
PaDA: A Pattern for Distribution Aspects

Sérgio Soares∗

Universidade Católica de Pernambuco
Departamento de Estat́ıstica e Informática

Centro de Informática
Universidade Federal de Pernambuco

Paulo Borba†

Centro de Informática
Universidade Federal de Pernambuco

Abstract

This paper presents a pattern that provides a structure for implementing distribution using

AOP — aspect-oriented programming. The main goal is to achieve better separation of concerns

avoiding tangled code (code with different concerns interlacing to each other) and spread code

(code regarding one concern scattered in several units of the system). Therefore, system mod-

ularity, and hence, maintainability and extensibility are increased. The paper also presents an

example of distribution aspects using AspectJ, an aspect-oriented extension to Java.

Intent

PaDA (Pattern for Distribution Aspects) provides a structure for implementing distribu-
tion code by achieving better separation of concerns. This is obtained through the use of
aspect-oriented programming [7]. It increases system modularity, and hence, maintain-
ability and extensibility.

Context

When implementing a distributed system that requires high modularity, meaning that the
system should be independent of the distribution concern. To achieve better separation
of concern we should use aspect-oriented programming by applying PaDA. An aspect
defines a crosscutting concern, for example, distribution, which is automatically woven to
a system changing its original behavior. Therefore, the system should be implemented in
a programming language that has an aspect-oriented like extension. Examples of these
languages with the respective aspect-oriented extensions are the following:

• Java — AspectJ [10], HyperJ [12], DemeterJ [11], Composition Filters [3];

Copyright c©2002, Sérgio Soares and Paulo Borba. Permission is granted to copy for the Sugarloaf-
PLoP 2002 Conference. All other rights reserved.

∗Supported by CAPES. Emails: scbs@cin.ufpe.br, sergio@dei.unicap.br
†Partially supported by CNPq, grant 521994/96-9. Email: phmb@cin.ufpe.br

1

• C++ — AspectC [6], Composition Filters [3];

• Smalltalk — AspectS [9], Composition Filters [3].

Problem

Tangled code (code with different concerns interlacing to each other) and spread code
(code regarding one concern scattered in several units of the system) decrease system
modularity. Therefore, maintainability and extensibility are also decreased.

Forces

To distribute a system, PaDA balances the following forces:

• Remote communication. The communication between two components of a system
should be remote in order to allow several clients accessing the system, considering
that the user interface is the distributed part of the system.

• API independence. The system should be completely independent of the commu-
nication API and middleware to facilitate system maintenance, as communication
code is not tangled with business or user interface code. This also allows changing
the communication API without impacting other system code.

• A same system can use different middleware at the same time. This would allow, for
instance, two clients accessing the system, one using RMI and the other CORBA.

• Dynamical middleware changing. The system should allow changing the middleware
without changing or recompiling its source code.

• Facilitate functional tests. Functional tests are easier by testing the system with its
local version; therefore, distribution code errors will not affect the tests.

Solution

In order to solve the problem previously presented, PaDA uses aspect-oriented program-
ming [7] to define distribution aspects [16] that can be woven to the system core source
code. This separation of concern is achieved by defining aspects to implement a specific
concern. After identifying and implementing the crosscutting concerns of a system, they
can be automatically composed (woven) with the system source code, resulting on the
system version with the required concerns.

Figure 1 illustrates the aspectual decomposition, which identifies the crosscutting con-
cerns of a system, and the aspectual recomposition, or weaving, which composes the iden-
tified concerns with the system to obtain the final version with the required functions. In
our case, PaDA defines just one concern (distribution), which is implemented by three
aspects, as we show in next section.

Figure 1: AOP development phases.

Structure

The PaDA pattern defines three aspects: one to crosscut the target component (server),
another to crosscut the source components (client classes), and the third crosscuts both
target and source component to provide the exception handling, as shown in Figure 2. In
fact, the third aspect defines a concern that is crosscutting to distribution itself, namely
exception handling. In fact, the ServerSide aspect might crosscuts others classes that
are return types or arguments type of the target component methods.

