
a

GETTING STARTED
WITH ASPECTJ

COMMUNICATIONS OF THE ACM October 2001/Vol. 44, No. 10 59

MMany software developers are attracted to the idea of AOP—they

recognize the concept of crosscutting concerns and know they have

had problems with the implementation of such concerns in the past.

But they have questions about how to adopt AOP into their devel-

opment process, including: How to use aspects in existing code?

What kinds of benefits can be expected?

How steep is the learning curve for AOP?

How to begin? These questions are addressed here in the context of

AspectJ—a general-purpose AO extension to Java. A series of

abridged examples illustrate the kinds of aspects programmers can

implement using AspectJ and the benefits associated with doing so.

Readers who want to understand the examples in more detail, or

want to learn more about AspectJ, can find the complete running

examples and additional explanation on the AspectJ.org Web site.

Gregor Kiczales, Erik Hilsdale,
Jim Hugunin, Mik Kersten,

Jeffrey Palm, and William G. Griswold

An aspect-oriented extension to Java enables
plug-and-play implementations of crosscutting.

60 October 2001/Vol. 44, No. 10 COMMUNICATIONS OF THE ACM

Concern about the risk of adopting new tech-
nology causes many organizations to be reluc-
tant to do so. But simply waiting can lead to
rushing to adopt the technology later, which is

itself risky. Instead, this article presents a staged
approach based on identifying two broad categories of
aspects: development aspects facilitate tasks such as
debugging, testing, and performance tuning of appli-
cations; production aspects implement functionality
intended to be included in shipping applications.
These categories are informal, and this ordering is not
the only way to adopt AspectJ. Some developers will
want to use a production aspect right away, but expe-
rience with current AspectJ
users has shown this
ordering allows
developers to
derive benefits
from AOP tech-
nology quickly,
while also mini-
mizing risk.

AspectJ
Semantics
A brief in-
troduction to the
features of AspectJ
used in this article is
presented here. These fea-
tures are at the core of the
language, but this is not a
complete overview of AspectJ—for
more complete information, see [1, 4]. The seman-
tics are presented using a simple figure editor sys-
tem—see Figure 1. A Figure consists of a number
of FigureElements, which can be either Points
or Lines. The Figure class is also a factory for
figure elements. There is a single Display on
which figure elements are drawn. Most examples in
the article are based on this system.

AO languages have three critical elements: a join
point model, a means of identifying join points,
and a means of affecting implementation at join
points. The AspectJ version of each of these are
described in more detail here.

The join point model in an AOP language pro-
vides the common frame of reference that makes it
possible to define the structure of crosscutting con-
cerns. This article describes AspectJ’s dynamic join
points, in which join points are certain well-defined
points in the execution flow of the program.
AspectJ has several kinds of join points, but this
article discusses only method call join points. A

method call join point is the point in the flow when
a method is called, and when that method call
returns. Each method call itself is one join point.
The lifetime of the join point is the entire time
from when the call begins to when it returns (nor-
mally or abruptly), but execution is at the join point
only at the moment the call begins and the moment
it returns.

In AspectJ, pointcut designators identify particu-
lar join points by filtering out a subset of all the join
points in the program flow. For example, the point-
cut designator:

call(void Point.setX(int)) ||
call(void Point.setY(int))

identifies any call to either the setX or setY meth-
ods defined by Point. Syntactically, this code con-
sists of two call pointcut designators composed

with “or.” The syntax of call is based on that of
Java method signatures: call(result_type
object_type.method_name(arg_type,
...)) Programmers can define named pointcut
designators, and pointcut designators can iden-
tify join points from many different classes—in
other words, they can crosscut classes. The fol-
lowing code defines a pointcut named move that
designates any method call that moves figure ele-
ments:

pointcut move():
call(void FigureElement.moveBy(int, int))||
call(void Point.setX(int) ||
call(void Point.setY(int) ||
call(void Line.setP1(Point) ||
call(void Line.setP2(Point); ||

The previous pointcut designators are based on
explicit enumeration of a set of method signatures;
we call this name-based crosscutting. AspectJ also
allows specification of a pointcut in terms of proper-
ties of methods rather than their exact name. We call
this property-based crosscutting. The simplest of
these involve using wild cards in certain fields of the
method signature. Others use control flow or other
properties to identify join points. Consider:

call(void Figure.make*(..))
call(public * Display.*(..))
cflowbelow(move())

The first designates any call to methods defined on
Figure, for which the name begins with “make,”
and which take any number of parameters; effec-

This image has been deleted from the electronic version of this article due to copyright restrictions.

tively the factory methods makePoint and make-
Line. The second identifies any call to a public
method defined on Display. The third uses the
cflowbelow primitive pointcut designator and
identifies all join points that occur during the exe-
cution of methods that move figure elements.

