). On the other

hand, there are some unusual correspondences (closeness and generalization), thus the

Assistant, Faculty, Worker}. Besides, Neg_S2C1

}, due to the negation over the concept in Q1 and the disjointness

correspondence between this concept and AdministrativeStaff in P2. After analyzing

the correspondences and including matching concepts in the related sets, the algorithm

checks the sets which are not empty. In this case, S1C1 is empty, so there is no exact

. Nevertheless, there is an enriched reformulation for

Assistant + ¬Faculty + ¬Worker + AdministrativeStaff]

Such partial result is produced by the Build_Enriched_Reformulation function

provides the negation over the concepts from set S2C1 and gets the concept provided by

97

FullProfessor. Since

the query is composed by only one concept and there is no negation over such concept,

) are not empty and consequently

and enriched

Course +

The second query reformulation example regards the query Q =

In order to explain such

reformulation, consider the set of existing semantic correspondences concerning the

In addition, we

es (generalize,

reformulation mode

¬TechnicalStaff, and Q2 =

Neg_S2C1 are

no equivalence correspondence concerning the concept

On the other

hand, there are some unusual correspondences (closeness and generalization), thus the

 is set to

and the disjointness

. After analyzing

the correspondences and including matching concepts in the related sets, the algorithm

, so there is no exact

. Nevertheless, there is an enriched reformulation for Q1.

AdministrativeStaff].

function, which

and gets the concept provided by

Chapter 5 – The SemRef Approach

Following the same idea,

empty, since, again, there is no equivalence correspondence concerning

receives {PostDoc, Professor

correspondences, and Neg_S

current concept. As a result,

Professor + Faculty].

Still in example 2, in order to build the final reformulations, we have to check

the reformulation mode the user has chosen. Since it was RESTRICTED, usually, we

would not build the enriched reformulation, but, in this case,

algorithm builds the enriched one. Therefore the final query reformulations are:

• Qexact = ¯

• Qenriched = [[¬Assistant

[[PostDoc + Professor

The third example concerns

submitted in Peer P2. To perform query reformulation, the algorithm considers the set

of correspondences presented in Table 5.4. Furthermore

to TRUE only approximate variable and EXPANDED value to

Table 5.4. Some

O2 Concept

AdministrativeStaff

Professor

This submitted query is indeed a conjunction of two concepts, what implies in

one query Q1 = [AdministrativeStaff

AdministrativeStaff, initially,

existing equivalence correspondence

and, due to closeness correspondences,

remains empty, since there is no negation over the concept. Now considering the second

concept C2 = Professor, the algorithm states

equivalence correspondence,

Approach

Following the same idea, Q2 = Lecturer is reformulated. At first, S1C

empty, since, again, there is no equivalence correspondence concerning Lecturer

Professor, Faculty}, considering the closeness and generalization

Neg_S2C1 is set to empty, since there is no negation over this

current concept. As a result, Q2_exact is empty, but Q2_enriched is set to [PostDoc

Still in example 2, in order to build the final reformulations, we have to check

the reformulation mode the user has chosen. Since it was RESTRICTED, usually, we

would not build the enriched reformulation, but, in this case, Qexact was empty, so the

thm builds the enriched one. Therefore the final query reformulations are:

= [[¬Assistant + ¬Faculty + ¬Worker + AdministrativeStaff]]

Professor + Faculty]].

concerns Q = [AdministrativeStaff * Professor]

o perform query reformulation, the algorithm considers the set

of correspondences presented in Table 5.4. Furthermore, we assume that the user has set

variable and EXPANDED value to reformulation mode.

Some Semantic Correspondences between OOOO2222 and OOOO1111

Semantic Correspondences

O2:AdministrativeStaff O1:Faculty

O2:AdministrativeStaff O1:TechnicalStaff

O2:AdministrativeStaff O1:SystemsStaff

O2:AdministrativeStaff O1:ClericalStaff

O2:AdministrativeStaff O1: Worker

O2:AdministrativeStaff O1:AdministrativeStaff

O2:Professor O1:Lecturer

O2:Professor O1:FullProfessor

O2:Professor O1:AssistantProfessor

O2:Professor O1:Faculty

This submitted query is indeed a conjunction of two concepts, what implies in

= [AdministrativeStaff * Professor]. Considering the first concept

, initially, S1C1, S2C1 and Neg_S2C1 are set to empty. Due to

correspondences (Table 5.4), S1C1 is set to {AdministrativeStaff}

due to closeness correspondences, S2C1 is set to {Faculty}. The set Neg_S

remains empty, since there is no negation over the concept. Now considering the second

, the algorithm states S1C2 = { }, due to the fact that there is no

equivalence correspondence, S2C2 = {Lecturer}, because of the closeness

98

C1 is set to

Lecturer; S2C1

}, considering the closeness and generalization

is set to empty, since there is no negation over this

[PostDoc +

Still in example 2, in order to build the final reformulations, we have to check

the reformulation mode the user has chosen. Since it was RESTRICTED, usually, we

was empty, so the

thm builds the enriched one. Therefore the final query reformulations are:

AdministrativeStaff]] +

Professor], now

o perform query reformulation, the algorithm considers the set

, we assume that the user has set

reformulation mode.

This submitted query is indeed a conjunction of two concepts, what implies in

nsidering the first concept C1 =

are set to empty. Due to

{AdministrativeStaff}

Neg_S2C1

remains empty, since there is no negation over the concept. Now considering the second

due to the fact that there is no

the closeness

Chapter 5 – The SemRef Approach 99

correspondence and Neg_S2C2 = ¯, since there is no negation over the concept. Since

one of the S1Cn is empty, all the conjunction for exact reformulation fails. Thus,

Q1_exact = ¯. The algorithm builds Q1_enriched = [[Faculty] * [Lecturer]], using the

Build_Enriched_Reformulation function. Since there is only one query (Q1) in Q, the

final exact and enriched reformulations are the same as Q1_exact and Q1_enriched.

Therefore, the final reformulations are:

• Qexact = ¯

• Qenriched = [[Faculty] * [Lecturer]]

5.6. Comparative Analysis

As we have discussed in Chapter 2, query reformulation techniques have been

addressed in different computational environments. In this section, we provide a

comparison between the approaches we have covered in Chapter 2 and ours. Table 5.5

summarizes the main features of the different query reformulation approaches as well as

of SemRef ‘s.

The works of Necib [2007], Kostadinov [2007] and Stuckenschmidt et al.

[2005] are similar to ours in what concerns the employment of some kind of query

enrichment, although in the first work, the used knowledge is obtained from the domain

ontology while in the second one, it is gathered from the user profiles. Instead, in our

work, we acquire semantic knowledge mainly from the semantic correspondences

among the peers’ ontologies and also from the context of the user, of the query and of

the environment. The third work is similar to ours in trying to establish concept

approximation and reformulating the query in such a way that these close concepts may

be included. On the other hand, they only consider approximation by means of

generalization and specialization (upper and lower bounds). Instead, we consider other

kinds of correspondences which allow different levels of approximation. Also, they

perform query relaxation, i.e., they simplify the query by putting away constraints that

cannot be matched in the target peer. In our approach, constraints by means of roles

definition are maintained and matched through semantic correspondences concerning

them.

Like our approach, the works of Xiao and Cruz [2006], Calvanese and his group

[2004] and Adjiman et al. [2007] consider mappings between peer ontologies. On the

other hand, Piazza [Halevy et al. 2003] considers mappings among peer schemas.

However, in most of the referred works, the mappings considered are restricted to

equivalence and subsumption (SomeRDFS also considers disjunction). Therefore, we

go one step further in our process as we also use other kind of semantic reformulation

Chapter 5 – The SemRef Approach 100

Table 5.5: Comparative Analysis of Query Reformulation Approaches with Ours

Approach Environment Representation
Model

Formalism Query
Language

Mapping/Correspondence
Types

Semantics Usage Reformulation Rules

[Necib 2007] Single
Databases

Relational Term Rewriting
Systems

SQL Equivalence (between database
schema and ontology)

Ontology as
additional knowledge

Extension Rules

Reduction Rules

[Kostadinov 2007] Mediator-based
System

Relational Conjunctive
Query

SQL LAV mappings User Profiles Enrichment Rules

Translation rules using
LAV approach

Piazza [Halevy et al.
2005]

PDMS Relational and
XML

Conjunctive
Query

XQuery or
Conjunctive

Query

Equivalence, Inclusion and
Definitional Mappings

Metadata in a
Catalog

Translation Rules, using
GAV/LAV approaches

OPDMS [Xiao and
Cruz 2006]

PDMS RDF FOL (First
Order Logic)

Conjunctive
RQL Query

Equivalence, Broader, Narrower,
Union and Intersection

Mapping Ontology Translation Rules

WTA [Calvanese et
al. 2004]

PDMS Knowledge-
based

(First Order
Logic - FOL)

FOL (First
Order Logic)

FOL Query Subsumption between classes,
Participation of classes in roles,

Mandatory participation of
classes in roles

Translation Rules

SomeRDFS [Adjman
et al. 2007]

PDMS/Semantic
Web

RDF DL (Description
Logics) and
FOL (First

Order Logic)

FOL Query Equivalence, Inclusion,
Disjunction

Translation Rules

Concept
Approximation

[Stuckenschmidt et
al. 2005]

Weakly-
Structured

Environments

Terminological
Knowledge

base using DL

DL (Description
Logics)

Boolean
Query

Equivalence, Specialization
(Lower Approximation),
Generalization (Upper

Approximation)

Terminological
reasoning and query

relaxation

Concept Approximation in
terms of Lower and Upper

Bounds

SemRef

Dynamic
Distributed

Environments;

OPDMS

OWL DL
(Description

Logics)

ALCALCALCALC/DL

SPARQL

Equivalence,

Specialization,

Generalization,

Closeness,

Disjointness,

Aggregation (PartOf) and

Aggregation (WholeOf)

Domain Ontology,

Semantics
underlying

Correspondences
and

Contextual
Information

Exactness and

Enrichment Rules

Chapter 5 – The SemRef Approach 101

rules (e.g. disjointness and closeness) which are obtained from the set of semantic

correspondences between two peer ontologies. In fact, to the best of our knowledge,

closeness is a kind of semantic correspondence that is not found in any related work. As

presented in Section 5.4, when users enable approximation, close correspondences may

make a difference and provide expanding concepts related in a given context. Another

difference concerns the use we make of disjointness correspondences when there are

negations to deal with. We are able to directly obtain the disjoint concept as a solution

to the negation of the original concept.

Furthermore, none of these works deal with contextual information. Differently,

our work produces reformulated queries taking into account the context of the user (e.g.,

preferences), of the query (e.g., mode, semantics) and of the environment (e.g., peers

availability). Since these works do not deal with context nor with semantics around the

query reformulation, most of them are not concerned with producing enriched

reformulations. Exceptions are the work of Kostadinov and, somehow, Stuckenschmidt

and his group. Our work, on the other hand, prioritizes the generation of exact

reformulations, but, depending on the context and reformulation execution mode, it also

generates an enriched version, which brings more relevance to the set of reformulated

queries, and, consequently, a set of expanded answers to the users.

5.7. Concluding Remarks

One key issue for query answering in dynamic distributed environments is the

reformulation of a query posed at a peer into another one over a target peer. A problem

that still persists is the fact that concepts from a source peer do not always have exact

corresponding concepts in a target one, what results in an empty set of reformulations

and, possibly, no answer to users. Depending on the users’ preferences, it may be better

to produce an adapted/enriched query reformulation and, consequently, close answers

than no answer at all. In this chapter, we presented SemRef’s approach as a solution to

such problem. SemRef brings some advantages in relation to other approaches:

i. It brings together the concepts of query reformulation and query enrichment

within a dynamic distributed ontology-based environment;

ii. It focuses on reformulating a query in terms of one or two kinds of

reformulation, by means of exact (the best) and/or enriched reformulations;

iii. In order to accomplish query reformulation, it makes use of a set of semantic

correspondences, namely, equivalence, specialization, generalization,

closeness, part-of, whole-of and disjointness, providing different levels of

concept approximation;

Chapter 5 – The SemRef Approach 102

iv. It uses closeness as a way to provide expanding concepts related in a given

context. Also, it uses disjointness to deal with negations, i.e., it directly

obtains the disjoint concept as a solution to the negation over an original

concept;

v. It performs query reformulation considering the context of the users, of the

query and of the environment. More specifically, context of users are

acquired from the set of enriching variables that users may define; context of

queries are identified from their semantics and from the reformulation mode;

context of the environment is gathered on-the-fly from the peer where the

query has been submitted and its available neighbor peers; and

vi. Considering semantics usage, it can provide users with a set of expanded

answers as a result of the execution of exact and/or enriched reformulations.

It is worth noting that we addressed our problem in a setting based on just two

peers, although our approach can also be used in an extended scenario composed by a

set of diverse peers. In fact, query reformulation strategies and query routing

mechanisms [Montanelli and Castano 2008; Faye et al. 2007; Mandreoli et al. 2006]

have a great influence on each other. In our approach, we consider that every peer Pi

maintains a neighborhood N(Pi) selected from the set of existing peers in the setting.

Our global query management process allows to specify a user query at some peer Pi,

and to compute it in a fully decentralized manner involving the set of relevant neighbor

peers. A given query is submitted in Peer Pi and reformulated in Pi’s neighbors, and in

its neighbors that are also considered relevant, according to a routing policy which

verifies the path_length defined variable. In this sense, a submitted query must be

reformulated in such a way that it is possible to ensure effective query routing,

preserving the query semantics at the best possible level of approximation. This is

possible by means of the semantic correspondences among the peers, and also by means

of preserving the choices of the user. Thus, at each query reformulation, the enriching

variables and query reformulation mode values are also propagated and therefore taken

into account.

CCCCCCCCHHHHHHHHAAAAAAAAPPPPPPPPTTTTTTTTEEEEEEEERRRRRRRR 66666666
“Begin, be bold and venture to be wise”.

Horace

Implementation Issues

We have instantiated our approach in a Peer Data Management System (PDMS), where

ontologies are used as uniform conceptual representations of peer schemas. In this

chapter, we briefly describe its architecture in order to explain how the implementation

of the SemRef approach has been accomplished. Then, we provide details of the

SemRef’s implementation. In particular, we show how the query reformulation module

works and we discuss the solutions we gave for bridging the gap between ALC/DL and

SPARQL semantics, thus providing users with queries in both languages.

The chapter structure is as follows. In Section 6.1 we describe our running

setting. In Section 6.2, we discuss the implementation issues regarding SemRef’s

approach. In Section 6.3 we present some concluding remarks.

6.1. Running Setting

We have instantiated our query reformulation approach in a PDMS. The system we use

is an Ontology-based Peer Data Management System (OPDMS), since it adopts an

ontology-based approach to assist relevant issues in peer data management, e.g., query

answering and peer connectivity. In the following, we describe its architecture and how

mapping expressions and correspondences are defined and dealt with.

6.1.1. System Architecture

The system, named SPEED (Semantic PEEr-to-Peer Data Management System),

employs a mixed network topology (DHT and super-peer) in order to exploit the

strength of both topologies [Pires et al. 2008]. A DHT network [Sung et al. 2005] is

used to assist peers with common interests to find each other and form semantic

communities. Within a community, peers are arranged in a super-peer topology [Yang

and Garcia-Molina 2003].

Chapter 6 – Implementation Issues 104

As shown in Figure 6.1, three distinct types of peers are considered in the

system: data peers, integration peers, and semantic peers. A data peer represents a data

source sharing structured or semi-structured data with other data peers in the system. In

Figure 6.1, I1D1 and I1D2 are examples of data peers. Data peers are grouped within

semantic clusters according to their semantic interest. A semantic interest includes the

peer’s interest theme and a local peer ontology. The interest theme is an abstract

description of the peer’s semantic domain, whereas the local peer ontology (LO)

describes the peer’s exported schema. To ensure correct query answering, such local

ontology representation preserves the structure and the integrity constraints (e.g.,

relational foreign keys) expressed on the peer’s schema.

Figure 6.1 Overview of SPEED’s architecture [Pires et al. 2008]

Each semantic cluster has a special type of peer with higher computational

capacity, named integration peer. Actually, integration peers are data peers with higher

availability, network bandwidth, processing power, and storage capacity. Such peers are

responsible for tasks like managing data peers’ metadata, query answering, and data

integration. In Figure 6.1, I1 is the integration peer of the semantic cluster composed by

the data peers I1D1, I1D2, and I1Dn.

An integration peer maintains a cluster ontology (CLO), which is obtained

through the merging of the local ontologies representing data peers’ and integration

peer’s exported schemas. Integration peers communicate with a semantic peer, which is

responsible for storing and offering a community ontology (CMO) containing elements

of a particular knowledge domain. Semantic peers are responsible for managing

integration peers’ metadata. In Figure 6.1, S1 is an example of a semantic peer. A set of

clusters sharing semantically similar interests composes a semantic community.