Figure 2: PaDA’s structure.

Figure 3 presents a UML class diagram that shows the aspects and their with the
components to allow them to be remotely accessed. In that figure, TargeComponent is
the one to be remotely accessed by instances of SourceComponent.

Figure 3: PaDA class diagram.

Dynamics

Figure 4 shows a sequence diagram of what is the original system behavior: a SourceComponent
instance makes local calls to some methods of a TargetComponent instance.

Figure 4: Original system behavior.

Figure 5 is the sequence diagram that states what is the behavior after weaving the
aspects to the system: SourceComponent local calls are intercepted by the ClientSide

aspect that gets the reference to the remote instance and redirect the local call to it. Note
that the ServerSide aspect creates and makes the remote instance (a TargetComponent

instance) available to response remote calls.
If the remote call raises an exception, like in the n method call, the ExceptionHandler

aspect wraps the exception to an unchecked one and throws it, in the server-side. Note
that the message that wraps and throws the unchecked exception is a message to the
ExceptionHandler aspect itself, because the aspect is also responsible for catching the
unchecked exception providing the necessary handling in the client-side (SourceComponent).

Figure 5: System behavior after applying PaDA.

Consequences

The PaDA pattern has several benefits:

• Distributed Implementation. The pattern provides remote communication between
two components of a system;

• Modularity. PaDA structures the distribution code in aspects, which is completely
separated of the system code, making the system source code API-independent;

• Maintenance and extensibility. As the distribution code is completed separated of
the system code, changing the communication API is simpler and has no impact in
the system code. The programmers should just write another distribution aspects,
to the new specific API, or change the aspects already implemented to correct errors
and them woven it to the original system source code.

• Incremental implementation. PaDA allows incremental implementation [15]. The
system can be completely implemented and tested before implementing the distri-
bution aspects, since the distribution aspects are separated from the system source
code. This abstraction increases productivity, since the programmers should not
take care about distribution problems. This incremental implementation also al-
lows requirements validation without the impact of distribution.

• Additional separation of concern. PaDA structure defines exception handling as a
crosscutting concern, which is not done by object-oriented programming techniques.
Therefore, the exception handling can be changed without impacting in the original
system source code and in the distribution aspects, or in others aspects that can be
implemented, as the system requires.

• Facilitate testing of functional requirements. Tests of the functional requirements
can be done easily if made using the system without the distribution. The full sep-
aration of concerns preserves the original system source code. This means that the
distribution aspect is added to the system just if the composition process (weaving)
is executed. Therefore, to obtain the monolithic system, just use the original source
code, or remove the distribution aspects from the weaving, in case of the need of
another concern, like data management.

The PaDA pattern also has the following liabilities:

• New programming paradigm. The pattern uses a new programming technique that
implies in learning a new programming paradigm to use the pattern. Another
impact of being a new programming paradigm is regarding the separation of code
that usually was together in the same module. The programmer of the functional
requirements cannot see the resultant code that will implement the required concern,
decreasing code legibility.

• Increased number of modules. PaDA adds three new modules into the system,
increasing the modules management complexity.

• Increased bytecode. Each aspect definition will result in a class after woven it into
the system, which will increase the system bytecode.

• Name dependence. The aspects definition depends of the system classes, methods,
attributes, and argument names, which decreases the aspects reuse. However, tools
can mostly automate the aspects definition, increasing the aspects productivity and
reuse.

• Dynamic change of middleware. At the moment, the AOP languages do not allow
dynamic crosscutting, which does not allow changing the distribution protocol at
execution time. This can be done by other design pattern, DAP [1], however,
without achieving the separation of concerns we achieve with PaDA.

• Allow using a same system through different middleware. The idea of AOP is gen-
erate versions of a system including concerns. The feature of using a same system
through different middleware can be achieved if several versions of the system were
generated. However, this implies in having several instances of the system (server-
side) executing, beside a single one, which may affect or invalidate concurrency
control. On the other hand, DAP [1] can do this easily.