In AspectJ, advice declarations are used to define
additional code that runs at join points. Before
advice runs at the moment a join point is reached, or
in other words just before the method begins run-
ning. After advice runs at the moment control
returns through the join point, or just after the
method has run (and before control is returned to
the caller). Around advice runs when the join point
is reached, and has explicit control over whether the
method itself is allowed to run at all. This advice
prints a simple message right after any figure
element moves.

after(): moves() {
<code to print message>

}

Pointcut designators can expose certain values
in the execution context at join points.
Exposed values are called pointcut parameters
and can be used in advice declarations. Briefly

speaking, the parameter mechanism works using
three special pointcut designators: this, target,
and args. For example, in calls(void
Point.setX(int)), both the object receiving the
call, corresponding to Point, and the new value,
corresponding to int, can be exposed. The Point-
BoundsChecking aspect later in the article uses
this mechanism. The online complete examples
explain this in more detail.

Development Aspects
An aspect is a modular unit of crosscutting imple-
mentation. It is defined very much like a class, and
can have methods, fields, constructors, initializers,
named pointcuts, and advice. Examples of aspects
that can be used during program development are
presented here. This kind of aspect defines behavior
that ranges from simple tracing, to profiling, to test-
ing of internal consistency within the application,
and is used to facilitate debugging, testing, and per-
formance tuning work.

An initial example is a simple tracing aspect that
prints messages before certain display operations:

aspect SimpleTracing {
pointcut traced():

call(void Display.update()) ||
call(void Display.repaint(..));

before(): traced() {
println(“Entering:” +

thisJoinPoint);
}

void println(String str) {
<write to appropriate stream>

}
}

This code first defines a pointcut named traced,
which identifies calls to several key methods on
Display—the update method and several over-
loaded repaint methods. Before advice on this
pointcut uses a helper method of the aspect to print
a message. The advice uses the thisJoinPoint
special variable, which is bound, within advice bod-
ies, to an object that describes the current join
point. The overall effect of this aspect is to print a
descriptive message whenever the traced methods
are called.

Notice that when coded with AspectJ this tracing
functionality is modularized—the code is localized
and has a clear interface with the rest of the system.
Modularization here has the usual benefits. For one,
consider changing the set of method calls that are
traced. In the AspectJ implementation, this just
requires editing the traced pointcut and recompil-
ing. The individual methods traced do not need to
be edited.

When debugging, programmers often invest con-
siderable effort in determining a good set of trace
points to use when looking for a particular kind of
problem. When debugging is complete—or appears
to be complete—it is frustrating to have to lose that
investment by deleting trace statements from the

COMMUNICATIONS OF THE ACM October 2001/Vol. 44, No. 10 61

Figure 1. UML for figure editor example.

1 *

Display

DisplayUpdating

+makePoint():Point
+makeLine():Line

Figure
«factory»

+moveBy(int,int)

FigureElement

+getX() : int
+getY() : int
+setX(int)
+setY(int)
+moveBy(int,int)

Point Line

+getP1() : Point
+getP2() : Point
+setP1(Point)
+setP2(Point)
+moveBy(int,int)

code. The alternative of just commenting them out
makes the code look bad and can cause trace state-
ments for one kind of debugging to get confused
with trace statements for another kind of debugging.
With AspectJ it is easy to both preserve the work of
designing a good set of trace points and disable the
tracing when it is not being used. Simply write an
aspect for each particular tracing mode and remove
that aspect from the compile configuration (or
“makefile”) when it is not needed.

This clean modularization gives developers who
have reason to be conservative about new technol-
ogy adoption a strong intermediate position from
which to start using AspectJ. They can use AspectJ
for debugging and other development aspects, but
still compile and ship the production code without
aspects. The makefiles can even be written so that
they use a traditional Java compiler for production
builds, which ensures no aspects can be present in
such builds.