DHT Network

Semantic Peer

Data Peer

Integration Peer

Semantic Community

Semantic Cluster

S2

S3

Sm

S1

I2

I2D1 I2D2

I2Dn

I1

I1D1 I1D2

I1Dn

In

InD1 InD2
InDn

Super-Peer
Network

Chapter 6 – Implementation Issues 105

6.1.2. Mapping Expressions and Correspondences

Since ontologies are used as uniform conceptual representation of peer schemas in

SPEED, we need to establish correspondences among these ontologies in order to allow

query reformulation. To this end, we have instantiated our correspondences definition

(described in Chapter 4) in SPEED’s architecture. In order to describe how

correspondences and mapping expressions are dealt with in such setting, we formalize

SPEED as a distributed data source system, denoted by S = {{P}, {C}, {M}} composed

by a set of peers ({P}), semantic correspondences among them ({C}) and a set of

mapping expressions ({M}) inside a cluster, as depicted in Figure 6.2.

Figure 6.2 Mapping Expressions and Correspondences in SPEED

When a requesting peer asks to enter the system, the discovery of its semantic

community is taken through the use of knowledge domain keywords, using the DHT

network. After that, the cluster to which it will be assigned is found out through

ontology matching. More precisely, a semantic matchmaker module performs a

matching between the local ontology - LO (requesting peer) and some cluster ontologies

- CLOs (integration peers) of a community, producing a similarity degree between

them. The requesting peer takes part of a cluster if the similarity function produces a

value higher than a pre-defined cluster threshold. As a result of such matching, we have

an alignment, i.e., a set of correspondences among the concepts and properties of both

ontologies (LO and CLO). In Figure 6.2, this set of correspondences is denoted by {C}

and each correspondence is directionally defined from the CLO concept or slot

(property) to the LO concept or slot.

The most suitable cluster for a requesting peer is the one whose similarity

function produces the highest semantic similarity value between the LO and the

corresponding CLO. Inside a cluster, mapping expressions ({M}) are defined between a

CLO concept and views over the data peers, as shown in Figure 6.2. More specifically,

mapping expressions are built using the semantic information gathered from the

correspondences between the CLO and each data peer LO, following a GAV-like

I1D1 I1D2

I1

I2D1 I2D2

I2

BC

Community

I1D1 I1D2

I1

I2D1 I2D2

I2

Cluster 2Cluster 1

Cluster Ontology - CLO

Local Ontology - LO

Legend:

I1 – Integration Peer

I1D1 – Data Peer

{C} – Correspondences

{M} – Mapping Expressions{C} {C} {C} {C}

{MMMM} {MMMM}
{C}

Chapter 6 – Implementation Issues 106

strategy. Thus, when querying data inside a cluster, mapping expressions are used as

input of the (unfolding) algorithm to reformulate user queries into sub-queries executed

at data peers. Returned results from data peers are then combined by the integration

peer. A mapping expressions M can be defined as one of the following forms (adapted

from [Lóscio 2003]):

CLOConcept ≡ QueryDP1 Opj QueryDP2 ... Opj ... QueryDPi

CLOConcept } QueryDP1 Opj QueryDP2 ... Opj ... QueryDPi

where:

• CLOConcept is a concept in the Cluster Ontology

• QueryDPi in M holds a query (view) over a data peer Pi and is responsible

for computing its contents; and

• Opj represents an operator (e.g., union, intersection, difference) that may be

applied between two queries over data peers (QueryDPi).

In this sense, we consider the vision inside a cluster as a generalization of a data

integration system. In other words, a cluster acts like a mediator-based integration

system, where we have a mediated schema represented as a cluster ontology and a set of

data sources (data peers) that are mapped to this single CLO. We refer the reader to the

work of Lóscio [2003] for more details about mediator-based integration systems.

Furthermore, integration peers are semantically related to a set of other ones. We

call this group of semantically related integration peers semantic neighbors. In order to

determine this set of semantic neighbors, a semantic similarity measure function is

applied among pairs of integration peers and those with higher values (than a given

threshold) are set as neighbors of a given integration peer. Thus, for instance,

considering an integration peer I1 and a set of other integration peers I2, I3 and I4, each

one with its own CLO (CLO1, CLO2, CLO3 and CLO4), we assume that a similarity

function takes as input two CLOs (from I1 and another integration peer) and generates a

value in the range of 0-1. If such value is higher than 0.4, for example, the

corresponding integration peer is a semantic neighbor of I1. In Table 6.1, we provide an

example of this strategy and of these results. According to this example, I1 is a semantic

neighbor of I3 and I4, since the output of their similarity evaluation is higher than 0.4.

 Table 6.1 Semantic Neighboring of a Peer IIII1111

Input 1 Input 2 Similarity Measure Semantic Neighbor?

CLO1 CLO2 0.3 No

CLO1 CLO3 0.7 Yes

CLO1 CLO4 0.8 Yes

We also consider a set of correspondences between pairs of semantic neighbors

(integration peers). A correspondence between two CLOs occurs directionally from one

Chapter 6 – Implementation Issues

cluster to the other and vice-versa.

CLOs are matched in order to verify the existing similarity degree between them.

In summary, in SPEED, we have two

i. correspondences between local ontology (LO) and cluster ontology (CLO)’

elements (concepts and properties), inside a cluster; and

ii. correspondences between semantic neighbor integration peers, i.e., between

CLOs’ elements (concepts and properties), inside a

Both kinds of correspondences are generated by the matching processes

(between CLOs and LOs and between two different CLOs). As an illustration of

mapping expressions and correspondences definition, assume we have a semantic

community composed by two clusters

Each cluster has one integration peer (

schemas are concerned with an “Education” domain and include concepts

Professor and Instructors.

In Cluster1, considering that

have the following set of correspondences between

ontologies:

• I1.Professor I1D

• I1.Professor.Name

• I1.Professor.Email

• I1.Professor I1D2

• I1.Professor.Name

• I1.Professor.Email

A mapping expression between

• I1.Professor ≡ QProf

Where QProf1 is a query (view) over data peer

and QInst1 is a query over data peer

In the same way, as a result of matching processes between

have the following set of correspondences between the cluster ontologies:

• I1.Professor I2.Professeur

• I1.Professor.Name

• I1.Professor.Email

Nevertheless, we do not have mapping expressions among cluster ontologies,

since we do not use view-based query rewriting in such level. Instead, we perform query

reformulation between two neighbor integration peers, i.e., we basically

query posed at a source peer in terms of a target peer

Implementation Issues

versa. This type of correspondence is obtained when two

CLOs are matched in order to verify the existing similarity degree between them.

In summary, in SPEED, we have two types of correspondences:

correspondences between local ontology (LO) and cluster ontology (CLO)’

elements (concepts and properties), inside a cluster; and

correspondences between semantic neighbor integration peers, i.e., between

CLOs’ elements (concepts and properties), inside a community.

Both kinds of correspondences are generated by the matching processes

(between CLOs and LOs and between two different CLOs). As an illustration of

mapping expressions and correspondences definition, assume we have a semantic

by two clusters – Cluster1 and Cluster2, as shown in Figure

Each cluster has one integration peer (I1 and I2) and two respective data peers. The

schemas are concerned with an “Education” domain and include concepts

, considering that Professor is a concept belonging to

have the following set of correspondences between CLO1 and the two data peer local

D1.Prof

.Professor.Name I1D1.Prof.Name

.Professor.Email I1D1.Prof.Address.Email

2.Instructor

.Professor.Name I1D2.Instructor.Name

.Professor.Email I1D2.Instructor.Email

A mapping expression between CLO1 and the LOs may be stated as follows:

QProf1+ QInst1

is a query (view) over data peer I1D1 regarding the concept

is a query over data peer I1D2, regarding the concept Instructor.

In the same way, as a result of matching processes between CLO1 and

correspondences between the cluster ontologies:

.Professeur

.Professor.Name I2.Professeur.Nom

.Professor.Email I2.Professeur.Email

Nevertheless, we do not have mapping expressions among cluster ontologies,

based query rewriting in such level. Instead, we perform query

reformulation between two neighbor integration peers, i.e., we basically reformulat

query posed at a source peer in terms of a target peer. Currently, returned results

107

correspondence is obtained when two

CLOs are matched in order to verify the existing similarity degree between them.

correspondences between local ontology (LO) and cluster ontology (CLO)’

correspondences between semantic neighbor integration peers, i.e., between

Both kinds of correspondences are generated by the matching processes

(between CLOs and LOs and between two different CLOs). As an illustration of

mapping expressions and correspondences definition, assume we have a semantic

, as shown in Figure 6.2.

) and two respective data peers. The

schemas are concerned with an “Education” domain and include concepts such as

is a concept belonging to CLO1, we

and the two data peer local

may be stated as follows:

regarding the concept Prof,

and CLO2, we

Nevertheless, we do not have mapping expressions among cluster ontologies,

based query rewriting in such level. Instead, we perform query

reformulate a

eturned results

Chapter 6 – Implementation Issues 108

obtained from the execution of queries over integration peers are integrated by means of

the union operator.

In fact, in our query reformulation approach, we abstract the mediation level

inside the clusters, and work with the integration peers level, considering its

unstructured pure P2P topology. The underlying reason is that the implementation

concerning the cluster level, i.e., the mediation level is already done in the Integra data

integration system [Lóscio 2003]. Such implementation is being reused in SPEED to

provide query reformulation inside the clusters.

Therefore, in our query reformulation working scenario, each peer Ii (hereafter

called Pi) is an integration peer belonging to a set of peers {P}. Each peer Pi is

considered a server when providing data, a router when forwarding queries, and a client

when receiving data from other peers. Every peer Pi maintains a semantic neighborhood

N(Pi) selected from the set of integration peers.

6.2. SemRef Implementation

We have developed the SemRef approach within the query submission and execution

module for SPEED. As previously explained, we focus on reformulating and executing

queries among neighbor integration peers which are linked through semantic

correspondences. Between each pair of neighbor integration peers, there is a similarity

measure (computed previously) [Pires 2009] which may be used for routing strategies.

The data management module of each integration peer Pi is responsible for

managing queries and answers. Upon receiving a query, the data management module

performs the following tasks:

I. Query Handling. Analyzes the query and extracts its semantics by means of its

goal, required entities and operators, and important parameters;

II. Query Translation. Matches the query to its own schema to try to execute it;

III. Peer Selection. Selects its own relevant neighbors according to the semantic

correspondences and similarity measure between itself and its neighbors;

IV. Query Reformulation. Reformulates the query put to the current peer using the

schemas (ontologies) of the selected relevant neighbors; and

V. Query Routing: autonomously forwards the query to the previously defined

relevant neighbors according to the path_length variable value (it states the

number of subsequent routings that can occur once the first routing with

reformulation has been initiated).

Since our focus is on reformulating queries, we do not provide details regarding

query routing. Besides, in order to provide query reformulation using semantic

Chapter 6 – Implementation Issues 109

correspondences, at first, we had to develop a semantic matcher which has been

responsible for identifying them. In the same way, we had to code our context ontology,

so we could store contextual elements. As a result, the SemRef approach has been built

considering these two important artifacts. We show our implementation focus in Figure

6.3, through the query module architecture. A graphical-based (GUI) interface is

provided through which users submit their queries and view obtained answers. We give

more details about the interface in Section 6.2.2.

Figure 6.3 Query Module Architecture

In the following, we briefly introduce the main components: CODI, Semantic

Correspondences Set, Query Handler, Query Reformulator and Semantic Matcher.

• CODI: context ontology where we store contextual elements such as user

preferences (enriching variables and query reformulation mode), query entities

and operators, path-length and submission peer. CODI has been coded in OWL.

• Semantic Matcher: receives as input two matching ontologies – O1 and O2, as

well as a domain ontology to be used as background knowledge. Then, it applies

the set of semantic rules explained in Section 4.2 in order to derive the type of

semantic correspondence between O1 and O2 elements.

• Semantic Correspondences Set: concerns the alignment resulting from the

semantic matcher process. This set of semantic correspondences has been

designed to be stored either in a database or in an OWL file.

• Query Handler: is responsible for analyzing query semantics, identifying its

required entities, operators and goal. This component is also responsible for

receiving query answers from remote peers, integrating the results and

presenting the user with the final one.

User

Query

Handler

Query

Reformulator

Semantic

Matcher

P2 PN...

Query

Results

CODI
(Contextual

Elements)

SemRef

P1 Semantic

Correspondences

Set

Chapter 6 – Implementation Issues 110

• Query Reformulator: is actually the key component of our SemRef approach,

since it reflects the algorithm presented in Section 5.4. In this sense, it verifies

the surrounding contextual elements and existing semantic correspondences

between source and target peers and reformulates an original query producing

one or two reformulated queries (Qexact and/or Qenriched).

Although our implementation has been designed to consider any set of neighbor

integration peers, for the sake of simplicity, as already done in Chapter 5, we have only

considered two peers that wanted to communicate, sending and receiving queries. Thus,

our implementation has been performed over two integration peers – a source and a

target. Next, we present the specification and implementation issues of both semantic

matcher and SemRef components, including related details regarding the others.

6.2.1. Semantic Matcher

The semantic matcher is part of a general semantic matching process which uses a

domain ontology (DO) to complement linguistic and structural matching techniques. It

uses a DO as background knowledge and applies the described set of semantic rules

(Section 4.1) to derive semantic correspondences for two matching ontologies. These

ontologies may be of different levels of granularity (in terms of size, partition of

concepts and/or conceptual organization). Both matching ontologies and domain

ontology are coded in the same language, i.e., OWL16. OWL has been chosen due to the

fact that it is nowadays a standard uniform notation for representing and storing

ontologies. Furthermore, peer ontologies are also terminologically normalized in a pre-

matching step where their element names are adjusted to become compatible with the

element names found in the DO.

In order to provide a better understanding of the semantic matcher’s goals, we

have specified a use case diagram. Such diagram presents its main functional

requirements and is depicted in Figure 6.4. As non-functional requirements, we have

considered the following: (i) the matcher should be platform independent; (ii) it should

run on SPEED system supporting the matching between two CLOs and/or between a

CLO and a LO; (iii) the matcher’s interface should reflect the matching process, thus

allowing the administrator to check its overall execution.

The semantic matcher has been implemented [Pereira 2008] in Java. In order to

provide ontology manipulation and reasoning, we have used Jena
17

 and OWL API
18

.

Jena is a Java framework which provides a programmatic environment for RDF, OWL

16 http://www.w3.org/TR/owl-features/
17 Jena, http://jena.sourceforge.net/
18 OWL API, http://owlapi.sourceforge.net/

Chapter 6 – Implementation Issues 111

and SPARQL and includes a rule-based inference engine. OWL API is a Java interface

and implementation for OWL.

Figure 6.4 Use Case Diagram for Semantic Matcher

This version is able to identify all semantic correspondences defined in section

4.1.1 for concepts, allowing the generation of 1:1 correspondences. However, regarding

properties, we have restricted the correspondence identification to equivalence,

specialization and generalization. In order to accomplish that, we use the hierarchy of

properties provided by the DO. Figure 6.5 shows a screenshot of the tool’s main

window that is split into three parts: (i) an area for choosing matching ontologies; (ii) an

area for depicting the resulting semantic correspondences and their respective weights;

and (iii) an area for executing the main options, concerned with identifying the semantic

correspondences, generating the ACO alignment (resulting set of correspondences

identified by the linguistic-structural and semantic matcher) and calculating the global

similarity measure. These two latter functions are described in Pires [2009].

At first, the administrator chooses the matching ontologies and points out the

domain ontology to be used (in the future, this step will be accomplished in an

automatic way by the PDMS). The semantic matcher derives the semantic

correspondences and displays them in the screen. The administrator verifies the

resulting set and then stores it in an OWL file. Figure 6.6 presents an excerpt from an

OWL file with some semantic correspondences between elements of the ontologies

chosen in Figure 6.5 (the ontologies are also described in Section 5.5). In order to

identify such correspondences, we have set the thresholdroot as 10% of the DO’s

Enter Ontology1

Enter Ontology2

Define Domain Ontology (DO)

Identify Equivalences between

Ontology2 and DO elements

Identify Equivalences between

Ontology1 and DO elements

Apply Semantic Rules

Visualize Semantic

Correspondences

Administrator
Semantic Matcher

Store Semantic Correspondences

Store Correspondences

<<include>>

<<include>>
<<extend>>

Chapter 6 – Implementation Issues 112

height, and the thresholdcommonancestor as 10% of the height of this concept in

relation to the sub-tree where it is found in the DO.

