

Figure 1a. A test using real
collaborators

Figure 1b. A test using mock objects
instead of real collaborators

Generating Mock-Based Test Automatically

Sabrina F. Souto
1
, Renato Miceli

1
, Dalton Serey

1

1Systems and Computing Department –
Federal University of Campina Grande (UFCG)

Caixa Postal: 10.106 - 5918109-970 – Campina Grande – PB – Brazil

{sabrina, dalton}@dsc.ufcg.edu.br, renato@lsd.ufcg.edu.br

Abstract—Mock objects are used to improve both efficiency and

effectiveness of unit testing. They can completely isolate objects

under test from the rest of the application allowing easier root

cause analysis of defects. Writing tests that use mocks, however,

can be a tedious, costly task and may lead to the inclusion of

defects. Furthermore, mock-based unit tests are known to be short-

lived – they are usually discarded due to several design changes

on the system. In this paper, we propose a technique that generates

mock-based tests to face the mentioned drawbacks. Based on the

analysis of execution traces, interactions between a target object

and its collaborators are captured, by using Aspect Oriented

Programming. We also present Automock, a proof of concept tool

developed to evaluate the feasibility of the technique.

Keywords- Software testing; aspect oriented programming;

mock objects; test automation.

I. INTRODUCTION

According to Kerievsky [1], the main purpose of mock
objects is to isolate the class under test (CUT) by replacing
its collaborators by test implementations, or mocks. In each
test, the developer describes the interactions he/she expects
the object to have with its collaborators, and simulates any
response expected by the behavior under test. During the
test, the mocks check whether they have been invoked as
expected. They also react in predefined ways, providing
support to complex tests in which long interaction patterns
must be considered. In such a test, the CUT is unable to
perceive whether it is interacting with real or with mock
objects. Mocks, therefore, can be of great help in writing real
unit testing, in which only one unit is effectively tested.

In testing, a wide range of objects can play the role of
collaborators. They can be memory-based objects or they can
access external systems, databases, internet connections,
among others. Figure 1 illustrates a typical testing scenario,
in which a CUT interacts with real collaborators. Figure 2,
depicts the same scenario in which the collaborators were
substituted by mocks.

Mocks can also make tests more effective and efficient.
Mackinnon [2] states that mocks make testing more effective
because mock-based tests provide more precise information
about failures and defects. And, because mock-based tests
use simplified simulations of the real collaborators, they tend
to run faster, especially when collaborators access databases,
internet connections or other external systems. On the other
hand, in practice, develop, maintain and reuse mock objects
is a repetitive and time-consuming task, due to the fact that
mock objects need several settings to work, even with the
use of frameworks, like EasyMock [3], to write them.

In this paper, we present a technique and a tool that
automate the synthesis of mock-based unit tests. The
technique is based on automatically identifying interactions
among objects in a given testing (or use) scenario. The tool
analyses execution traces and identifies all interactions,
including data exchanged, between a chosen target object
and its collaborators. That analysis is achieved through
instrumentation of the previous existing test code, using
Aspect Oriented Programming [4].

II. OUR APPROACH

The technique consists of three phases: static analysis,
dynamic analysis and mock code generation (see Figure 2 for
a high level representation of this workflow). During static
analysis, we identify all objects that collaborate with the
CUT. In the dynamic analysis phase, we instrument and
execute the original test, which is a JUnit [5] test class, in
order to capture and record the interactions between the CUT
and the previously identified collaborators. In the mock code
generation phase, the recorded interactions are used to
generate the code for the mock based version of the input
unit test.

A. Implementation Deatils

The static analysis is performed through a parsing
technique. It reads a JUnit [5] test source code and produces

Figure 2. General flow of Automock

III Latin-American Workshop on Aspect-Oriented Software Development

65

a mapping of instances and types of all objects that
collaborate with the CUT.

During the dynamic analysis, the test is instrumented
using aspect oriented programming [4]. Compared to
conventional instrumentation techniques, aspects provide a
clean and structured way of implementing the capture of
interactions. The output of this phase consists of a structured
log describing all interaction and data exchanged between
the CUT and the collaborator objects, in the context of a
given test. It is important to mention that only the target
object, its collaborators and the test are instrumented. The
result is a more efficient instrumentation compared to ones
that instrument the entire the system.

The third phase ends the process by generating the mock
based test code. The original test is used as a template, in
which the actual collaborators are substituted by their
corresponding mocks, by using EasyMock [2] framework.