There are many sophisticated profiling tools
available on the market. These can gather a variety
of information and display the results in useful ways.
But sometimes programmers want very specific pro-
filing or logging behavior. In these cases it is often
possible to write a simple aspect similar to the ones
above to do the job. For example, an aspect could
use the following pointcut declaration to identify
the particular calls to setX or setY of a point
within the control flow of calls to moveBy:

call(void Point.set*(int)) &&
cflow(call(void *.moveBy(..)))

Many programmers use the “Design by Con-
tract” style popularized by Eiffel [3]. In
this style of programming, explicit pre-
conditions test that callers of a method call

it properly and explicit post-conditions test that
methods properly do the work they are supposed to.
AspectJ makes it possible to implement pre- and
post-condition testing in modular form. For exam-
ple, this code

aspect PointBoundsChecking {
before(Point p, int x):

call(void p.setX(x)) {
checkX(p, x);
}

}
before(Point p, int y):

<same for y>

before(Point p, int x, int y):
call(void p.moveBy(x, y)) {

checkX(p, p.getX() + x);
checkY(p, p.getY() + y);

}
}

implements pre-condition testing for operations
that move points. (Note that it makes use of
checkX and checkY helper methods that are not
shown.) Even though pre- and post-condition test-
ing aspects may often be used only during testing, in
some cases developers may wish to include them in
the production build as well. Again, because AspectJ
makes it possible to cleanly modularize these cross-
cutting concerns, it gives developers easy control
over this decision.

Property-based crosscutting can be used to define
more sophisticated contract enforcement. One such
use is to identify method calls that violate a design
invariant of the program. For example, the following
pointcut can be used to enforce the constraint that
only the factory methods can create new figure ele-
ments.

call(FigureElement.new(..)) &&
!withincode(* Figure.make*(..));

The call pointcut designator identifies any call
to new that makes figure elements. The within-
code primitive pointcut designator identifies all
join points that occur lexically within the body of

62 October 2001/Vol. 44, No. 10 COMMUNICATIONS OF THE ACM

Figure 2. A snapshot of a screen when using the
AspectJ-aware extension to emacs. The text in

[Square Brackets] following the method
declarations is automatically generated and

serves to remind the programmer of the aspects
that crosscut the method. The editor also

provides commands to jump to the advice from
the method and vice versa. AspectJ support for
JBuilder and Forte4J provide similar functionality.

class Point implements FigureElement {

 private int _x = 0, _y = 0;

 public Point (int x, int y) {
 _x = x;
 _y = y;
 }

 public int getX() { return _x; }
 public int getY() { return _y; }

 public void setX(int x) { _x = x; } [DisplayUpdating]
 public void setY(int y) { _y = y; } [DisplayUpdating]

 public void moveBy (int dx, int dy) { [DisplayUpdating]
 setX (getX () + dx) ;
 setY (getY () + dy) ;
 }
{

--\-- Point. Java (Java AspectJ) --L15--Bot--
Mark set

Buffers Files Tools Edit Search Mule Java AspectJ Help

the factory methods on FigureElement. The con-
junction therefore identifies illegal constructions.
Note that this provides more expressive power than
the Java access protection qualifiers, because in this
code, not even the Point and Line classes them-
selves can call their constructors.

Production Aspects

This section presents examples of aspects
that are inherently intended to be
included in production builds of an
application. Again, we begin with

named-based aspects. Because these aspects tend to
affect only a small number of methods they are a
good next step for projects adopting AspectJ. But
even though they tend to be small and simple, they
often have a significant effect in terms of making
the program easier to understand and maintain.

The first example production aspect handles
updating the display whenever a figure element
moves. Implementing this functionality as an aspect
is straightforward. We reuse the move pointcut
defined earlier, and after advice on move informs the
display it needs to be refreshed whenever an object
moves.

aspect DisplayUpdating {
pointcut move(): <as above>;
after(): move() {

Display.needsRepaint();
}

}

Even this simple example serves to
illustrate some of the important benefits
of using AspectJ in production
code. Consider the code one
would have to write without
AspectJ. Each of the methods
that could move a figure ele-
ment would include a call to
Display.needsRepaint().
Those calls, or rather the concept that
those calls should happen at each move
operation, are the crosscutting concern in
this case. The AspectJ implementation has several
advantages over the standard implementation:

• The structure of the crosscutting concern is cap-
tured explicitly. The move pointcut clearly states
all the methods involved, so the programmer
reading the code sees not scattered individual calls
to needsRepaint, but instead sees the overall
structure of the code. As shown in figures 2 and
4, AspectJ extensions to existing IDE tools auto-

matically remind the programmer that this aspect
advises each of the methods involved.