Figure 6.5 The Semantic Matching Tool Interface

Figure 6.6 Some Correspondences between Matching Ontologies

(i)

(ii)

(iii)

<rdf:RDF

 <rdf:Description rdf:about="http://swrc.ontoware.org/ontology/portal#UndergraduateStudent">

 <j.0:isDisjointWith>http://www.lehigh.edu/~zhp2/univ-bench.owl#Worker</j.0:isDisjointWith>

 <j.0:isDisjointWith>http://www.lehigh.edu/~zhp2/univ-

bench.owl#GraduateStudent</j.0:isDisjointWith>

 <j.0:isPartOf>http://www.lehigh.edu/~zhp2/univ-bench.owl#Course</j.0:isPartOf>

 <j.0:isPartOf>http://www.lehigh.edu/~zhp2/univ-bench.owl#ResearchProject</j.0:isPartOf>

 <j.0:isSuperConceptOf>http://www.lehigh.edu/~zhp2/univ-

bench.owl#Monitor</j.0:isSuperConceptOf>

 <j.0:isSubConceptOf>http://www.lehigh.edu/~zhp2/univ-bench.owl#Student</j.0:isSubConceptOf>

 </rdf:Description>

 <rdf:Description rdf:about="http://swrc.ontoware.org/ontology/portal#TechnicalReport">

 <j.0:isCloseTo>http://www.lehigh.edu/~zhp2/univ-bench.owl#ConferencePaper</j.0:isCloseTo>

 <j.0:isCloseTo>http://www.lehigh.edu/~zhp2/univ-bench.owl#JournalArticle</j.0:isCloseTo>

 <j.0:isSubConceptOf>http://www.lehigh.edu/~zhp2/univ-bench.owl#Article</j.0:isSubConceptOf>

 <j.0:isEquivalentTo>http://www.lehigh.edu/~zhp2/univ-

bench.owl#TechnicalReport</j.0:isEquivalentTo>

 </rdf:Description>

Chapter 6 – Implementation Issues 113

6.2.2. SemRef Module

In order to provide a detailed description about the implementation of our query

reformulation approach, we first present a use case diagram (Figure 6.7) which shows

the functional requirements that have been considered. Such requirements are based on

the theoretical basis described previously in this thesis. Besides such functional

requirements, we have also considered as non-functional ones the following: (i) the

system should be platform independent; (ii) it should run on SPEED integration peers’

level; (iii) the query interface should be easy and friendly; and (iv) queries should be

formulated by means of ALC/DL, SPARQL syntaxes and/or by using concepts

provided by the peer ontology.

There are four actors in the diagram. The first is the User, i.e., users which wish

to query the system. To this end, they have to set the enriching (generalize, specialize,

compose, approximate) and path_length variables. In addition, they establish how

reformulation algorithm will deal with such enriching variables definition by providing

the query reformulation mode. User preferences will be stored as contextual elements in

order to be later verified by the query reformulator.

Figure 6.7 Use Case Diagram for SemRef

The second actor is the Query Handler which is responsible for analyzing the

query semantics, identifying its required entities, operators and goal. This module is

Visualize Query Reformulation Log Verify Contextual Elements

Verify Semantic Correspondences

Produce Qenriched Produce Qexact

Reformulate Query

<<include>>

<<include>>

<<include>> <<include>>

Send Q'

Query

Reformulator

Set Reformulation Mode

Set Enriching and Path_Length

Variables

Submit Query

<<include>>

User

Administrator

Present Query Result

Visualize Query Execution Log

Receive Q' Result

Identify Query Semantics

Integrate Query Results

Query Handler

Chapter 6 – Implementation Issues 114

also responsible for receiving query answers from remote peers, integrating the results

and presenting the user with the final one. The third actor – Query Reformulator - is the

main module of our SemRef approach. It verifies the surrounding contextual elements

and existing semantic correspondences between source and target peers and

reformulates the query producing one or two reformulated queries (Qexact and Qenriched).

For performance reasons, although it produces one or two reformulations of a given

query, it puts both reformulations together in one execution query (Q’) and sends it to

the target peer.

The fourth actor is indeed the administrator. In order to provide details

regarding both query reformulation and query execution processes, the system allows

verifying a related log. Therefore, the administrator can check whether the

reformulation has been done correctly as well as whether query answers have been

produced accordingly.

The SemRef approach has been developed within a query submission module for

our PDMS. Such module has been implemented in Java and intends to provide users

with a friendly query submission interface [Neves 2008]. RMI (Remote Method

Invocation)
19

 has been used for peer communication. In addition, we have adopted both

Jena and Protégé’s API
20

 in order to manipulate the underlying ontologies and execute

queries over them, through SPARQL language. Figure 6.8 shows a screenshot of the

module’s main window that is split into three parts: (i) the peer ontology area; (ii) the

query formulation area and (iii) the query results area. Queries can be formulated using

the concepts provided by the peer ontology, using SPARQL
21

 or using ALC-DL. In

this current version, we have implemented both DL and SPARQL options.

In this light, after logging in the system, users can set the enriching variables and

path_length, as described in the activity diagram shown in Figure 5.3. These choices

can be changed or updated whenever users require during query session. In addition, to

facilitate the process of query formulation, and to provide users with a starting point for

query specification, the query interface shows an Ontology Browser component, with

the ontology of the current submission peer (see Figure 6.8). In such browser, concepts

(labeled by “©”) and properties (labeled by “•”) of the peer ontology are depicted.

Queries may be formulated using ALC/DL and SPARQL. The reasons

underlying these primary choices are: (i) it is important to validate our query

reformulation approach using ALC/DL, since it has been formally coded as such; (ii)

we execute queries over ontologies that represent data sources, thus in order to facilitate

19 http://java.sun.com/j2se/1.4.2/docs/guide/rmi/
20 http://protege.stanford.edu/
21 http://www.w3.org/TR/rdf-sparql-query/

Chapter 6 – Implementation Issues 115

our tests (simulating the data sources access), we decided to use an ontology query

language. Due to the fact that SPARQL is the W3C proposed standard, it has been

chosen as our query language.

Figure 6.8 Query Interface with DL Query Formulation Option

While typing queries in such formal languages provides a great level of

expressivity and control for the user, we know it is also a less user-friendly access

interface. The solution to this problem was to create an additional abstraction level that

might provide a user friendly way of generating formal queries. Thereby, in both

options, we tried to organize the query formulation area, constructors/templates, query

reformulation mode and captions in a standard way, thus providing users with an

uniform query formulation interface. The former option is shown in Figure 6.8. The

latter is depicted in Figure 6.9. As further work, this query interface will be extended

with more friendly mechanisms such as providing query formulation by using concepts

and properties found out in the peer ontology.

In the DL option, the interface provides basic ALC-DL constructors

(disjunction, conjunction, negation, universal and existential quantification), so users

are able to formulate the queries more easily. These constructors are graphically

depicted by a special node near the query formulation area. Since our SemRef approach

has been built with ALC/DL constructors, we aimed at providing users with the

possibility of also querying using SPARQL in the same way they would do in DL.

(i)
(ii)

(iii)

Chapter 6 – Implementation Issues 116

Nevertheless, SPARQL is a language with a broad range of constructors and query

formats, which causes some problems to be faced: (i) it makes difficult to users to

formulate queries without knowing well its syntax and (ii) it requires special effort to

bridge DL semantics with SPARQL own semantics. As a way to face such difficulties,

we have defined some templates which may be used by users to write their SPARQL

queries. To this end, we have investigated some techniques that could be used in order

to provide the translation between ALC/DL queries into SPARQL queries. The

templates are displayed in a special area, near the corresponding query formulation area.

Figure 6.9 Query Interface with SPARQL Query Formulation Option

We are able to verify the complete query reformulation and query execution

processes through logs. Screenshots of both logs concerning the queries submitted in

Figures 6.8 (in ALC/DL) and in Figure 6.9 (in SPARQL) are depicted in Appendix C.

Next, we describe our approach for bridging the semantics of ALC/DL with the

semantics of SPARQL, so we can provide users with the same query formulation

semantics by means of both languages.

6.2.3. Semantics Preserving ALCALCALCALC/DL-to-SPARQL Query Translation

Before we describe our work on translating ALC/DL queries into SPARQL queries, we

give a short introduction to the SPARQL query language and the operators of a

Templates

Chapter 6 – Implementation Issues 117

SPARQL query that are considered for this translation process. To this aim, we follow

the definitions provided by Quilitz and Leser [2008] and Cao [2007]. For a more

detailed introduction to SPARQL, we refer the reader to Perez et al. [2006].

A SPARQL query Q is defined as a tuple Q = 〈E, DS, R〉, where E is an algebra

expression that is evaluated with respect to a RDF graph
22

 in a dataset DS. The results

of the matching process are processed according to the statements of the result form R

(e.g., SELECT). The algebra expression E is built from different graph patterns and can

also include solution modifiers, such as PROJECTION, DISTINCT, LIMIT, or ORDER

BY. A typical structure of a SPARQL query statement has four parts:

• Prefix: indicates the default prefix;

• From: specifies the RDF dataset to query;

• Select: lists the variables that should be present in the output;

• Where: restriction conditions; and

• Modifiers: if present, these modifiers will change the number of results

(limit and offset) and/or their order (order by).

As an example, consider the following query:

SPARQL query 1

PREFIX w3Contact: < http://www.w3.org/People/EM/contact#>

SELECT ?name, ?mail

WHERE

 {

 w3Contact:me w3Contact:fullname ?name.

 w3Contact:me w3Contact:mail ?mail.

 FILTER regex (?name , "^Tomaz")

 }

ORDER BY ?name ?mail

LIMIT 5

In the above example, ‘?name’ and ‘?email’ are variables and ‘w3Contact’

identifies the data set against the query will be executed. The keyword FILTER,

ORDER BY and LIMIT have the following purposes: FILTER is a restriction on

solutions over the whole group in which the filter appears, and FILTER regex is an

operation to test strings, based on regular expressions; ORDER BY specifies a sorted

result list and LIMIT specifies a limitation on the number of results. Thus, this example

query retrieves the names and email addresses of persons whose names start with

"Tomaz". The results are ordered by the name, followed by mail. The number of results

is limited to five.

22 http://www.w3.org/RDF/

Chapter 6 – Implementation Issues 118

In this sense, our rationale for translating ALC/DL queries into SPARQL ones

is to specially consider such presented SPARQL syntax scope as the one we are going

to deal with. Explaining better, in order to provide the constructors we find in

ALC/DL, namely, conjunction, disjunction, negation and quantification
23

, we have

restricted the usage of SPARQL to elements of its syntax which may provide such

constructors semantics. In the following, we present our solutions to each one of the

ALC/DL constructors we deal with.

a. ALC/DL query with one concept

A query with one concept is stated as Q = C, i.e., we want to retrieve the

instances of concept C in the ontology. To this end, we have defined the following

template:

PREFIX rdf: <http://www.w3.org/2000/01/rdf-schema#>

Prefix prf: <PeerOntology.owl#>

SELECT distinct ?x

FROM <PeerOntology.owl>

WHERE {

 ?x rdf:type prf:Concept

 }

Limit LL

b. ALC/DL query with a disjunction of concepts (union)

A query with a disjunction of concepts is stated as Q = C1 + C2, i.e., we want to

retrieve the instances of the union between C1 and C2 in the ontology. To this end, we

have defined the following template:

PREFIX rdf: <http://www.w3.org/2000/01/rdf-schema#>

Prefix prf: <PeerOntology.owl#>

SELECT distinct ?x

FROM <PeerOntology.owl>

WHERE {

 {?x rdf:type prf:Concept1}

 UNION

 {?x rdf:type prf:Concept2}

 }

Limit LL

c. ALC/DL query with a conjunction of concepts (intersection)

23 Quantification is currently under development.

Chapter 6 – Implementation Issues 119

A query with a conjunction of concepts is stated as Q = C1 * C2, i.e., we want to

retrieve the instances which are in the intersection of C1 and C2 in the ontology. To this

end, we have defined the following template:

PREFIX rdf: <http://www.w3.org/2000/01/rdf-schema#>

Prefix prf: <PeerOntology.owl#>

SELECT ?x

FROM < PeerOntology.owl>

WHERE {

 ?x rdf:type prf:Concept1 .

 ?y rdf:type prf:Concept2

 FILTER (?x = ?y)

 }

Limit LL

d. ALC/DL query with negation over a concept

A query with a negation over a concept is defined as Q = ¬C, i.e., we want to

retrieve the instances of all the concepts belonging to a given interpretation, with the

exclusion of the instances of the concept C. In our work, the current interpretation is

provided by the domain ontology, and, more specifically, by the super-concept of the

negated concept and its siblings. In SPARQL, negations are interpreted by utilizing the

operators \!" and \bound". Thus, we have defined the following template:

PREFIX rdf: <http://www.w3.org/2000/01/rdf-schema#>

Prefix prf: <PeerOntology.owl#>

SELECT distinct ?x

FROM < PeerOntology.owl>

WHERE { {?x rdf:type ?y .

 :Concept1 rdfs:subClassOf ?y}

 UNION

 {?x rdf:type ?z .

 :Concept1 rdfs:subClassOf ?y .

 ?z rdfs:subClassOf ?y.

 FILTER (?z != :Concept1) }

 }

Limit LL

Following such templates, users are only required to substitute the name of the

using concepts (prf:Concept1 and/or prf:Concept2) and the limit LL. Also, it is possible

to compose their definitions and formulate conjunctions with negations, disjunctions

with negations, disjunctions with conjunctions and any kind of DL constructor

Chapter 6 – Implementation Issues 120

composition. We show some examples of the templates-based translation technique in

Table 6.2.

Table 6.2 ALCALCALCALC/DL-to-SPARQL Translation Examples

ALCALCALCALC/DL SPARQL

Student SELECT distinct ?x

FROM <Semiport.owl>

WHERE { ?x rdf:type <Semiport.owl#Student> }

Limit 10

TechnicalReport + Book SELECT distinct ?x

FROM <Semiport.owl>

WHERE {

{ ?x rdf:type <Semiport.owl#TechnicalReport>} UNION

{ ?x rdf:type <Semiport.owl#Book> }

}

Limit 20

FullProfessor * Researcher SELECT distinct ?x

FROM <Semiport.owl>

WHERE { { ?x rdf:type <Semipor.owl#FullProfessor>

 .

 ?x rdf:type <Semiport.owl#Researcher> } }

Limit 20

¬GraduateStudent SELECT distinct ?x

FROM <Semiport.owl>

WHERE { {

 ?x rdf:type ?y .

 <Semiport.owl#GraduateStudent> rdfs:subClassOf ?y}

 UNION

 { ?x rdf:type ?z . <Semiport.owl#GraduateStudent>

 rdfs:subClassOf ?y . ?z rdfs:subClassOf ?y .

 FILTER (?z != <Semiport.owl#GraduateStudent>) }}

Limit 20

6.3. Concluding Remarks

In this chapter, we have presented the SPEED system as our running setting. This

system has been considered an OPDMS, since it uses ontologies as a way of enhancing

its services. One example is query answering and, more specifically, query

reformulation. In our approach, we use ontologies in order to store contextual

information, to represent peer schemas and as background knowledge. Ontology

matching (done by a semantic matcher) is used to provide peer clustering as well. As a

result of such matching, the system identifies the set of semantic correspondences

between neighbor peers.

Chapter 6 – Implementation Issues 121

 We have presented the main features of the semantic matcher, discussing issues

related to the identification of correspondences between concepts and properties. Our

current implementation is able to identify all seven semantic correspondences for

concepts, although only equivalence, generalization and specialization were feasible for

properties. The other kinds of correspondences for properties are under analysis.

The SemRef implementation has put the theoretical foundations we have

provided in this thesis in practice. Through our implementation solution, we provided

users with queries in ALC/DL and SPARQL. To this end, we have bridged the gap

between ALC/DL semantics in terms of SPARQL, by creating some templates that

match each ALC/DL constructor. In order to facilitate query formulation, we have

designed the interface in such a way that users use patterns both to ALC/DL and

SPARQL options. We have also defined logs which show how query reformulation was

performed as well as query answers have been produced. As a result, administrators can

verify the correctness and adequacy of both tasks.

Next chapter describes experiments we have performed to investigate the

feasibility of the proposed ideas. In addition, it provides the results we have obtained.

CCCCCCCCHHHHHHHHAAAAAAAAPPPPPPPPTTTTTTTTEEEEEEEERRRRRRRR 77777777
“All life is an experiment.

The more experiments you make the better”

Ralph Waldo Emerson

Experiments and Results

In this chapter, we provide an experimentation of the proposed SemRef approach. In

order to accomplish such task, we have instantiated the main steps of a methodology

belonging to the Experimental Software Engineering [Travassos et al. 2002]. We have

defined the experimentation purposes, planned its steps and performed controlled

experiments in order to characterize and evaluate our approach. As a consequence,

measured results were obtained.

This chapter is organized as follows. In Section 7.1, we provide an overview of

the adopted methodology. In Section 7.2, we define the experimentation purposes; in

Section 7.3, we present the experimentation design; in Section 7.4, we show the

execution of the experiments and, in Section 7.5, we discuss obtained results. Finally, in

Section 7.6, we conclude the chapter with some remarks.

7.1. Overview of the Adopted Methodology

Experimentation plays a very important role in evolving scientific knowledge [Basili

2007]. It can produce pieces of evidence to confirm or refute items which are subject of

research. However, although experimental studies in software engineering have been

carried out for several decades, designers or developers are still at a loss when deciding

which issues to consider in accomplishing such task.

We decided to adopt an experimentation methodology which presents a series of

questions that should be addressed, the types of studies and actions that best address

those questions and guidelines that should be taken into account in order to achieve

specific measurements. The adopted methodology has been proposed by Travassos et al.

Chapter 7 – Experiments and Results 123

[2002]. It covers different experimental process areas such as setting, design, operation

and data collection, results analysis, reporting and interpretation.