Implementation

The PaDA pattern implementation is composed of four major steps:

• Identify the components, server and client, to have the communication between
them distributed.

• Write the server-side aspect. The server-side aspect is responsible to use specific dis-
tribution API code changing the server component, making it available to response
remote calls. This aspect may also have to change others components used as pa-
rameters or return values of the server component, depending of the distribution
API.

• Write the client-side aspect. The client-side aspects are responsible to intercept the
original local calls made by the client component redirecting them to remote calls
made to the remote component (server).

• Write the exception handler aspect. The exception handler aspect is responsible
handle with new exceptions added by the aspects definition. These exceptions raised
in the server-side are wrapped to an unchecked exception to throw them without
changing the signature of the original system source code. Therefore, the exception
handler aspect should also provide the necessary handling in the client-side classes.

Example

To exemplify the pattern we now consider a banking application and the RMI API to
distribute the communication. Figure 6 presents a UML class diagram that models the
banking example.

The BankServlet class is a servlet Java that provides a HTML and JavaScript user
interface making requests to the Bank object. This is the communication to be distributed,
therefore the ServerSide aspect should crosscuts the Bank class and the ClientSide

aspect should crosscuts the BankServlet class. The Bank class is the system Facade [8]
and has attributes like accounts and customers records

public class Bank {

private AccountRecord accounts;

public void deposit(String number, double value)

throws AccountNotFoundException {

accounts.deposit(number,value);

} ...

}

and the operations to manipulate them.
In AspectJ the aspects can affect the dynamic structure of a program changing the

way a program executes, by intercepting points of the program execution flow, called
join points, and adding behavior before, after, or around (instead of) the join point.
Examples of join points are method calls, method executions, instantiations, constructor

Figure 6: Class diagram of a banking application using PaDA.

executions, field references (get and set), exception handling, static initializations, others,
and combinations of these by using the !, && or || operators. Usually, an aspect defines
a pointcut that selects some join points and values at those join points. Then an advice
defines the code that is executed when a pointcut is reached. The advice is who defines
what code should execute before, after, or around the pointcut.

Server-side aspect

The ServerSide aspects should make the Bank instance available to remote calls. Besides
being the system facade, the Bank class also implements the Singleton [8] design pattern.
The server-side aspect should intercept the Bank initialization to make it available to
be remotely accessed. The first step is defining a pointcut to identify the Bank object
initialization, which is shown in following piece of code

public aspect ServerSide {

pointcut bankInit(Bank b): execution(Bank.new(..)) && this(b);

where the pointcut designator execution join points when any constructor of Bank is
executed, and the this designator join points when the currently executing object is an
instance of the type of b (Bank).

This pointcut is used by the following advice

1: after(Bank b): bankInit(b) {

2: try {

3: UnicastRemoteObject.exportObject(b);

4: java.rmi.Naming.rebind("/BankingSystem", b);

5: } catch (Exception rmiEx) { ... }

6: }

that adds some code (lines 2 to 5) after the pointcut, i.e., after the execution of any Bank

constructor. The added code is responsible to make the Bank instance available to be
remotely accessed, through the name “BankingSystem”.

The server-side aspect has to define a remote interface that has all facade methods
signatures adding a specific RMI API exception (java.rmi.RemoteException).

public interface IRemoteBank extends java.rmi.Remote {

void deposit(String number, double value)

throws AccountNotFoundException, java.rmi.RemoteException;

...

}

The aspect also has to modify the classes whose objects will be remotely transmitted
over the distributed communication channel. They just have to use the Java Object
Serialization mechanism, by implementing the java.io.Serializable interface. We use
the AspectJ’s introduction mechanism that can modify the static structure of programs
to do it, as in the following piece of code

declare parents: Bank implements IRemoteBank;

declare parents: Account || Client implements java.io.Serializable;

Client-side aspect

The client-side aspect should define a pointcut to identify all executions of the Bank

methods (lines 3 and 4), and advices to redirect local calls to facade’s remote instance,
like the one in lines 6 to 13

1: public aspect ClientSide {

2: private IRemoteBank remoteBank;

3: pointcut facadeCalls(): within(HttpServlet+) &&

4: call(* Bank.*(..));

5:

6: Object around(double value) throws /* ... */:

7: facadeCalls() && call(void deposit(double)) && args(value) {

8: Object response = null;

9: try {

10: response = remoteBank.deposit(value);

11: } catch (RemoteException ex) { ... }

12: return resposta;

13: } ...