• Evolution is easier. If, for example,
the aspect needs to be revised to

inform the display exactly
which element moved the
change would be entirely
local to the aspect. The
pointcut would be updated
to expose the object being
moved, and the advice
would be updated to
pass that object. (Sev-
eral ways this aspect

could be expected to
evolve are presented in [1].)

• The functionality is pluggable. Like
development aspects, production aspects may

need to be removed from the system, either
because they are no longer needed at all, or
because they are not needed in certain system
configurations. Because the functionality is mod-
ularized in a single aspect this is easy to do.

• The implementation is more stable. If, for exam-
ple, the programmer adds a subclass of Line that
overrides existing methods, this aspect will still
work properly. In the ordinary Java implementa-
tion the programmer would have to remember to
add the call to needsRepaint in the overriding
method. Later we will see that this benefit can be
even more compelling for property-based aspects.

COMMUNICATIONS OF THE ACM October 2001/Vol. 44, No. 10 63

aspect ColorControlling {

 /**
 * All join points dynamically within methods
 * on ColoringClient. Exposes the client.
 */
 pointcut clientCflow(ColoringClient client):
 cflowbelow(call(* client.*(..)));

 /**
 * All figure element factory calls.
 */
 pointcut makes():
 call(FigureElement Figure.make*(..));

 after (ColoringClient c) returning (FigureElement fe):
 make() && clientCflow(c) {
 fe.setColor(c.colorFor(fe));
 }
}

Figure 3. An aspect that controls factory
methods based on dynamic call context.

This image has been deleted from the electronic version of this article due to copyright restrictions.

Another good use of name-based
production aspects is implementing syn-
chronization policies. These aspects
are similar to change monitor-

ing, except that the work done by
the advice tends to be more
complex, and these aspects
usually use paired before and
after advice to handle the syn-
chronization work.

For example, in order to
implement the readers and
writers synchronization
pattern [2], the program-
mer would define two
pointcuts, named reader
and writer, and then would
define appropriate before and
after advice on those pointcuts. Such
an implementation reflects the structure of
the synchronization rules more clearly than
the normal scattered implementation.

The crosscutting structure of context passing
can be a significant source of complexity in Java pro-
grams. Consider implementing functionality that
would allow a client of the figure editor (a program
client rather than a human) to set the color of any
figure elements that are created. Typically this
requires passing a color, or a color factory, from the
client, down through the calls that lead to the figure
element factory. All programmers are familiar with
the inconvenience of adding a first argument to a

number of methods just to pass
this kind of context information.

Using AspectJ, this kind of
context passing can be imple-
mented in a modular way. The
aspect in Figure 3 defines after
advice that runs when the factory
methods of Figure are called
from within the control flow of a
method on ColoringClient.
This enables the client to set the
color of any figure elements cre-
ated. The aspect shown in Figure
3 affects only a small number of
methods, but note that the non-
AOP implementation of this
functionality might require edit-
ing many more methods; specifi-
cally, all the methods in the
control flow from the client to
the factory would have to pass
the client. This is a benefit com-

mon to many property-based aspects—while the
aspect is short and affects only a modest number of
methods, the complexity it saves is potentially much
larger.

Property-based aspects can also be used to pro-
vide consistent handling of functionality across

a large set of operations. One common idiom
is to define functionality that should be

common to all the public methods of
a package. Typical examples

include
logging, billing, and error-check-
ing behavior. Such aspects, typi-
cally use a property-based
pointcut such as call(public
* com.xerox.*.*(..)). This
pointcut identifies any call to a
public method of a type defined in
the com.xerox package. Behavior
defined in terms of such a pointcut

is robust during program evolution.
If a new public method is added, it will

automatically get the advice.
In some cases it is important to distinguish

between initial and recursive calls to a method or set
of methods. It might, for example, be important to
only do error checking for initial calls into a package.
In such cases the cflowbelow pointcut designator
can be used to distinguish the initial calls. For exam-
ple, move() && !cflowbelow(move()) will
exclude any call to move methods that occurs during
the execution of move methods. So it excludes calls

64 October 2001/Vol. 44, No. 10 COMMUNICATIONS OF THE ACM

Figure 4. Examining the partially refactored parser using the
AspectJ extensions to JBuilder. This view allows us to quickly see

 the structure of the aspect and how it affects the JavaParser class.