The methodology is composed by a set of experimentation phases, namely:

i. Definition: the experimentation is stated in terms of problems and purposes;

ii. Planning: hypotheses are formulated, instrumentation is described, the

experimentation setting is established, and variables to be measured are

determined;

iii. Execution: this phase puts in practice what has been established in planning;

and

iv. Result Analysis and Interpretation: obtained data from experiments are

organized, analyzed and packaged in order to be properly presented.

In the next sections, we go step-by-step following the guidelines proposed by the

methodology. Our main goals when conducting this experimentation are twofold: (i) we

want to verify whether the use of semantics really enhances a query reformulation

process; and (ii) we want to guarantee that our SemRef algorithm produces sound and

complete query reformulations.

7.2. Experimentation Purposes

The overall purpose of this experimentation is to evaluate whether semantics

employment, by means of contextual information and the use of semantic

correspondences, enhances a query reformulation process in a dynamic and distributed

environment. To this end, we use two main evaluation criteria resulting from the

determined properties of SemRef:

• Soundness: Given an original submitted query Q, each reformulated query

Q’ in the resulting reformulation set RS is a correct reformulation.

• Completeness: Given an original submitted query Q, the SemRef algorithm is

able to find all the existing solutions (reformulations) for Q in the resulting

set of reformulations RS.

This means that, by using semantics in query reformulation time, we aim to

provide users with not only exact answers but also approximate, additional (i.e.,

expanded) answers, according to their preferences when formulating queries. To

achieve such goal, our algorithm produces two kinds of query reformulations: exact and

enriched. We want to show that these query reformulations are correct and all possible

reformulations are provided, considering the context of the query, of the environment

and of users.

Chapter 7 – Experiments and Results 124

According to such overall purpose, there are two measurement purposes to be

accomplished in the experimentation:

• To characterize what happens when semantics is applied in a query

reformulation process; and

• To evaluate if the use of semantics, through the set of correspondences and

contextual information, really enhances the overall query reformulation

process, by guaranteeing soundness and completeness.

By characterize, we mean describing what happens when considering and not

considering semantics in a query reformulation process. In other words, we want to

distinguish a query reformulation process that makes use of semantics from other one

which does not. By evaluate, we mean assessing added value of using semantics in the

referred process, i.e., what we gain by such usage. Furthermore, we want to guarantee

that the SemRef algorithm is able to generate sound and complete reformulations.

Considering that, we define the components of our experimentation, through

four parameters, as follows:

• Object of study: our semantic-based query reformulation approach, named

SemRef;

• Purpose: characterize and evaluate;

• Focus: the use of semantics in the query reformulation process; and

• Point of view
24

: the researcher, in characterizing and evaluating the query

reformulation process instantiation.

The questions we want to answer through the experimentation are the following:

• Question1: What is the difference in producing query reformulations

considering semantics and not considering semantics? To what extent does

the use of semantics change the resulting set of query reformulations?

Measure: Resulting Set of Query Reformulations, with/without semantics

• Question2: Given an original query Q, is there a possibility to produce an

empty set of query reformulations of Q? In which situations could the use of

semantics help to avoid an empty set of query reformulations?

Measure: Empty Resulting Set of Query Reformulations, with/without

semantics.

• Question3: Is it possible to produce correct query reformulations, either

exact or enriched, with the aid of semantics?

24 The person who benefits from the experimentation.

Chapter 7 – Experiments and Results 125

Measure1: Exact query reformulations with/without semantics

Measure2: Enriched query reformulations with/without semantics

Next section, we provide our experimentation design.

7.3. Experimentation Planning

In this section, we focus on design issues concerning the experimentation. We formulate

hypotheses to be proved or refuted, provide how the experimentation will be executed

and present the setting to be considered during experiments.

7.3.1. Hypotheses Definition

One of the goals of an experimentation process is to observe and measure in order to

test, prove or refute formulated hypotheses. Hypotheses and variables (to be defined in

Section 7.3.4) influence the choice of the experimental design. We have defined two

hypotheses: a null hypothesis (H0) and an alternative hypothesis (H1). The null

hypothesis represents a theory that has not been proved but can be used as a basis for

our argument. The hypothesis contrary to the null hypothesis is the alternative

hypothesis which is a statement of what we want to prove in order to achieve our

purposes. In our experimentation, they are stated as follows:

i. Null Hypothesis (H0): A query reformulation process which is carried out

without considering semantics is similar to a query reformulation process

which takes into account obtained semantics. Both produce the same set of

query reformulations.

ii. Alternative Hypothesis (H1): A query reformulation process which is carried

out without considering semantics may produce empty query reformulations

and thereby empty query results for a given query. Considering semantics,

exact and/or enriched query reformulations may be produced, thus providing

a larger set of query reformulation possibilities. Such query reformulations

are correct according to the acquired contextual information and to the set of

semantic correspondences.

The null hypothesis describes the general statement concerning query

reformulation processes, i.e., there is no difference when applying or not applying

semantics in these processes. This hypothesis is treated as valid unless the actual

behavior of the current experiments contradicts this assumption. Thus, the null

hypothesis relates to the statement being tested, whereas the alternative hypothesis

relates to the statement to be accepted if/when the null hypothesis is rejected. In fact,

the null hypothesis is the reverse of what we actually believe; it is put forward to allow

the experimental data to contradict it.

Chapter 7 – Experiments and Results 126

7.3.2. Instrumentation Description

In our experiments, we are dealing with two peers – P1 and P2, which may be labeled

source and target depending on where the original query is submitted. A set of queries

expressed using concepts from the source peer’s ontology will be assigned to it. Users

can set their preferences through enriching variables (approximate, generalize,

specialize and/or compose). These preferences relate to a set of submitted queries and

help to guide the execution of the query reformulation algorithm. Whenever users want,

they can redefine these variables. In addition, users can define the query reformulation

mode through expanded or restricted options (the default is the latter).

In this sense, a variety of queries from peer P1 to peer P2 and from P2 to P1 are

executed. For each query, the concepts are identified, and, if, for each concept, a

semantic correspondence is found, then each concept is rewritten or expanded according

to the corresponding concepts of the target peer ontology.

For each query, we characterize and evaluate its reformulation, considering

semantics and not considering semantics, both in restricted and expanded modes.

7.3.3. Setting Overview

We use two scenarios in order to evaluate queries. Both are composed by the peers P1

and P2, with their respective ontologies O1 and O2. The first scenario is concerned with

the “Education” knowledge domain. The other one is related to the “Travel” knowledge

domain. In the former, peers have complementary data about academic people and their

work (e.g., research) from different institutions. In the latter, peers share information

about tourism, such as accommodation and destination. Ontologies from the Education

scenario are depicted in Appendix B. Ontologies from the Travel one are shown in

Appendix D. In both cases, it is very likely that a query may obtain a more complete

answers resulting set according to the diverse data sources.

We have conducted our evaluation using queries expressed in ALC/DL,

although using SPARQL would have produced the same set of query reformulations
25

.

In this sense, the selected queries have been chosen to represent a variety of ALC/DL

query formulation possibilities, namely: queries with one concept, queries with negation

over a concept, queries with conjunctions, queries with disjunctions, queries with

disjunctions of conjunctions. All selected queries follow the general query formula,

provided in Definition 6. Furthermore, for each one of the presented queries, we check

the combination of reformulation possibilities according to the set of enriching variables

specification and reformulation mode, as previously shown in Table 5.1. In the

following, we present a relevant fragment of the set of queries we have used for each

25 An excerpt of the used queries expressed in SPARQL is also shown in Appendix E.

Chapter 7 – Experiments and Results 127

scenario, considering the variety of possible constructions we have defined. The

complete set of used queries is shown in Appendix E.

a. Queries with One Concept

Q1: Student

Q47: Safari

b. Queries with Negation over a Concept

Q9: ¬PhDStudent

Q52: ¬FamilyDestination

c. Queries with Conjunctions

Q22: Professor * PostDoc

Q40: Activity ⊓ Sightseeing

d. Queries with Disjuntions

Q6: Proceedings ⊔ Thesis ⊔ ¬TechnicalReport

Q49: Campgroung ⊔ ¬Hotel

e. Queries with Disjuntions of Conjunctions

Q11: [AdministrativeStaff ⊓ ClericalStaff] ⊔ [Faculty ⊓ Lecturer]

Q33: [Student ⊓ Monitor] ⊔ [Worker ⊓ Chair] ⊔ [Assistant ⊓

¬TeachingAssistant] ⊔ [Faculty ⊓ AssociateProfessor]

Q44: [Destination ⊓ Capital] ⊔ [Destination ⊓ ¬Farmland] ⊔ ¬NationalPark

Q53: [Destination ⊓ RetireeDestination] ⊔ [UrbanArea ⊓ City]

7.3.4. Variables

Variables provide the means to organize our observations and obtained experimental

data. The idea is trying to define variables avoiding redundancy. According to our

experimentation purposes and evaluation criteria, we have defined some variables to be

measured. They are stated as follows:

i. V1: #Empty Reformulations or #EmptyRef

ii. V2: #Exact Reformulations or #ExactRef

iii. V3: #Enriched Reformulations or #EnrichedRef

iv. V4: Degree of Soundness or DS, defined as:

fPossibleRe#

Correct#
f)PossibleRe,DS(Correct =

Chapter 7 – Experiments and Results 128

Where, given an original query Q, #Correct is the number of correct

reformulations (Exact or Enriched) of Q and #PossibleRef is the total of all

possible reformulations of Q.

v. V5: Degree of Completeness or DC, stated as:

fProducedRe#

Correct#
)fProducedRe,DC(Correct =

Where, given an original query Q, #Correct is the number of correct

reformulations (Exact or Enriched) of Q and #ProducedRef is the total of

all produced reformulations of Q.

It is important to note that both DS and DC are adapted from standard metrics

(precision and recall, respectively) commonly used in information retrieval systems

[Baeza-Yates and Ribeiro-Neto 1999]. These metrics are usually used to measure the

results of a query execution and to compare them to ideal results expected by the user.

In our case, we aim to evaluate the query reformulation phase. Consequently, we are

concerned with the quality (correctness) of query reformulation instead of with the

query execution results (which currently are outside of our scope).

7.4. Operation

In order to execute the experiments, we have defined three types of evaluation tasks:

i. Query Reformulation without semantics: this is the basic kind of query

reformulation process. It means that the set of queries will be submitted, and

SemRef will try to reformulate each one, without considering any kind of

semantics, i.e., enriching variables will be disabled and query reformulation

mode will operate on its default – restricted. In other words, only

equivalence correspondences will be verified when reformulating the

original query in terms of the target one. As a result, only exact

reformulations will be present in the resulting reformulation set.

ii. Query Reformulation with semantics, in restricted mode: in this case, users

have set at least one enriching variable, allowing the algorithm to verify the

possibility to produce enriched reformulations in case of empty exact

reformulations have been generated. To this end, semantic correspondences,

besides equivalence, will be verified in order to produce enriched

reformulations (in place of empty exact ones). As a consequence, either

exact or enriched reformulations will be present in the resulting set of query

reformulations.

Chapter 7 – Experiments and Results 129

iii. Query Reformulation with semantics, in expanded mode: expanded mode

means that the algorithm will always try to produce both exact and/or

enriched reformulations. To this end, at least one of the enriching variables

must have been set. In this option, the resulting set of reformulations will be

the largest one, since both exact and/or enriched reformulations will be

produced, according to the enriching variables setting.

In order to provide a greater variety of possibilities regarding the reformulation

mode and kinds of enrichment that could be employed, during the experiments, we have

defined enriching variables considering different combinations of choices.

In the following, we depict part of the experiments execution. The overall set of

experiments which has been conducted is shown in Appendix E. The first set of

experiments concerns the reformulation of queries without any kind of semantics. An

excerpt of its results is presented in Table 7.1.

Table 7.1 Query Reformulation without Semantics – Mode: Restricted

Query Qexact

Q1 [[Student]]

Q4 ¯

Q5 FullProfessor

Q9 ¯

Q12 ¯

Q27 ¯

Q43 [[Destination] ⊓ [Capital]]

Q46 ¯

As we can see, some of the produced query reformulations were empty (¯). This

means that, regarding these queries, no equivalence correspondence was found to

accomplish the reformulation. Next, we perform the experiments by considering the

definition of enriching variables, i.e., with semantics. In the same way, we maintain

restricted as our reformulation mode.

Table 7.2 Query Reformulation with Semantics – Mode: Restricted with Enriching Variables

Query Spec Gen Approx Comp Qexact Qenriched

Q1 X X [[Student]] ¯

Q2 X X [Student ⊓

UndergraduateStudent]

¯

Q4 X X ¯ [[VisitingProfessor]]

Q19 X X X [[¬Book]] ⊔ [[¬Article]] ¯

Q20 X X X ¯ ¯

Q25 X X ¯ [[¬PhDStudent ⊔

¬GraduateStudent]]

Q54 X X X X [[City]] ⊔ [[¬Beach]] ¯

Chapter 7 – Experiments and Results 130

As we can see, some of the queries whose produced reformulations resulted

empty in the first set of experiments (without semantics) are now able to be enriched.

As a result, most of submitted queries could be properly reformulated. Next, we execute

the experiments by considering the definition of enriching variables, i.e., with

semantics, in expanded mode.

Table 7.3 Query Reformulation with Semantics – Mode: Expanded and Enriching Variables

Query Spec Gen Approx Comp Qexact Qenriched

Q3 X X [[Worker]] [[Assistant ⊔ Faculty ⊔

AdministrativeStaff]]

Q4 X X ¯ [[VisitingProfessor]]

Q13 X X ¯ [[Course ⊔ ResearchProject] ⊓

[PostDoc ⊔ Professor]]

Q15 X X X X Publication [[Work ⊔ ResearchProject]] ⊔

[[Specification ⊔ Software ⊔ Article

⊔ Manual ⊔ Book ⊔

UnofficialPublication]]

Q37 X X [[Sightseeing]] [[Activity]] ⊔ [[Activity ⊔ Safari]]

Q38 X X [[¬RetireeDestinatio

n]]

[[¬Destination]]

Q39 X X [[BedAndBreakfast]] ¯

Q46 X X ¯ ¯

Q48 X X [[Sightseeing]] [[Activity ⊔ Museums]]

In this case, most of submitted queries were properly reformulated in terms of

exact and enriched reformulations. Still, it is possible that no reformulation can happen.

This is due to the fact that sometimes, the enriching variable that has been set does not

match any semantic correspondence. For instance, the user can have set approximate

variable, but there is no closeness correspondence for the concepts in the submitted

query. An example of such occurrence is provided in the reformulation of query Q46.

We organized these experimental data in terms of the variables we have defined

to measure. Table 7.4 shows the number of exact, enriched and empty reformulations

over the total of possible reformulations for each evaluation process.

For these experiments, we had a total of 55 submitted queries. Thereby, in

restricted mode, the total of possible produced query reformulations was 55, since in the

option without semantics it is only possible to produce exact or empty reformulations,

i.e., we cannot produce enriched ones. This results in 55 possible reformulations in all.

In the option restricted with semantics, the algorithm also produces only exact or empty

reformulations. The difference is that, in this latter option, when an empty reformulation

Chapter 7 – Experiments and Results 131

is produced, it can be replaced by an enriched one, if enriching variables have been set.

As a result, the number of possible reformulations for the 55 submitted queries is also

55 (computing exact or empty or enriched reformulations).

Table 7.4 Number of Produced Exact, Enriched and Empty Reformulations

Evaluation Process #ExactRef

(%)

#EnrichedRef

(%)

#EmptyRef

(%)

Total of Produced Query

Reformulations (%)

Query Reformulation

without Semantics

53 --- 47 53

Query Reformulation

with Semantics –

Restricted Mode

53 38 9 91

Query Reformulation

with Semantics –

Expanded Mode

26 43 31 69

When considering expanded mode, the scope changes a little bit since the

algorithm now tries to produce both exact and/or enriched reformulations. Thus, we

can have a total of reformulations varying from 55 (only one of exact or enriched is

produced) to 110 (both exact and enriched are produced). Thereby, we have

considered as the total of possible reformulations for this set the number of 110,

although we know we are considering the worst case.

On the other hand, if we analyze the viability of producing reformulations

(exact or enriched, or both together as one), we change the last line of Table 7.4 by

Table 7.5, as follows.

Table 7.5 Produced Reformulations, considering Exact and Enriched as One

Evaluation Process #EmptyRef

(%)

Total of Produced Query

Reformulations (%)

Query Reformulation

with Semantics –

Expanded Mode

9 91

This result is based on the fact that, given a query Q, if SemRef is able to

produce at least one of the expected reformulations, it succeeds, although it can produce

both of them as well. Explaining better, considering the submitted query Q3 = Worker,

an exact reformulation Qexact = [[Worker]] and an enriched reformulation Qenriched =

[[Assistant + Faculty + AdministrativeStaff]] were produced. This means that the

algorithm did not produce an empty reformulation, instead it produced both kinds of

possible reformulations. The main point in this case is that when computing empty and

produced reformulations for a given query, we can state that we had a succeeded

reformulation, if it was not empty. Even in the example of Q4 = AssistantProfessor,

Chapter 7 – Experiments and Results 132

where Qexact = ¯ and Qenriched = [[VisitingProfessor]], the algorithm also succeeded, since

at end there was a reformulation of Q4. Therefore, in Table 7.5, we have an overview of

how many reformulations resulted empty or not, and, at the same time, of how many

reformulations succeeded.