B. Aspect Oriented Programming

In Automock, AOP is used to instrument code by
capturing the interactions among the CUT and its
collaborators, in the context of the test, by the use of
AspectJ, an Aspect Oriented Programming (AOP) extension
to the Java language [4, 6]. This approach is similar to the
capture phase of GenUTest [7], which utilizes aspects for the
capturing process. The crosscuting concerns used here are
captured by means of the following pointcut:

Pointcut testClass(): cflow(execution(
* testCase.*(..))) && call(* *.*(..)) && !(within(Automock))

The capture code, specified by pointcut defined above,
captures important data about the actual states of the objects
being analyzed by using the reflective constructor
thisJoinPoint and by creating a special object called
objectRecord containing all the analyzed data. These objects
are stored on to a list, and then serialized and logged by
using a special library supporting serialization. The dynamic
analysis ends after parsing all the objectRecords captured by
the aspect to an xml file. This type of file is useful for easy
data manipulation, and can be accessed by using the same
library to deserialize the list.

C. Preliminary Evaluation

Our approach has been investigated by means of an
experiment in order to reduce the efforts of testers and the
time spent on implementing mock code for tests. These
experiments have been done using OurBackup software [8].
Our experiment is in the initial phase, and consists in two
main tasks:

1) Develop mock code for test classes of the system in

manually way, with the aid of the framework EasyMock [2];

2) Generate mock code for the same test classes using

Automock.
In order to execute these tasks, we chose two test classes

of the system, one with 243 lines of code and other with 905
lines of code. We have timed each task and counted the
number of lines of each resulting mocked test, two manually
and two generated by Automock. As a result, we have the
number of lines of mock code produced.

We have evaluated the results in terms of effort and time
spent to develop mock code for each test class. Comparing
the lines of code with and without mock code, we have that
58% of programmer’s effort in produce test code is related to
mock code. If the programmer does not have to develop
mock code, our reduction is of 58%, it means that the
programmer will only have to produce the test code
normally, and then generate mock code using Automock. In
terms of time reduction, we have compared the time to
produce mocks both manually and automatically. As
mentioned before, we selected two tests to compare the time
spent in producing mock-based tests. The first test took 15
minutes using Automock, and 30 minutes to be produced
manually – a gain of 51% of time. For the second test, the
gain was of 94% – times were 20 minutes against 6 hours,
with and without Automock, respectively.

Further experiments are still necessary to support a full
evaluation and to generalize results. This, however, is under
work.

III. CONCLUSION AND FUTURE WORK

In this paper, we presented a technique that automatically
generates mock code for unit tests. In order to support and
evaluate the technique, we developed a tool and applied it in
a test development environment. Although the evaluation
can only be considered as preliminary, the results are
promising: development effort measured in terms of
development hours was reduced in 51% and 94% in the two
scenarios evaluated. Furthermore, testers were convinced
that the technique can be very helpful during test
development. And that the mock code generated is as
readable as man-made mock based code.

Future work will follow two directions. First, we will
further evaluate the gains that can be derived by applying the
technique by means of more rigorous experiments. Second,
we plan to improve the tool in order to make it both more
efficient and easier to use possibly by developing an
Automock plug-in to the Eclipse IDE [9].

REFERENCES

[1] Kerievsky, J. (2007), “TDD: Don’t Mock It Up with Too Many
Mocks”, In: Point/counterpoint. IEEE Software, 24(3):81–83.

[2] Mackinnon, T., Freeman, S. and Craig, P. (2001) “Endo-testing: unit
testing with mock objects” In: Extreme Programming Examined,
Addison-Wesley, pages 287-301.

[3] Freese, T. (2004), “Easymock”. (Visited May 2009),
http://www.easymock.org.

[4] Kiczales, G. (1997) “Aspect-oriented programming” In: Proceedings
of the European Conference on Object-Oriented Programming.

[5] JUnit. (Visited November 2008), http://www.junit.org/.

[6] The AspectJ Project. (Visited September 2008),
http://www.eclipse.org/aspectj.

[7] Pasternak, B., Tyszberowicz, S. S., and Yehudai, A. (2007)
“GenUTest: A Unit Test and Mock Aspect Generation Tool”, In:
Haifa Verification Conference, pages 252–266.

[8] Oliveira, M. I. S., Cirne, W., Brasileiro, F., and Guerrero, D. (2008)
“On the impact of the data redundancy strategy on the recoverability
of friend-to-friend backup systems”, In: Brazilian Symposium on
Computer Networks and Distributed Systems.

[9] Eclipse (Visited June 2009), http://www.eclipse.org

III Latin-American Workshop on Aspect-Oriented Software Development

66