This image has been deleted from the electronic version of this article due to copyright restrictions.

to setX that happen during a moveBy.
Sometimes aspects consist of a property-based

crosscut with a small number of exceptions. For
example, in work on the AspectJ compiler we have
developed an aspect that advises about 35 methods
in the JavaParser class. The individual methods
handle each of the different kinds of elements that
must be parsed. They have names like
parseMethodDec, parseThrows, and parse-
Expr. The role of the aspect is to ensure that each of
these parse methods fills in the parse context in a
consistent way. The aspect includes the following
pointcut, as well as around advice to fill in
parse context.

pointcut parse(JavaParser jp):
call(* jp.parse*(..)) &&
!call(Stmt parseVarDec(..));

Note that in addition to the general pattern—
call(* jp.parse*(..))—it includes an excep-
tion—!call(Stmt parseVarDec(..)). The
exception happens because the parsing of variable
declarations in Java is too complex to be handled in
the same way as the other parse* methods. We find
that even with a small number of exceptions, such
aspects are a clear expression of crosscutting modu-
larity. In this case, that all parse* methods, except
for parseVarDec, share a common behavior for
establishing the parse context of their result.

The process of writing an aspect with property-
based crosscutting and exceptions can also help clar-
ify the design structure of the system. This is
especially true when refactoring existing code to use
aspects. During development of the parse context
aspect, we used the AspectJ support provided for
JBuilder, shown in Figure 4, to compare the aspect
crosscutting to where we had previously manually
coded the functionality and incrementally refactored
the two to understand exactly what the aspect should
crosscut and do.

Conclusion
AspectJ is a simple and practical AO extension to
Java. Using AspectJ results in clean modular imple-
mentations of crosscutting concerns such as tracing,
contract enforcement, display updating, synchro-
nization, consistency checking, protocol manage-
ment and others. When written as an aspect the
structure of a crosscutting concern is explicit and
easy to reason about. Aspects are also modular, mak-
ing it possible to develop plug-and-play implemen-
tations of crosscutting functionality.

AspectJ enables both name- and property-based

crosscutting. Aspects that use name-based crosscut-
ting tend to affect a small number of other classes.
But despite their small scale, they can often elimi-
nate significant complexity compared to an ordinary
Java implementation. Aspects that use property-
based crosscutting range from small to large scale.
Features of Aspect J not presented provide additional
power for modularizing crosscutting concerns.

Adoption of AspectJ into an existing project can
be a straightforward and incremental task. One path
is to begin with development aspects, and move on
to production aspects only after building up experi-
ence with AspectJ. Other paths are possible, depend-
ing on the needs of the project. Programmers
interested in adopting AspectJ are encouraged to
read the online documentation and examples care-
fully before doing so.

References
1. Kiczales, G., et al. An overview of AspectJ. In Proceedings of the 15th

European Conference on Object-Oriented Programming (ECOOP).
Springer, 2001.

2. Lea, D. Concurrent Programming in Java: Design Principles and Patterns,
2d ed. Addison-Wesley, 1999.

3. Meyer, B. Object-Oriented Software Construction. Prentice Hall, 1989.
4. The AspectJ Primer; aspectj.org/doc/primer.

Gregor Kiczales (gregor@cs.ubc.ca) is Professor and NSERC,
Xerox, Sierra Systems Chair of Software Design at the University of
British Columbia, and Principal Scientist at Xerox PARC.
Erik Hilsdale (hilsdale@parc.xerox.com) is a Research Staff
Member at Xerox PARC.
Jim Hugunin (hugunin@parc.xerox.com) is a Research Staff
Member at Xerox PARC.
Mik Kersten (mkersten@parc.xerox.com) is a Research Staff Mem-
ber at Xerox PARC.
Jeffrey Palm (palm@parc.xerox.com) is a Research Staff Member
at Xerox PARC.
William G. Griswold (wgg@cs.ucsd.edu) is Associate Professor
of Computer Science at the University of California, San Diego.

This work was partially supported by DARPA under contract number
F30602-C-0246.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2001 ACM 0002-0782/01/1000 $5.00

c

COMMUNICATIONS OF THE ACM October 2001/Vol. 44, No. 10 65