We have measured the degree of soundness and the degree of completeness for

the set of submitted queries as shown in Table 7.6. The results presented in this table

consolidate the numbers we have found in the two previous tables of results. Regarding

soundness, we verify that its degree increases when we apply semantics, i.e., the SemRef

algorithm is able to produce a higher number of correct (i.e., exact and/or enriched)

query reformulations. Regarding completeness, we also verify this truth. Moreover, we

verify that, considering semantics, the SemRef algorithm is able to provide the complete

set of query reformulations, i.e., it is able to find all the existing solutions

(reformulations) for a given query Q, of course, taking into account the contextual

information and existing semantic correspondences.

Table 7.6 Degree of Soundness and Completeness

Evaluation Process Degree of Soundness (%) Degree of Completeness (%)

Query Reformulation without

Semantics

53 58

Query Reformulation with

Semantics – Restricted Mode

91 100

Query Reformulation with

Semantics – Expanded Mode

69 100

Next section, we detail the analysis we have done concerning these results.

7.5. Results Analysis

The number of produced exact, enriched and empty query reformulations over the total

of possible reformulations is reported in Figure 7.1. In the first process, only exact

reformulations were produced and there was a high number of empty reformulations.

When reformulations were empty, this meant that no reformulation at all was produced

and, moreover, no answers from the target peer were returned. In these cases, returned

answers were only originated from the source peer. In the second run, the same number

of exact reformulations was generated, but when exact reformulations were empty, an

enriched one was provided, considering values defined in the enriching variables.

Thereby, exact or enriched reformulations were produced.

Chapter 7 – Experiments and Results 133

Figure 7.1 Exact, Enriched and Empty Reformulations over Possible Ones

In the third option (queries with semantics, in expanded mode), we could have as

resulting query reformulations both exact and/or enriched, which entailed a larger set of

reformulations possibilities. As a result, we had both exact and enriched reformulations

calculated in separate (see Figure 7.1). The number of empty reformulations was taken

individually from exact or enriched reformulations set. We argue that such number can

not be considered meaningful, since, in expanded mode, when one of exact or enriched

reformulations is empty, the other one can be produced instead, e.g., if Qexact is empty,

Qenriched may be produced or vice-versa. To clarify this situation, we present another

graph, depicted in Figure 7.2, which shows the total number of produced query

reformulations, when considering Qexact and Qenriched as one reformulation solution. In

other words, in this case, we only denote as an empty reformulation the one whose both

Qexact and Qenriched were empty.

More precisely, in Figure 7.3 we report the degrees of soundness and

completeness of our SemRef algorithm. As we can see, these results materialize what we

have stated in Section 5.4, when we proved SemRef main properties in terms of

soundness and completeness. Therefore, we show that when we do not consider

semantics usage, we have a high number of empty reformulations, which results in a

lower number of correct query reformulations. When we consider semantics by the use

of semantic correspondences and contextual information, we are able to obtain enriched

reformulations substituting empty exact ones (in restricted mode) or adding another

reformulation (in expanded mode) as a way of query enrichment.

#ExactRef #EnrichedRef #EmptyRef

53%

0%

47%
53%

38%

9%

26%

43%

31%

Exact, Enriched and Empty Reformulations

over the Total of Possible Ones

Query Reformulations Without Semantics

Query Reformulations With Semantics - Restricted Mode

Query Reformulations With Semantics - Expanded Mode

Chapter 7 – Experiments and Results 134

Figure 7.2 Total of Query Reformulations, when considering QQQQexactexactexactexact and QQQQenrichedenrichedenrichedenriched as one

Figure 7.3 Degree of Soundness and Completeness

Explaining better, we observed that concepts that only exist in one of the peer

ontologies usually do not have an equivalent concept in the target one, thus entailing an

empty exact reformulation. In these cases, enriching the reformulation has been

essential, otherwise, no reformulation query would be obtained. Moreover, even

enabling only one of the enriching variables has shown a promising query reformulation

result. When our approach takes into account the preference of the user and exploits the

correspondences built from them, we are able to obtain new queries including additional

concepts and, consequently, additional expanded answers. Besides, when users set at

least one of the enriching variables, they are also defining that the negation over

Query Reformulation

Without Semantics

Query Reformulation

With Semantics -

Restricted Mode

Query Reformulation

With Semantics -

Expanded Mode

53%

91% 91%

47%

9% 9%

Total of Produced Query Reformulations when

considering Qexact and Qenriched as one

#ProducedRef #EmptyRef

Query

Reformulation

Without Semantics

Query

Reformulation With

Semantics -

Restricted Mode

Query

Reformulation With

Semantics -

Expanded Mode

53%

91%

69%
58%

100% 100%

Degree of Soundness and Completeness

#Degree of Soundness #Degree of Completeness

Chapter 7 – Experiments and Results 135

concepts must be dealt with, not only with the usual correspondences, but, particularly,

with disjointness.

Although the use of semantics is highly context-dependent, considering our

particular experimental setting (the two scenarios with their respective peer ontologies

and the set of submitted queries), we are able to refute null hypothesis (H0), since we

have shown that a query reformulation process which is carried out without considering

semantics is able to produce only a subset of the query reformulation set provided by

considering semantics. This is mainly due to the fact that these traditional approaches

only consider equivalence correspondences in order to perform query reformulation,

what implies in a high number of impossible reformulations. On the other hand, in our

approach, we go further when we take into account other semantic correspondences and

context as well, providing a larger set of possibilities of query reformulations.

Furthermore, we can conclude that our alternative hypothesis (H1) is true, i.e., a

query reformulation process which is carried out without considering semantics may

produce empty query reformulations and thereby empty query results for a given query.

Considering semantics, exact and/or enriched query reformulations may be produced,

thus providing a larger set of query reformulation possibilities. Such produced query

reformulations are correct. Moreover, they are considered sound and complete,

according to the acquired contextual information and to the set of semantic

correspondences between the current peers.

7.6. Concluding Remarks

The most important conclusion of the experiments is that they have demonstrated a

proof-of-concept of the SemRef approach. However, some considerations need to be

made. We have run experiments considering and not considering semantics, and we

have obtained interesting results regarding that usage.

In those experiments, we have used all the flexibility of the SemRef approach to

consider different settings of enriching variables and query reformulation mode,

existing semantic correspondences and alternatives to produce an enriched

reformulation in case of an empty one. Our main goal was to characterize such

instantiation, learn with it and evaluate whether it really provides an enhancement to

query reformulation phase. As we have proved, the null hypothesis was refuted and the

alternative one can be accepted, considering the obtained experimental results.

In this sense, the experimental results have supported the hypothesis that

considering semantics through the set of correspondences and acquired context

enhances the query reformulation process, by providing exact and/or enriched

reformulations. In this version, we have considered the context of the user/query,

Chapter 7 – Experiments and Results 136

through the set of defined preferences, verifying the possibilities that may arrive when

expanded or restricted option is enabled. For performance reasons, although we produce

one or two reformulations of a given query, we put both reformulations together in one

execution query. Thus, a peer executes one query and returns its answers to the

submission peer which integrates all the results and presents the final one.

Another important remark is that, during experiments, we have identified some

conflicts with respect to the produced reformulations. These conflicts arise due to the

fact that when we substitute concepts, at query reformulation time, one concept may be

substituted by a set of other concepts by using different semantic correspondences. If

there is a negation, sometimes (whether there are disjointness correspondences), the

negated concept may be replaced by its disjoint (not negated) concepts. As a result,

these produced sets of replaced concepts may be in conflict (e.g., a reformulated query

may result in [¬UrbanArea + UrbanArea]) or they may be redundant (e.g., a

reformulated query results in [[RuralArea + UrbanArea] + RuralArea]). We are aware

of such problems and intend to deal with them in future work using some optimization

strategy.

Next chapter presents conclusions regarding the overall work and points out

some further work that can be accomplished.

CCCCCCCCHHHHHHHHAAAAAAAAPPPPPPPPTTTTTTTTEEEEEEEERRRRRRRR 88888888
“More than words

 is all you have to do to make it real”.

Gary Cherone e Nuno Bettencourt

Conclusions

Query answering among peers in networked environments is a challenge which has

been addressed in different settings, including Data Integration and Peer Data

Management Systems (PDMS). In such environments, a query posed at a peer is routed

to other peers so that an answer can be found. An important step in this process is

reformulating a query issued at a peer into a new query expressed in terms of a target

peer, considering the correspondences between them. Most traditional approaches aim

at reformulating a given query into another one by using equivalence correspondences.

However, concepts from a source peer do not always have exact corresponding concepts

in a target one, what results in an empty set of reformulations and, possibly, no answer

to users. In this case, if users define that it is relevant for them to receive semantically

related answers, it may be better to produce an adapted query reformulation and,

consequently, close answers than no answer at all.

Due to the fact that these computational environments are highly dynamic, the

use of semantics (including context) surrounding processes such as query reformulation

may be rather important to produce results in conformance with users’ needs and

environment’s capabilities. Besides, a considerable effort has been employed in recent

years to provide reformulation techniques which enrich user queries before their

execution. We argue that by bringing together these two worlds, i.e., semantics and

query enrichment techniques, we can enhance the query reformulation process.

Moreover, using semantics as a way of enriching the query reformulation process may

enhance the overall query answering process.

This work was motivated by these issues and had the objective to present a

query reformulation approach – SemRef, which brings together the concepts of query

reformulation and query enrichment in dynamic distributed environments. In our

approach, exact and enriched query reformulations are produced as a means to provide

Chapter 8 – Conclusions 138

users with a set of expanded answers. To this end, it makes use of semantics which is

mainly acquired from a set of semantic correspondences that extend the ones commonly

found. Examples of such unusual correspondences are closeness and disjointness.

Furthermore, SemRef takes into account the context of the user, of the query and of the

environment as a way to enhance the overall process and to deal with information that

can only be acquired on the fly.

This chapter is organized as follows: Section 8.1 discusses the contributions

achieved with this research; Section 8.2 indicates some directions in which this research

could be extended; and Section 8.3 concludes the thesis with some remarks.

8.1. Thesis Contributions

The contributions of this work are both theoretical and practical. We split them into four

specific ones:

I. The specification and implementation of an approach to identify

semantic correspondences

We used domain ontologies as background knowledge in order to identify

semantic correspondences between matching ontologies. The motivation

underlying that was the observation that concepts from two matching ontologies

are rarely precisely equivalent, but rather have some semantic overlap. Thereby,

finding such degree of semantic overlap became more useful for our task of

query reformulation. In this sense, we tried to overcome the limitations of

traditional approaches and we went one step further since, besides the common

correspondence of equivalence, we also identified other semantic ones, namely,

specialization, closeness, generalization, part-of, whole-of and disjointness,

providing various and semantically-rich degrees of similarity between ontology

elements. To the best of our knowledge, closeness is a type of semantic

correspondence that is not found in any related work.

II. The specification and implementation of a context ontology

We designed and developed CODI - Contextual Ontology for Data Integration

which is an ontology for representing context according to some Data

Integration (DI) and PDMS issues [Souza et al. 2008]. This work used the

concept of context as a way to enhance the query reformulation process. More

specifically, SemRef used three types of context: of the users, represented by the

set of preferences that they define; of the query, acquired from the identification

of its semantics and its query reformulation mode; and of the environment,

regarding the set of relevant peers to where queries would be reformulated.

Chapter 8 – Conclusions 139

III. The specification and implementation of the SemRef approach

The SemRef approach is the main contribution of this work [Souza et al. 2009].

We formalized the SemRef approach using ALC/DL. Also, we proved that the

SemRef algorithm is sound, complete and terminates. We compared our

approach with other existing ones and verified that it has various advantages in

relation to the others:

• SemRef brings together the concepts of query reformulation and query

enrichment within a dynamic distributed ontology-based environment;

• It focuses on reformulating a query in terms of one or two kinds of

reformulation, by means of exact (the best) and/or enriched reformulations;

• It makes use of a set of semantic correspondences, namely, equivalence,

specialization, generalization, closeness, part-of, whole-of and disjointness,

providing different levels of concept approximation;

• It uses closeness as a way to provide expanding concepts related in a given

context. Also, it uses disjointness to deal with negations, i.e., it directly

obtains the disjoint concept as a solution to the negation over an original

concept;

• It performs query reformulation considering the context of the users, of the

query and of the environment; and

• It is able to provide users with a set of expanded answers as a result of the

execution of exact and/or enriched reformulations;

IV. The specification and implementation of the Translation between

ALC/DL and SPARQL queries

We used ALC/DL and SPARQL in SemRef query module. The reasons

underlying these choices were: (i) it was important to validate our query

reformulation approach using ALC/DL, since it had been formally coded as

such; (ii) we executed queries over ontologies using SPARQL.

Our rationale for translating ALC/DL queries into SPARQL ones was to

provide users with the possibility of querying using SPARQL in the same way

they would do in DL. Thus, considering a subset of SPARQL syntax, we

defined some templates which may be used by users to write their SPARQL

queries, using the constructors we find in ALC/DL, namely, conjunction,

disjunction and negation.

Chapter 8 – Conclusions 140

8.2. Future Work

Every work has its limitations and deserves extensions and/or improvements. Therefore,

we present some verified limitations and/or issues which may be extended, pointing out

many possible directions for future research on semantic-based query reformulation.

They are briefly described as follows:

• Optimizing Query Reformulation

During experiments, we identified the possibility of conflicts arising from the

substitution of concepts by their semantically related ones. This happened due to

the fact that when we substitute concepts at query reformulation time, one

concept may be substituted by a set of other concepts by using different semantic

correspondences. If there was a negation, the negated concept might be replaced

by its disjoint (not negated) concepts. As a result, these produced sets of

replaced concepts might be in conflict or even redundant. We intend to deal with

these problems in future work using some optimization strategy, such as the one

provided (as a kind or query enrichment) in Section 5.2.

• Reasoning over Context

Currently, CODI stores contextual information provided by users’ preferences.

We will extend such usage by considering also the context of the environment

and of the semantic correspondences. We will develop rules to allow reasoning

over the context already instantiated and work with the ones acquired on the fly.

This reasoning might improve the query reformulation and routing process.

• Implementing Property Correspondences.

Currently, we have restricted the implementation of correspondences between

ontologies’ properties to equivalence, specialization and generalization. There is

still work to be done with respect to closeness, disjointness and aggregation. We

intend to provide a solution to this problem by using the domain and range of the

concepts to which the properties are linked.

• Extending the SemRef Approach to a Set of Diverse Peers.

This entails working with query routing policies. To this end, semantics should

also be used as a way to enhance the selection of relevant semantic neighbors

and their ranking. Query routing should also ensure preserving the query

semantics at the best possible level of approximation.

• Providing users with a more friendly query interface

The query module is intended to provide users with a high-level interface, in

such a way that both novel and experienced users can formulate their queries.

Chapter 8 – Conclusions 141

Thus, query formulation by using the concepts visually provided in the

ontology may be a partial solution to this problem. Other kinds of query

formulation interfaces will be explored.

• Performing Experiments with Real Users

As soon as the interface becomes more friendly and high-level, it will be

possible to perform experiments with real users. By accomplishing this task, we

can evaluate if the set of expanded answers really matches the users’

preferences.

8.3. Concluding Remarks

This work investigated the use of semantics in query reformulation processes in

dynamic distributed environments. The SemRef approach, with its formalized

definitions, implemented algorithms and performed experiments, was presented as a

solution to this key issue. We used semantics acquired from a set of extended semantic

correspondences and from the context of the user and of the query. We showed that by

using such semantics, the approach developed in this thesis is able to produce exact and

enriched reformulations and, consequently, a set of expanded answers to users. We

proved that the algorithm underlying our approach is sound and complete, and also

tested these properties in our conducted experiments.

RRRRRRRREEEEEEEEFFFFFFFFEEEEEEEERRRRRRRREEEEEEEENNNNNNNNCCCCCCCCEEEEEEEESSSSSSSS

Adjiman P., Goasdoué F., Rousset M.-C. (2007): SomeRDFS in the Semantic Web.

In Journal on Data Semantics, LNCS, 2007, vol. 8, p. 158-181.

Aleksovski Z., Klein M., Katen W., Harmelen F. (2006): Matching Unstructured

Vocabularies using a Background Ontology. In: S. Staab and V. Svatek, editors, Proc.

of EKAW, LNAI. Springer-Verlag, 2006.

Arenas, M., Kantere, V., Kementsietsidis, A., Kiringa, I., Miller, R. J., e Mylopoulos,

J. (2003): The Hyperion Project: From Data Integration to Data Coordination. ACM

SIGMOD Record 32, 3, 2003.

Baader F., Calvanese D., McGuinness D., Nardi D., and Patel-Schneider P. editors.

(2003): The Description Logic Handbook: Theory, Implementation and Applications.

Cambridge University Press, 2003.