14: }

where remoteBank (lines 2 and 10) references the facade remote instance whose local
call will be redirected to. In this case the around advice executes its code instead the
code identified by the pointcut facadeCalls and the additional join points (line 7), that
identify calls to the deposit methods that gets a double as argument, which should be
used as argument to the remote call (line 10).

Exception handling

The AspectJ police to handle with exceptions introduced by the aspects definition is
encapsulating them in to an unchecked exception, called soft exception. To do it we use
the declare soft declaration to wrap the NewException that gets thrown at any join
point picked out by the pointcut mightThrowNewException

public aspect ExceptionHandler {

declare soft: NewException: mightThrowNewException();

Therefore, this unchecked exception (SoftException) should be handled in the user
interface class. Note that exception handling is a natural crosscutting concern, usually
spread in the system units. To handle this exception we should define an after throwing

advice that runs after the join points defined by the pointcut facadeCalls if it throws
the SoftException

after() throwing (SoftException ex): facadeCalls() {

// exception handling, for example, messages to the user

}

}

providing the convenient exception handling.

Variants

An extension of this pattern can define other aspects to provide additional non-functional
requirements, such as fault-tolerance, caching, and object transmission on demand to
increase both system robustness and efficiency. Aspects can also provide functional re-
quirements.

Another extension can define the three aspects as a single one that crosscuts source
and target components and other classes that are return types or arguments type of the
target component methods.

Known Uses

This pattern was used in an experiment to implement distribution in a system that allows
citizens to complain about health problems and to retrieve information about the public
health system, such as the location or the specialties of a health unit. The client-side
aspect was defined to the system servlets, and the server-side aspect was defined to the
facade class. The system facade was not in the web server due to security and performance
reasons.

Another use of PaDA in Web based information systems can define the client-side
aspect to an applet, but we have not implemented or seen that.

Developers have been using patterns [17, 2] similar to PaDA to implement distribution.
In particular, the pattern in the first work is similar to PaDA’s client-side aspect, and the
pattern in the second work is similar to the PaDA’s server-side aspect.

In fact, we know several real software projects that implement distribution and could
use this pattern. Some of these systems are the following:

• The real system for registering health system complaints.

• A system to manage clients of a telecommunication company. The system is able
to register mobile telephones and manage client information and telephone services
configuration. The system can be used over the Internet.

• A system for performing online exams. This system has been used to offer differ-
ent kinds of exams, such as simulations based on previous university entry exams,
helping students to evaluate their knowledge before the real exams.

• A complex supermarket system. A system that is responsible for the control of sales
in a supermarket. This system will be used in several supermarkets and is already
been used in other kinds of stores.

In addition, PaDA can be used as one of the basic patterns of the Progressive Im-
plementation Method (Pim) [4]. Pim is a method for the systematic implementation of
complex object-oriented applications in Java. In particular, this method supports a pro-
gressive approach for object-oriented implementation, where persistence, distribution and
concurrency control are not initially considered in the implementation activities, but are
gradually introduced, preserving the application’s functional requirements. The PaDA
design pattern can be applied for dealing with distribution.

See Also

• DAP — Distributed Adapters Pattern [1]. This pattern and PaDA has the same
objectives, however, DAP uses plain object-oriented programming techniques and
others design patterns, which do not provide full separation of concerns. Another
difference is that DAP does not separate the exception handling as a crosscutting
concern like PaDA does.