Baader F., Horrocks I., and Sattler U. (2007): Description Logics. In Frank van

Harmelen, Vladimir Lifschitz, and Bruce Porter, editors, Handbook of Knowledge

Representation. Elsevier, 2007.

Baeza-Yates R., Ribeiro-Neto B. (1999): Modern Information Retrieval. ACM

Press/Addison-Wesley, 1999.

Bai J., Nie J.,Bouchard H. and Cao G. (2007): Using Query Contexts in Information

Retrieval. In Proceedings of the 30th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR'07), July 2007,

Amsterdam.

Basili V. (2007): The Role of Controlled Experiments in Software Engineering

Research. In Empirical Software Engineering Issues, LNCS 4336, V. Basili et al.,

(Eds.), Springer-Verlag, pp. 33-37, 2007.

Bazire, M., Brézillon P. (2005): Understanding Context Before Using It. 5th

International and disciplinary Conference, CONTEXT 2005, Paris, France, July 5-8,

2005.

Belian, R. B. (2008): A Context-based Name Resolution Approach for Semantic

Schema Integration, PhD thesis, Center for Informatics, UFPE, 2008.

Bellotti, V., Edwards, K. (2001): Intelligibility and Accountability: Human

Considerations in Context-Aware Systems. In: Human Computer Interaction, v. 16,

n. 2, 3 & 4, pp. 193-212.

Benerecetti M., Bouquet P., and Ghidini C. (2001): On the dimensions of context

dependence: partiality, approximation, and perspective. In Proc. 3rd International and

Interdisciplinary Conference on Modeling and Using Context (CONTEXT), volume

References 143

2116 of Lecture notes in computer science, pages 59–72, Dundee (UK), 2001.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001): The Semantic Web. Scientific

American 284(5), pag: 34-43.

Bilke A. (2007): Duplicate-based Schema Matching. PhD Thesis. Berlin University.

Bolchini C., Curino C., Orsi G., Quintarelli E., Rossato R., Schreiber F., and Tanca

L. (2008). And what can context do for data? Communications of the ACM.

Bolchini C., Curino C.A., Quintarelli E., Tanca L., Schreiber F. (2007):. A data-

oriented survey of context models. SIGMOD Record, 2007.

Borgida A. and Serafini L. (2003): Distributed description logics: Assimilating

information from peer sources. Journal of Data Semantics, 1:153–184. LNCS 2800,

Springer Verlag, 2003.

Borst W. (1997): Construction of Engineering Ontologies for Knowledge Sharing

and Reuse: Ph.D. Dissertation, University of Twente.

Brézillon P. (2003): Context Dynamic and Explanation in Contextual Graphs.

Proceedings of the 4th International and Interdisciplinary Conference, CONTEXT

2003, USA, pp: 94-106.

Cai, G., Wang, H., MacEachren, A. (2003): Communicating Vague Spatial Concepts

in Human-GIS Interactions: A Collaborative Dialogue Approach. In: Conference on

Spatial Information Theory, LNCS2825, pp. 304-319, Kartause Ittingen, Switzerland.

Calvanese D., Giacomo G., Lembo D., Lenzerini M. and Rosati R. (2004): What to

ask to a peer: Ontology-based query reformulation. In Proc. of the 9th Int. Conf. on

Principles of Knowledge Representation and Reasoning (KR 2004), 2004.

Cao Y. (2007): Processing SparQL Queries in an Object Oriented Mediator. Uppsala

Master's Theses in Computing Science, ISSN 1100-1836 (2007).

Chalmers M. (2004): A historical view of context. Computer Supported Cooperative

Work, 13(3):223–247, 2004.

Chamiel, G. and Pagnucco, M. (2008). Utilizing Ontological Structure for Reasoning

with Preferences. In Proc. Knowledge Representation Ontology Workshop (KROW

2008), Sydney, Australia. CRPIT, 90. Meyer, T. and Orgun, M. A., Eds. ACS. 1-9.

Chaudhuri S. and Dayal U. (1997): An overview of data warehousing and OLAP

technology. ACM SIGMOD Record, 26(1):65{74, 1997.

Dey A. (2001): Understanding and Using Context. Personal and Ubiquitous

Computing Journal, Volume 5, pp. 4-7, 2001.

Duschka O. M. and Genesereth M.R. (1997): Answering recursive queries using

views. In Proceedings of ACM Symposium on Principles of Database Systems, pages

109–116, 1997.

References 144

Egenhofer M. (1991): Reasoning about Binary Topological Relations. In Oliver

Günther, Hans-Jörg Schek (Eds.): Advances in Spatial Databases, Second

International Symposium, SSD'91, Zürich, Switzerland Proceedings. Lecture Notes

in Computer Science 525 Springer, ISBN 3-540-54414-3, 1991.

Eisenstein, J., Puerta A. (2000): Adaptation in Automated User-Interface Design. In

Proceedings of the International Conference on Intelligent User Interfaces, LA, USA,

2000.

Euzenat J. and Shvaiko P. (2007): Ontology matching. Springer, Heidelberg (DE),

2007.

Faye, D., Nachouki, G., and Valduriez, P. (2007): Semantic Query Routing in

SenPeer, a P2P Data Management System. In Proc. of the 18th Int. Conf. on

Database and Expert Systems Applications, Regensburg, Germany. pp. 365-374.

Fernández-López, M., Gómez-Pérez, A. (2002): The integration of OntoClean in

WebODE. In Proceedings of the EON2002 Workshop at 13th EKAW, Siguenza,

Spain.

Franklin M., Halevy A. and Maier D. (2005): From databases to dataspaces: a new

abstraction for information management. SIGMOD Record, 34(4):27–33, 2005.

Ghidini C., Serafini L. (2006): Reconciling Concepts and Relations in Heterogeneous

Ontologies. ESWC 2006: 50-64.

Giunchiglia F. and Zaihrayeu I. (2002): Making peer databases interact - a vision for

an architecture supporting data coordination. In Proceedings of the 6th International

Workshop on Cooperative Information Agents (CIA), pages 18–35, Madrid (ES),

2002.

Giunchiglia, F., Shvaiko, P., Yatskevich, M. (2004): S-match: an algorithm and an

implementation of semantic matching. In: European Semantic Web Symposium

(ESWC). pp. 61-75, 2004.

Glimm B. (2007): Querying Description Logic Knowledge Bases. PhD thesis, The

University of Manchester, 2007.

Goh, C. (1997): Representing and Reasoning about Semantic Conflicts in

Heterogeneous Information Systems. Ph.D. Thesis, MIT Sloan School of

Management (1997).

Grootjen F. A., van der Weide T. P. (2006): Conceptual query expansion, Data &

Knowledge Engineering, v.56 n.2, p.174-193, February 2006.

Gruber, T. R. (1993): Toward Principles for the Design of Ontologies Used for

Knowledge Sharing. Knowledge Systems Laboratory, Stanford University, 1993.

Guarino N., Welty C. (2002): Evaluating ontological decisions with ontoclean.

References 145

Communications of ACM, Volume 45, Number 2, pages 61.65, 2002.

Guarino N., Welty, C. (2004): An overview of OntoClean. In Handbook on

Ontologies in Information Systems (pp. 151- 172). Berlin: Springer.

Haase P., Wang Y. (2007): A decentralized infrastructure for query answering over

distributed ontologies. SAC 2007: 1351-1356.

Halevy A. (2001): Answering queries using views: A survey. VLDB Journal,

10(4):270{294, 2001.

Halevy A., and Pottinger R. (2001): MiniCon: A scalable algorithm for answering

queries using views, Very Large Data Bases Journal, Vol. 10, Num. 2-3, p. 182-198,

2001.

Halevy A., Ives Z., Suciu D., and Tatarinov I. (2005). Schema mediation for large-

scale semantic data sharing. VLDB J., 14(1):68--83, 2005.

Halevy A., Rajaraman A. and Ordille J. (2006): Data integration: the teenage years.

In. Proceedings of the 32nd international conference on Very large data bases -

Volume 32, Pages: 9 – 16, 2006.

Herschel, S. and Heese, R. (2005): Humboldt Discoverer: A Semantic P2P index for

PDMS. In Proc. of the International Workshop Data Integration and the Semantic

Web, Porto, Portugal (2005).

Homola M. (2007): Towards Distributed Ontologies with Description Logics.

Proceedings of the Knowledge Web PhD Symposium - KWEPSY 2007.

Horrocks I. (2005): Applications of description logics: State of the art and research

challenges. Proc. of the 13th Int. Conf. on Conceptual Structures (ICCS'05)

April 2005.

Horrocks I. and Tessaris S. (2000): A conjunctive query language for description

logic aboxes. In AAAI/IAAI, pages 399–404, 2000.

Ives Z., Khandelwal N., Kapur A., Cakir M. (2005): ORCHESTRA: Rapid,

Collaborative Sharing of Dynamic Data. Conference on Innovative Database systems

Research (CIDR), Asilomar, CA, 2005.

Kashyap, V. and Sheth, A. (1996): Semantic and schematic similarities between

database objects: a context-based approach. The VLDB Journal, v. 5. Springer-

Verlag, pp. 276-304, 1996.

Kostadinov D. (2007): Data Personalization: an approach for profile management and

query reformulation. PHD Thesis. Universite de Versailles Saint-Quentin-en-

Yvelines, 2007.

Koutrika G., Ioannidis Y. (2005): Personalized Queries under a Generalized

Preference Model. In Proc. of 21st Intl. Conf. On Data Engineering (ICDE), 841-852,

References 146

5-8 April 2005, Tokyo, Japan.

Kramer, R., Modsching, M., Schulze, J., Hagen, K. (2005): Context-Aware

Adaptation in a Mobile Tour Guide. In: Proc. of the 5th International and

Interdisciplinary Conference, CONTEXT 2005, LNCS3554, Paris, France.

Lenzerine M., Milano D., Poggi A. (2009): Ontology Representation & Reasoning.

Technical Report, available at

http://www.dsi.uniroma1.it/~estrinfo/1%20Ontology%20representation.pdf

Lenzerini M. (2002): Data integration: a theoretical perspective. In Proceedings of

ACM Symposium on Principles of Database Systems, pages 233–246, New York,

NY, USA, 2002. ACM Press.

Levy A. (1999): Combining Artificial Intelligence and Databases for Data

Integration. Artificial Intelligence Today, 1999, pp. 249-268.

Litwin W., Mark L., and Nick Roussopoulos N. (1990): Interoperability of multiple

autonomous databases. ACM Computing Surveys, 22(3):267{293, September 1990.

Lóscio, B. (2003): Managing the Evolution of XML-based Mediation Queries”. PHD

Thesis, Federal University of Pernambuco, Brazil.

Lv Q., Cao P., Cohen E., Li K., and Shenker S. (2002): Search and Replication in

Unstructured Peer-to-Peer Networks. In Proc. of the 16th ACM International

Conference on Supercomputing (ICS’02), New York, USA, 2002.

Madhavan J. and Halevy A. (2003): Composing mappings among data sources. In

Proceedings of the International Conference on Very Large Databases (VLDB),

pages 572{583, 2003.

Mandreoli F., Martoglia R., Penzoy W., and Sassatelli S. (2006): Semantic Query

Routing Experiences in a PDMS. Proceedings of the 3rd Italian Semantic Web

Workshop. SWAP (Semantic Web Applications and Perspectives), Pisa, Italy, 18-20

December, 2006.

Manning C. D., Raghavan P. and Schütze H. (2008): Introduction to Information

Retrieval, Cambridge University Press. 2008.

McBrien P.J. and Poulovassilis A. (2006): P2P query reformulation over Both-as-

View data transformation rules. In Proceedings of DBISP2P 2006.

Mills J., Goossenaerts J.B.M. (2005): Using contexts in managing product

knowledge. In: E. Arai, J. Goossenaerts, F. Kimura, K. Shirase (eds) Knowledge and

Skill Chains in Engineering and Manufacturing: Information Infrastructure in the Era

of Global Communications, Springer, pp. 57-65, 2005.

Montanelli S., Castano S. (2008): Semantically routing queries in peer-based

systems: the H-Link approach. Knowledge Eng. Review 23(1): 51-72 (2008).

References 147

Naumann F. (2001): From databases to information systems - information quality

makes the difference. In Proceedings of the 6th International Conference on

Information Quality (IQ), pages 244–260, Cambridge (MA US), 2001.

Necib B. (2007): Ontology-based semantic query processing in database systems.

Berlin, Humboldt Universität, PhD. Thesis, 2007.

Necib C. B. and Freytag J. (2004) “Using Ontologies for Database Query

Reformulation”. Proceedings of the 18th Conference on Advances in Databases and

Information Systems (ADBIS'04), Budapest, Hungary, 2004.

Necib C. B. and Freytag J. (2005) “Query Processing Using Ontologies”.

Proceedings of the 17th Conference on Advanced Information Systems Engineering

(CAISE'05), Porto, Portugal, 2005.

Neves, T. (2008): Desenvolvimento do Módulo de Reformulação de Consultas no

Sistema SPEED. Federal University of Pernambuco (UFPE/CIn). Undergraduate

Conclusion Monograph. Recife, PE, Brazil.

Ng W. S., Ooi B., Tan K., and Zhou A. (2003) “PeerDB: a P2P-based System for

Distributed Data Sharing”. (2003) In Proc. of 19th International Conference on Data

Eng. (ICDE).

Noy N. and McGuinness D. (2001): Ontology Development 101: A Guide to

Creating Your First Ontology. Stanford Knowledge Systems Laboratory, Technical

Report KSL-01-05 and Stanford Medical Informatics, Technical Report SMI-2001-

0880, March 2001.

Pereira T. (2008): Mapeamento Semântico de Ontologias no SPEED. Federal

University of Pernambuco (UFPE/CIn). Undergraduate Conclusion Monograph.

Recife, PE, Brazil.

Perez, J., Arenas, M., Gutierrez, C. (2006): Semantics and Complexity of SPARQL.

In: 4th International SemanticWeb Conference (ISWC), Athens, GA, USA.

November 2006.

Pires C. E. (2007): Um Sistema P2P de Gerenciamento de Dados com Conectividade

Baseada em Semântica. Federal University of Pernambuco (UFPE/CIn). Thesis

Proposal and Qualification Exam. Recife, PE, Brazil.

Pires C. E. S., Souza D., Lóscio, B. F., and Salgado A. C. (2008): An Ontology-based

Approach for Data Management in a P2P System. SPEED Project Technical Report,

No. 2. Center for Informatics, Federal University of Pernambuco, 2008.

Pires C.E.S. (2009): Ontology-Based Clustering in a Peer Data Management System.

PhD thesis, Center for Informatics, UFPE, 2009 (Work in progress).

Power, R. (2003): Topic Maps for Context Management. In International Symposium

on Information and Communication Technologies (ISICT 2003), pp. 199-204 (2003).

References 148

Quilitz B. and Leser U. (2008): Querying Distributed RDF Data Sources with

SPARQL. In Procceedings of the European Semantic Web Conference (ESWC2008).

Springer Verlag, 2008.

Ram, S. and Park, J. (2004): Semantic Conflict Resolution Ontology (SCROL): An

ontology for detecting and resolving Data- and Schema-Level Semantic Conflicts.

Knowledge and Data Engineering, IEEE Transactions on (2004).

Reynaud C., Safar B. (2007): Exploiting WordNet as Background Knowledge. In:

International ISWC'07 Ontology Matching (OM-07) Workshop, Busan, Corea, 2007.

Sabou M., D’Aquin M., Motta E. (2006): Using the Semantic Web as Background

Knowledge for Ontology Mapping, In: ISWC’06 Ontology Matching WS, 2006.

Salles M. A. V., Dittrich J.-P., Karakashian S. K., Girard O. R., and Blunschi L.:

iTrails: Pay-as-you-go information integration in dataspaces. In Proc. Of VLDB,

2007.

Schilit, B., Adams, N., Want, R. (1994): Context-Aware Computing Applications. In:

Proc. Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA.

Scriver A. (2006): Semantic Distance in WordNet: A Simplified and Improved

Measure of Semantic Relatedness. Master Dissertation. University of Waterloo,

Canada, 2006.

Serafini L., Zanobini S., Sceffer S., Bouquet P. (2006): Matching Hierarchical

Classifications with Attributes. In: ESWC’06. pp. 4-18, 2006.

Sheth A. P., Larson J. A. (1990): Federated database systems for managing

distributed, heterogeneous, and autonomous databases. ACM Computing Surveys,

22(3):183{236, September 1990.

Souza D. (2007): Reformulação de Consulta Baseada em Semântica para PDMS.

Federal University of Pernambuco (UFPE/CIn). Thesis Proposal and Qualification

Exam. Recife, PE, Brazil.

Souza D., Arruda T., Salgado A. C., Tedesco P. and Kedad, Z. (2009): Using

Semantics to Enhance Query Reformulation in Dynamic Environments. To appear in

the Proocedings of the 13
th

 East European Conference on Advances in Databases and

Information Systems – ADBIS 2009. September, 7-10, 2009.

Souza, D., Belian R., Salgado A. C., Tedesco P. (2008). Towards a Context Ontology

to Enhance Data Integration Processes. In Proceedings of the 4th Workshop on

Ontologies-based Techniques for DataBases in Information Systems and Knowledge

Systems (ODBIS). VLDB '08, August 24-30, 2008, Auckland, New Zealand.

Souza, D., Salgado, A. C., Tedesco, P. (2006): Towards a Context Ontology for

Geospatial Data Integration. In: Second International Workshop on Semantic-based

Geographical Information Systems (SeBGIS'06), Montpellier, France, 2006.

References 149

Souza, D., Salgado A. C. (2007): Semantic-Based Query Reformulation for PDMS.

In Proceedings of the VI Workshop of Thesis and Dissertations on Databases. 22nd

Brazilian Symposium on Databases, João Pessoa, PB, Brazil, 2007.

Stefanidis K., Pitoura E., Vassiliadis P. (2005): On Supporting Context-Aware

Preferences in Relational Database Systems. In Proc. of the first International

Workshop on Managing Context Information in Mobile and Pervasive Environments

(MCMP’2005), in conjunction with MDM 2005, Cyprus (2005).

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. (2001):

Chord: a Scalable Peer-to-Peer Lookup Service for Internet Applications”. ACM

SIGCOMM’01, San Diego, USA. pp. 149-160, 2001.

Strang, T., Linnhoff-Popien, C. (2004): A Context Modeling Survey. In: Workshop

on Advanced Context Modeling, Reasoning and Management, In: 6th International

Conference on Ubiquitous Computing, Nottingham/England, 2004.

Stuckenschmidt H., Giunchiglia F., and van Harmelen F. (2005): Query processing in

ontology-based peer-to-peer systems. In V. Tamma, S. Craneeld, T. Finin, and S.

Willmott, editors, Ontologies for Agents: Theory and Experiences. Birkhuser. (2005).

Stuckenschmidt, H. (2002): Ontology-Based Information Sharing in Weakly-

Structured Environments. PhD thesis, Faculty of Sciences, Vrije Universiteit

Amsterdam, 2002.

Studer R., Benjamins V., Fensel D. (1998): Knowledge Engineering: Principles and

Methods. IEEE Transactions on Data and Knowledge Engineering 25(1-2):161–197.

Styltsvig H. (2006): Ontology-based Information Retrieval. PhD Thesis. Roskilde

University,May, 2006.

Sung, L. G. A., Ahmed, N., Blanco, R., Li, H, Soliman, M. A., and Hadaller, D.

(2005): A Survey of Data Management in Peer-to-Peer Systems. School of Computer

Science, University of Waterloo, 2005.

Tatarinov, I., Halevy, A. (2004): Efficient query reformulation in peer-data

management systems. In Proceedings of the ACM International Conference on

Management of Data (SIGMOD), pages 539{550, 2004.

Tonin I., Bittencourt G. (2000): Forma normal disjuntiva em lógica de primeira

ordem. Anais do I Congresso de Lógica Aplicada à Tecnologia (LAPTEC'2000),

Faculdade SENAC de Ciências Exatas e Tecnologia (ISBN 85-85795-29-8), pp. 417-

429, São Paulo, SP, 11 a 15 de setembro de 2000.

Travassos G., Gurov D., Amaral E. (2002): Introdução à Engenharia de Software

Experimental. 2002. Technical Report ES590/02-April. COPPE/UFRJ.

Ullman J. (1997): Information integration using logical views. In Proceedings of the

International Conference on Database Theory (ICDT), pages 19{40, 1997.

References 150

Vieira V. (2008): CEManTIKA: A Domain-Independent Framework for Designing

Context-Sensitive Systems. PhD. Thesis, Centro de Informática - UFPE, Brasil, 2008.

Vieira V., Souza D., Salgado, A. C., Tedesco, P. (2006): Uso e Representação de

Contexto em Sistemas Computacionais. In: Cesar A. C. Teixeira; Clever Ricardo G.

de Farias; Jair C. Leite; Raquel O. Prates. (Org.). Tópicos em Sistemas Interativos e

Colaborativos. São Carlos: UFSCAR, 2006, v. , p. 127-166.

Völker J., Vrandecic D., Sure Y., Hotho A. (2007): Learning Disjointness. In Enrico

Franconi, Michael Kifer, Wolfgang May, Proceedings of the 4th European Semantic

Web Conference (ESWC'07), volume 4519 of Lecture Notes in Computer Science,

pp. 175-189. Springer, June 2007.

Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H.,

and Hübner, S. (2001): Ontology-based Integration of Information: a Survey of

Existing Approaches. In Stuckenschmidt, H., ed., IJCAI-01 Workshop: Ontologies

and Information Sharing. pp. 108-117.

Wang X., Zhang D., Gu T., Pung H. (2004): Ontology Based Context Modeling and

Reasoning using OWL. Second IEEE Annual Conference on Pervasive Computing

and Communications Workshops, 2004, p.18.

Wiederhold Gio (1992): Mediators in the architecture of future information systems.

IEEE Computer, 25(3):38{49, 1992.

Xiao H. (2006): Query processing for heterogeneous data integration using

ontologies. PhD Thesis in Computer Science. University of Illinois at Chicago, 2006.

Xiao H., Cruz I. (2006). “Ontology-based Query Rewriting in Peer-to-Peer

Networks”. In Proc. of the 2nd International Conference on Knowledge Engineering

and Decision Support, 2006.

Yang, B. and Garcia-Molina, H. (2003): Designing a Super-Peer Network. In Proc. of

International Conference on Data Engineering (ICDE'03), Bangalore, India (2003).

Yatskevich M., Giunchiglia F., McNeill F., and Shvaiko P. (2006): OpenKnowledge

Deliverable 3.3: A methodology for ontology matching quality evaluation.

http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D3.3.pdf, 2006.

Yu S., Al-Jadir L., Spaccapietra S. (2005): Matching User's Semantics with Data

Semantics in Location-Based Services. Proc. 1st Workshop on Semantics in Mobile

Environments (SME'05), Ayia Napa (Cyprus), 2005.

Zaihrayeu I. (2006): Towards Peer-to-Peer Information Management Systems. PhD

thesis, University of Trento, March 2006

Zhao J. (2006): Schema Mediation and Query Processing in Peer Data Management

Systems. Master Thesis, The University Of British Columbia, October (2006).

AAAAAAAAPPPPPPPPPPPPPPPPEEEEEEEENNNNNNNNDDDDDDDDIIIIIIIIXXXXXXXX AAAAAAAA

SemRef Complementary

Functions

In this appendix, we present the complementary pseudo-codes of the algorithms

underlying the SemRef approach.

Figure A.1 Build_Enriched Reformulation Function

Figure A.2 Build_Enriched Reformulation Function

Build_Enriched_Reformulation (QBuild_Enriched_Reformulation (QBuild_Enriched_Reformulation (QBuild_Enriched_Reformulation (Qkkkk, S, S, S, S2222CCCC1111, …, S, …, S, …, S, …, S2222CCCCpppp, Neg_S, Neg_S, Neg_S, Neg_S2222CCCC1111, …, Neg_S, …, Neg_S, …, Neg_S, …, Neg_S2222CCCCpppp))))

Q’k ← ∅
For each i
 ei ← ∅

For each C in S2Ci
If Ci is negated in Qk

 Then ei ← ei + ¬C
 Else ei ← ei + C
 End If;

End For;
For each C in Neg_S2Ci

 ei ← ei + C
End For;

Q’k ← Q’k * ei

End For:
returns (Q’k)
End_Build_Enriched_ReformulationEnd_Build_Enriched_ReformulationEnd_Build_Enriched_ReformulationEnd_Build_Enriched_Reformulation

Build_Exact_Reformulation (QBuild_Exact_Reformulation (QBuild_Exact_Reformulation (QBuild_Exact_Reformulation (Qkkkk, S, S, S, S1111CCCC1111, ..., S, ..., S, ..., S, ..., S1111CCCCpppp))))

Q’k ← ∅
For each S1Ci

ei ← ∅
For each C in S1Ci

If Ci is negated in Qk

 Then ei ← ei + ¬C
 Else ei ← ei + C
 End If;

End For;
Q’k ← Q’k * ei

End For;
return (Q’k)
EEEEnd_Build_Exact_Reformulationnd_Build_Exact_Reformulationnd_Build_Exact_Reformulationnd_Build_Exact_Reformulation

Appendix A 152

Figure A.3 The Build_Final_Exact_Reformulation Function

Figure A.4 The Build_Final_Enriched_Reformulation Function

Build_Final_Exact_Reformulation (Q, QBuild_Final_Exact_Reformulation (Q, QBuild_Final_Exact_Reformulation (Q, QBuild_Final_Exact_Reformulation (Q, Q1111_exact, …, Q_exact, …, Q_exact, …, Q_exact, …, Qmmmm_exact)_exact)_exact)_exact)

Q’_exact ← ∅

For each Qi_exact

Q’_exact ← Q’_exact + Qi_exact
End For

Return(Q’_exact)

End End End End Build_Final_Exact_Reformulation;Build_Final_Exact_Reformulation;Build_Final_Exact_Reformulation;Build_Final_Exact_Reformulation;

Build_Final_EBuild_Final_EBuild_Final_EBuild_Final_Enrichednrichednrichednriched_Reformulation (Q, Q_Reformulation (Q, Q_Reformulation (Q, Q_Reformulation (Q, Q1111_e_e_e_enrichednrichednrichednriched, …, Q, …, Q, …, Q, …, Qmmmm____enrichedenrichedenrichedenriched))))

Q’_enriched ← ∅

For each Qi_enriched

Q’_enriched ← Q’_enriched + Qi_enriched
End For

Return(Q’_enriched)

End Build_Final_EEnd Build_Final_EEnd Build_Final_EEnd Build_Final_Enrichednrichednrichednriched_Reformulation;_Reformulation;_Reformulation;_Reformulation;

AAAAAAAAPPPPPPPPPPPPPPPPEEEEEEEENNNNNNNNDDDDDDDDIIIIIIIIXXXXXXXX BBBBBBBB

Education Ontologies

In this appendix, we present the complete ontologies of Semiport.owl, UnivBench.owl

and the domain ontology UnivCSCMO.owl.

Figure B.1 SemiPort.OWL Ontology

Appendix B – Education Ontologies 154

Figure B.2 UnivBench.OWL Ontology

Appendix B – Education Ontologies 155

Figure B.3 UnivCsCMO.OWL Ontology

AAAAAAAAPPPPPPPPPPPPPPPPEEEEEEEENNNNNNNNDDDDDDDDIIIIIIIIXXXXXXXX CCCCCCCC

The SemRef Query Module

In this appendix, we present additional screenshots of the query module interface.

Figure C.1 Reformulation Log for an ALCALCALCALC/DL Query

Appendix C – The SemRef Query Module 157

Figure C.2 Reformulation Log for a SPARQL Query

Figure C.3 Answers’ Log for an ALCALCALCALC/ DL Query

Appendix C – The SemRef Query Module 158

Figure C.4 Answers’ Log for a SPARQL Query

AAAAAAAAPPPPPPPPPPPPPPPPEEEEEEEENNNNNNNNDDDDDDDDIIIIIIIIXXXXXXXX DDDDDDDD

Travel Ontologies

In this appendix, we present the complete taxonomies concerning the knowledge

domain of Tourism.

Figure D.1 TravelCLO1.OWL Ontology

Appendix D – Travel Ontologies 160

Figure D.2 TravelCLO2.OWL Ontology

Appendix D – Travel Ontologies 161

Figure D.3 TravelCMO.OWL Ontology

AAAAAAAAPPPPPPPPPPPPPPPPEEEEEEEENNNNNNNNDDDDDDDDIIIIIIIIXXXXXXXX EEEEEEEE

SemRef Experimentation

In this appendix, we present additional details regarding queries and conducted

experiments of the SemRef experimentation.

E.1 Complete Set of Submitted Queries

a. Education

The set of queries are divided into two groups:

• Queries From P1 to P2:

Q1: Student

Q2: Student * UndergraduateStudent

Q3: Worker

Q4: AssistantProfessor

Q5: FullProfessor + Lecturer

Q6: Proceedings ⊔ Thesis ⊔ ¬TechnicalReport

Q7: Lecture ⊔ Meeting ⊔ Conference

Q8: ¬Manual

Q9: ¬PhDStudent

Q10: UndergraduateStudent + PhDStudent

Q11: [AdministrativeStaff ⊓ ClericalStaff] ⊔ [Faculty ⊓ Lecturer]

Q12: [SystemsStaff ⊓ Worker] ⊔ [Student ⊓ ¬PhDStudent]

Q13: [AssistantProfessor ⊓ Faculty] ⊔ ¬Lecturer

Q14: ¬SoftwareComponent

Q15: Project ⊔ Publication

Q16: Faculty ⊔ ¬AssistantProfessor

Appendix E – SemRef Experimentation 163

Q17: [Student ⊓ PhDStudent] ⊔ [Worker ⊓ SystemsStaff] ⊔ [Lecturer ⊓

Faculty]

Q18: Project ⊔ ¬SofwareProject ⊔ Thesis

Q19: ¬Book ⊔ ¬Article

Q20: [Event ⊓ Meeting] ⊔ ¬Lecture

• Queries from P2 to P1

Q21: Professor

Q22: Professor * PostDoc

Q23: Department

Q24: Article + Book

Q25: ¬MasterStudent

Q26: ResearchProject + Course

Q27: Worker * Dean

Q28: College ⊔ Institute ⊔ ¬Program

Q29: ¬Monitor

Q30: [Student ⊓ Monitor] ⊔ [GraduateStudent ⊓ MasterStudent]

Q31: Dean + Director

Q32: UndergraduateStudent ⊔ ¬MasterStudent

Q33: [Student ⊓ Monitor] ⊔ [Worker ⊓ Chair] ⊔ [Assistant ⊓

¬TeachingAssistant] ⊔ [Faculty ⊓ AssociateProfessor]

Q34: ¬FullProfessor ⊔ ¬VisitingProfessor

Q35: Director ⊔ Chair ⊔ PostDoc

b. Travel

Similarly, the set of queries are divided into two groups:

• Queries From P1 to P2:

Q36: Contact

Q37: Sports ⊔ Sightseeing

Q38: ¬RetireeDestination

Q39: BedAndBreakfast

Q40: Activity ⊓ Sightseeing

Q41: [Destination ⊓ Beach] ⊔ ¬RuralArea

Appendix E – SemRef Experimentation 164

Q42: Hotel ⊔ BudgetAccomodation

Q43: [Destination ⊓ Capital] ⊔ [Destination ⊓ BudgetHotelDestination]

Q44: [Destination ⊓ Capital] ⊔ [Destination ⊓ ¬Farmland] ⊔ ¬NationalPark

Q45: ¬BudgetHotelDestination ⊔ ¬Farmland ⊔ ¬NationalPark

• Queries from P2 to P1

Q46: AccomodationRating

Q47: Safari

Q48: BunjeeJumping ⊔ Sightseeing

Q49: Campgroung ⊔ ¬Hotel

Q50: [Hotel ⊓ LuxuryHotel] ⊔ ¬BedAndBreakfast

Q51: UrbanArea ⊓ Town

Q52: ¬FamilyDestination

Q53: [Destination ⊓ RetireeDestination] ⊔ [UrbanArea ⊓ City]

Q54: Town ⊔ City ⊔ ¬Beach

Q55: [City ⊓ Capital] ⊔ [Destination ⊓ Town] ⊔ ¬QuietDestination

Appendix E – SemRef Experimentation 165

E.2 Complete Set of Experiments

a. Queries without semantics – Mode: Restricted

Query Qexact

Q1 [[Student]]

Q2 [Student ⊓

UndergraduateStudent]

Q3 [[Worker]]

Q4 ¯

Q5 FullProfessor

Q6 ¬TechnicalReport

Q7 ¯

Q8 ¬Manual

Q9 ¯

Q10 UndergraduateStudent

Q11 ¯

Q12 ¯

Q13 ¯

Q14 ¯

Q15 Publication

Q16 Faculty

Q17 ¯

Q18 ¯

Q19 [[¬Book]] ⊔ [[¬Article]]

Q20 ¯

Q21 ¯

Q22 ¯

Q23 [[Department]]

Q24 [[Article]] ⊔ [[Book]]

Q25 ¯

Q26 [[ResearchProject]]

Q27 ¯

Q28 ¯

Q29 ¯

Q30 ¯

Q31 ¯

Q32 [[UndergraduateStudent]]

Q33 ¯

Q34 [[¬FullProfessor]]

Q35 ¯

Q36 ¯

Q37 [[Sightseeing]]

Q38 [[¬RetireeDestination]]

Q39 [[BedAndBreakfast]]

Q40 [[Activity] ⊓ [Sightseeing]]

Q41 [[Destination] ⊓ [Beach]]

Q42 [[Hotel]]

Q43 [[Destination] ⊓ [Capital]]

Q44 [[Destination] ⊓ [Capital]]

Q45 ¯

Q46 ¯

Q47 ¯

Q48 [[Sightseeing]]

Q49 [[¬Hotel]]

Q50 [[¬BedAndBreakfast]]

Q51 ¯

Q52 ¯

Q53 [[Destination] ⊓

[RetireeDestination]] ⊔

[[UrbanArea] ⊓ [City]]

Q54 [[City]] ⊔ [[¬Beach]]

Q55 [[City] ⊓ [Capital]]

Appendix E – SemRef Experimentation 166

b. Queries with semantics – Mode: Restricted with Enriching Variables

Query Spec Gen Approx Comp Qexact Qenriched

Q1 X X [[Student]] ¯

Q2 X X [Student ⊓ UndergraduateStudent] ¯

Q3 X X [[Worker]] ¯

Q4 X X ¯ [[VisitingProfessor]]

Q5 X X FullProfessor ¯

Q6 X X ¬TechnicalReport ¯

Q7 X X ¯ ¯

Q8 X X ¬Manual ¯

Q9 X X ¯ ¬GraduateStudent

Q10 X X UndergraduateStudent

Q11 X X ¯ [[Worker] ⊓ [AdministrativeStaff]] ⊔ [[Worker] ⊓ [Faculty]]

Q12 X X X ¯ [[Dean ⊔ Director ⊔ Chair] ⊓ [Assistant ⊔ Faculty ⊔ AdministrativeStaff]]

⊔ [[UndergraduateStudent ⊔ GraduateStudent] ⊓ [¬MasterStudent]]

Q13 X X ¯ [[Course ⊔ ResearchProject] ⊓ [PostDoc ⊔ Professor]]

Q14 X X X X ¯ ¬Software

Q15 X X X X Publication ¯

Q16 X X X X Faculty ¯

Q17 X X X ¯ [[Person ⊔ UndergraduateStudent ⊔ GraduateStudent] ⊓

[MasterStudent ⊔ GraduateStudent]] ⊔ [[Person ⊔ Assistant ⊔ Faculty ⊔

AdministrativeStaff] ⊓ [Dean ⊔ Director ⊔ Chair ⊔ AdministrativeStaff]]

⊔ [[PostDoc ⊔ Professor ⊔ Faculty] ⊓ [AdministrativeStaff ⊔ Assistant ⊔

Appendix E – SemRef Experimentation 167

Worker ⊔ PostDoc ⊔ Professor]]

Q18 X X X ¯ [[Work ⊔ ResearchProject]] ⊔ [[Publication]]

Q19 X X X [[¬Book]] ⊔ [[¬Article]] ¯

Q20 X X X ¯ ¯

Q21 X X ¯ [[Lecturer ⊔ FullProfessor ⊔ AssistantProfessor]]

Q22 X X ¯ [[Lecturer ⊔ FullProfessor ⊔ AssistantProfessor] ⊓ [Lecturer]]

Q23 X X [[Department]] ¯

Q24 X X [[Article]] ⊔ [[Book]] ¯

Q25 X X ¯ [[¬PhDStudent ⊔ ¬GraduateStudent]]

Q26 X X [[ResearchProject]] ¯

Q27 X X X ¯ [[TechnicalStaff ⊔ Faculty ⊔ AdministrativeStaff] ⊓ [ClericalStaff ⊔

SystemsStaff]]

Q28 X X X ¯ ¯

Q29 X X X ¯ [[¬UndergraduateStudent]]

Q30 X X X X ¯ [[Person ⊔ GraduateStudent ⊔ UndergraduateStudent] ⊓

[UndergraduateStudent]] ⊔ [[Student ⊔ PhDStudent ⊔ ResearchProject]

⊓ [PhDStudent ⊔ GraduateStudent]]

Q31 X X X X ¯ [[ClericalStaff ⊔ SystemsStaff ⊔ AdministrativeStaff]] ⊔ [[ClericalStaff ⊔

SystemsStaff ⊔ AdministrativeStaff]]

Q32 X X X X [[UndergraduateStudent]] ¯

Q33 X X X ¯ [[Person] ⊓ [UndergraduateStudent]] ⊔ [[Person] ⊓ [ClericalStaff ⊔

SystemsStaff ⊔ AdministrativeStaff]] ⊔ [[TechnicalStaff ⊔

AdministrativeStaff ⊔ Worker] ⊓ [ResearchProject]]

Q34 X X X [[¬FullProfessor]] ¯

Q35 X X X ¯ [[ClericalStaff ⊔ SystemsStaff ⊔ AdministrativeStaff]] ⊔ [[ClericalStaff ⊔

SystemsStaff ⊔ AdministrativeStaff]] ⊔ [[Lecturer ⊔ Faculty]]

Q36 X X ¯ ¯

Appendix E – SemRef Experimentation 168

Q37 X X [[Sightseeing]] ¯

Q38 X X [[¬RetireeDestination]] ¯

Q39 X X [[BedAndBreakfast]] ¯

Q40 X X [[Activity] ⊓ [Sightseeing]] ¯

Q41 X X [[Destination] ⊓ [Beach]] ¯

Q42 X X X [[Hotel]] ¯

Q43 X X X [[Destination] ⊓ [Capital]] ¯

Q44 X X X X [[Destination] ⊓ [Capital]] ¯

Q45 X X X X ¯ [[¬UrbanArea ⊔ ¬Beach ⊔ ¬RetireeDestination ⊔ ¬FamilyDestination ⊔

¬QuietDestination ⊔ ¬Destination]]

Q46 X X ¯ ¯

Q47 X X ¯ [[Museums ⊔ Sightseeing]]

Q48 X X [[Sightseeing]] ¯

Q49 X X [[¬Hotel]] ¯

Q50 X X [[¬BedAndBreakfast]] ¯

Q51 X X ¯ [[Destination] ⊓ [UrbanArea]]

Q52 X X ¯ [[¬BudgetHotelDestination ⊔ ¬RuralArea ⊔ ¬UrbanArea ⊔ ¬Beach ⊔

¬RetireeDestination]]

Q53 X X [[Destination] ⊓ [RetireeDestination]] ⊔

[[UrbanArea] ⊓ [City]]

¯

Q54 X X X X [[City]] ⊔ [[¬Beach]] ¯

Q55 X X X X [[City] ⊓ [Capital]] ¯

Appendix E – SemRef Experimentation 169

c. Queries with semantics – Mode: Expanded and Enriching Variables

Query Spec Gen Approx Comp Qexact Qenriched

Q1 X X [[Student]] [[UndergraduateStudent ⊔ GraduateStudent]]

Q2 X X [Student ⊓

UndergraduateStudent]

[[UndergraduateStudent ⊔ GraduateStudent] ⊓ [Monitor]]

Q3 X X [[Worker]] [[Assistant ⊔ Faculty ⊔ AdministrativeStaff]]

Q4 X X ¯ [[VisitingProfessor]]

Q5 X X FullProfessor [[VisitingProfessor]] ⊔ [[PostDoc ⊔ Professor]]

Q6 X X ¬TechnicalReport [[¬ConferencePaper ⊔ ¬JournalArticle]]

Q7 X X ¯ ¯

Q8 X X ¬Manual ¯

Q9 X X ¯ ¬GraduateStudent

Q10 X X UndergraduateStudent [[Student ⊔ Course ⊔ ResearchProject]] ⊔ [[GraduateStudent]]

Q11 X X ¯ [[Worker] ⊓ [AdministrativeStaff]] ⊔ [[Worker] ⊓ [Faculty]]

Q12 X X ¯ [[Dean ⊔ Director ⊔ Chair] ⊓ [Assistant ⊔ Faculty ⊔ AdministrativeStaff]] ⊔

[[UndergraduateStudent ⊔ GraduateStudent] ⊓ [¬MasterStudent]]

Q13 X X ¯ [[Course ⊔ ResearchProject] ⊓ [PostDoc ⊔ Professor]]

Q14 X X X X ¯ ¬Software

Q15 X X X X Publication [[Work ⊔ ResearchProject]] ⊔ [[Specification ⊔ Software ⊔ Article ⊔ Manual ⊔ Book ⊔

UnofficialPublication]]

Q16 X X X X Faculty [[AdministrativeStaff ⊔ Assistant ⊔ Worker ⊔ PostDoc ⊔ Professor]] ⊔ [[¬VisitingProfessor ⊔

¬Professor ⊔ ¬Course ⊔ ¬ResearchProject ⊔ AssociateProfessor ⊔ FullProfessor]]

Q17 X X X ¯ [[Person ⊔ UndergraduateStudent ⊔ GraduateStudent] ⊓ [MasterStudent ⊔

GraduateStudent]] ⊔ [[Person ⊔ Assistant ⊔ Faculty ⊔ AdministrativeStaff] ⊓ [Dean ⊔

Appendix E – SemRef Experimentation 170

Director ⊔ Chair ⊔ AdministrativeStaff]] ⊔ [[PostDoc ⊔ Professor ⊔ Faculty] ⊓

[AdministrativeStaff ⊔ Assistant ⊔ Worker ⊔ PostDoc ⊔ Professor]]

Q18 X X X ¯ [[Work ⊔ ResearchProject]] ⊔ [[Publication]]

Q19 X X X [[¬Book]] ⊔ [[¬Article]] [[¬Publication]] ⊔ [[¬Publication ⊔ ¬ConferencePaper ⊔ ¬TechnicalReport ⊔ ¬JournalArticle]]

Q20 X X X ¯ ¯

Q21 X X ¯ [[Lecturer ⊔ FullProfessor ⊔ AssistantProfessor]]

Q22 X X ¯ [[Lecturer ⊔ FullProfessor ⊔ AssistantProfessor] ⊓ [Lecturer]]

Q23 X X [[Department]] [Organization]]

Q24 X X [[Article]] ⊔ [[Book]] [[Publication]] ⊔ [[Publication]]

Q25 X X ¯ [[¬PhDStudent ⊔ ¬GraduateStudent]]

Q26 X X [[ResearchProject]] [UndergraduateStudent ⊔ FullProfessor ⊔ AssistantProfessor ⊔ GraduateStudent]] ⊔

[[UndergraduateStudent ⊔ GraduateStudent ⊔ AssistantProfessor ⊔ FullProfessor]]

Q27 X X X ¯ [[TechnicalStaff ⊔ Faculty ⊔ AdministrativeStaff] ⊓ [ClericalStaff ⊔ SystemsStaff]

Q28 X X X ¯ ¯

Q29 X X X ¯ [[¬UndergraduateStudent]]

Q30 X X X X ¯ [[Person ⊔ GraduateStudent ⊔ UndergraduateStudent] ⊓ [UndergraduateStudent]] ⊔

[[Student ⊔ PhDStudent ⊔ ResearchProject] ⊓ [PhDStudent ⊔ GraduateStudent]]

Q31 X X X X ¯ [[ClericalStaff ⊔ SystemsStaff ⊔ AdministrativeStaff]] ⊔ [[ClericalStaff ⊔ SystemsStaff ⊔

AdministrativeStaff]]

Q32 X X X X [[UndergraduateStudent]] [[Student ⊔ ResearchProject]] ⊔ [[¬PhDStudent ⊔ ¬GraduateStudent]]

Q33 X X X ¯ [[Person] ⊓ [UndergraduateStudent]] ⊔ [[Person] ⊓ [ClericalStaff ⊔ SystemsStaff ⊔

AdministrativeStaff]] ⊔ [[TechnicalStaff ⊔ AdministrativeStaff ⊔ Worker] ⊓ [ResearchProject]]

Q34 X X X [[¬FullProfessor]] [[¬ResearchProject ⊔ AssistantProfessor]] ⊔ [[¬FullProfessor ⊔ ¬AssistantProfessor]]

Q35 X X X ¯ [[ClericalStaff ⊔ SystemsStaff ⊔ AdministrativeStaff]] ⊔ [[ClericalStaff ⊔ SystemsStaff ⊔

AdministrativeStaff]] ⊔ [[Lecturer ⊔ Faculty]]

Q36 X X ¯ ¯

Q37 X X [[Sightseeing]] [[Activity]] ⊔ [[Activity ⊔ Safari]]

Appendix E – SemRef Experimentation 171

Q38 X X [[¬RetireeDestination]] [[¬Destination]]

Q39 X X [[BedAndBreakfast]] ¯

Q40 X X [[Activity] ⊓ [Sightseeing]] ¯

Q41 X X [[Destination] ⊓ [Beach]] [[¬Beach ⊔ ¬RetireeDestination ⊔ ¬FamilyDestination ⊔ ¬QuietDestination ⊔ UrbanArea]]

Q42 X X X [[Hotel]] [[LuxuryHotel]]

Q43 X X X [[Destination] ⊓ [Capital]] [[UrbanArea ⊔ Beach ⊔ RetireeDestination ⊔ FamilyDestination ⊔ QuietDestination] ⊓

[UrbanArea ⊔ Beach ⊔ RetireeDestination ⊔ FamilyDestination ⊔ QuietDestination]]

Q44 X X X X [[Destination] ⊓ [Capital]] [[UrbanArea ⊔ Beach ⊔ RetireeDestination ⊔ FamilyDestination ⊔ QuietDestination] ⊓ [City]]

Q45 X X X X ¯ [[¬UrbanArea ⊔ ¬Beach ⊔ ¬RetireeDestination ⊔ ¬FamilyDestination ⊔ ¬QuietDestination ⊔

¬Destination]]

Q46 X X ¯ ¯

Q47 X X ¯ [[Museums ⊔ Sightseeing]]

Q48 X X [[Sightseeing]] [[Activity ⊔ Museums]]

Q49 X X [[¬Hotel]] [[¬Accommodation ⊔ BedAndBreakfast]]

Q50 X X [[¬BedAndBreakfast]] [[Accommodation] ⊓ [Hotel]] ⊔ [[¬Accommodation ⊔ Hotel]]

Q51 X X ¯ [[Destination] ⊓ [UrbanArea]]

Q52 X X ¯ [[¬BudgetHotelDestination ⊔ ¬RuralArea ⊔ ¬UrbanArea ⊔ ¬Beach ⊔ ¬RetireeDestination]]

Q53 X X [[Destination] ⊓

[RetireeDestination]] ⊔

[[UrbanArea] ⊓ [City]]

[[BudgetHotelDestination ⊔ RuralArea ⊔ UrbanArea ⊔ Beach ⊔ RetireeDestination] ⊓

[BudgetHotelDestination ⊔ RuralArea ⊔ UrbanArea ⊔ Beach]] ⊔ [[BudgetHotelDestination ⊔

Beach ⊔ RetireeDestination ⊔ City] ⊓ [Capital]]

Q54 X X X X [[City]] ⊔ [[¬Beach]] [[City ⊔ UrbanArea]] ⊔ [[UrbanArea ⊔ Capital]] ⊔ [[¬BudgetHotelDestination ⊔ ¬RuralArea ⊔

¬UrbanArea ⊔ ¬RetireeDestination ⊔ ¬Destination]]

Q55 X X X X [[City] ⊓ [Capital]] [[UrbanArea ⊔ Capital] ⊓ [City]] ⊔ [[BudgetHotelDestination ⊔ RuralArea ⊔ UrbanArea ⊔

Beach ⊔ RetireeDestination] ⊓ [City ⊔ UrbanArea]] ⊔ [[¬BudgetHotelDestination ⊔

¬RuralArea ⊔ ¬UrbanArea ⊔ ¬Beach ⊔ ¬RetireeDestination ⊔ ¬Destination]]

Appendix E – SemRef Experimentation 172

E.3 A Small Fragment of the Experiments Using Queries Expressed in SPARQL

Reformulation Queries without semantics – Mode: Restricted

Query Qexact

Q28 SELECT distinct ?x FROM <http://swrc.ontoware.org/ontology/portal> WHERE { { ?x rdf:type <http://swrc.ontoware.org/ontology/portal#ResearchProject> }}

Reformulation Queries with semantics – Mode: Restricted

Query S G A C Qexact Qenriched

Q30 X X X X ¯ SELECT distinct ?x FROM <http://swrc.ontoware.org/ontology/portal>

WHERE { { ?x rdf:type

<http://swrc.ontoware.org/ontology/portal#UndergraduateStudent> }}

Q32 X X X X SELECT distinct ?x FROM <http://swrc.ontoware.org/ontology/portal>

WHERE { { ?x rdf:type

<http://swrc.ontoware.org/ontology/portal#UndergraduateStudent> }}

¯

Reformulation Queries with semantics – Mode: Complete

Query S G A C Qexact Qenriched

Q21 X X ¯ SELECT distinct ?x FROM <http://swrc.ontoware.org/ontology/portal>

WHERE { {{ ?x rdf:type

<http://swrc.ontoware.org/ontology/portal#Lecturer> } UNION { ?x

rdf:type <http://swrc.ontoware.org/ontology/portal#FullProfessor> }

UNION { ?x rdf:type

<http://swrc.ontoware.org/ontology/portal#AssistantProfessor> }}}

Q32 X X X X SELECT distinct ?x FROM <http://swrc.ontoware.org/ontology/portal>

WHERE { { ?x rdf:type

<http://swrc.ontoware.org/ontology/portal#UndergraduateStudent> }}

SELECT distinct ?x FROM <http://swrc.ontoware.org/ontology/portal>

WHERE { {{ ?x rdf:type

<http://swrc.ontoware.org/ontology/portal#Student> } UNION { ?x

rdf:type <http://swrc.ontoware.org/ontology/portal#ResearchProject> }}}