• Reflection [5]. This pattern is related to aspect-oriented programming. It provides
a mechanism for changing structure and behavior of software systems dynamically.
This pattern splits the application into two levels. A base level that implements the
functional requirements, and a meta level that can modify the base level behavior.
Comparing it with PaDA the base level is analog to the functional requirements,
for example, implemented in Java, and the meta level is analog to the aspects, for
example, implements in AspectJ.

• Distributed Proxy Pattern [14]. This pattern and PaDA have similar objectives, like
making the incorporation of distribution transparent. However, as the previous one,
this pattern does not provide full separation of concerns.

• Wrapper-Facade [13]. Like PaDA this pattern has the goal of minimizing platform-
specific variation in application code. However, Wrapper-Facade encapsulates exist-
ing lower-level non-object-oriented APIs (such as operating systems mutex, sockets,
and threads), whereas PaDA encapsulates object-oriented distribution APIs, such as
RMI and CORBA. Again, this pattern does not provide full separation of concerns.

• Broker and Trader [5]. These architectural patterns focus mostly on providing
fundamental distribution issues, such as marshalling and message protocols. There-
fore, they are mostly tailored to the implementation of distributed platforms, such
as CORBA. PaDA provides a higher level of abstraction: distribution API trans-
parency to both clients and servers.

• Chain of Responsibility [8]. Similar to PaDA this patterns decouples the sender of a
request from its receiver. However, it does not perform isolation of the distribution
platform’s API.

• Model-View-Controller (MVC) [5] is used in the context of interactive applications
with a flexible human-computer interface. Its goal is to make changes to user inter-
face easy and even possible at run time. PaDA is used in the context of distributed
applications and aims at making changes to the distribution platform a simple task,
not impacting in other parts of the system.

Acknowledgments

We would like to give special thanks to Jorge L. Ortega Arjona, our shepherd, for his im-
portant comments, helping us to improve our pattern. We also thanks Rossana Andrade,
Jonivan Lisbôa, Marcos Quináia, and Rubens Ferreira for the suggestions made at the
conference.

References

[1] Vander Alves and Paulo Borba. Distributed Adapters Pattern: A Design Pattern for
Object-Oriented Distributed Applications. In First Latin American Conference on Pattern
Languages Programming — SugarLoafPLoP, Rio de Janeiro, Brazil, October 2001. UERJ
Magazine: Special Issue on Software Patterns.

[2] Dan Becker. Design Networked Applications in RMI Using the Adapter Design Pattern.
Java World, May 1999.

[3] L. Bergmans and M. Aksit. Composing crosscutting concerns using composition filters.
Communications of the ACM, 44(10):51–57, October 2001.

[4] Paulo Borba, Saulo Araújo, Hednilson Bezerra, Marconi Lima, and Sérgio Soares. Progres-
sive Implementation of Distributed Java Applications. In Engineering Distributed Objects
Workshop, ACM International Conference on Software Engineering, pages 40–47, Los An-
geles, EUA, 17th–18th May 1999.

[5] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. A
System of Patterns: Pattern-Oriented Software Architecture. John Wiley & Sons, 1996.

[6] Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg Smolyn. Using aspectc to improve
the modularity of path–specific customization in operating system code. FSE, 2001.

[7] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect–Oriented Programming. Commu-
nications of the ACM, 44(10):29–32, October 2001.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[9] R. Hirschfeld. AspectS: AOP with Squeak. In OOPSLA’01 Workshop on Advanced Sepa-
ration of Concerns, Tampa FL, 2001.

[10] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. Getting Started with AspectJ. Communications of the ACM, 44(10):59–65,
October 2001.

[11] Karl Lieberherr and Doug Orleans. Preventive program maintenance in Demeter/Java. In
International Conference on Software Engineering, pages 604–605, Boston, MA, 1997.

[12] Harold Ossher and Peri Tarr. Hyper/J: multi–dimensional separation of concerns for Java.
In 22nd International Conference on Software Engineering, pages 734–737. ACM, 2000.

[13] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern–Oriented
Software Architecture, Vol. 2: Patterns for Concurrent and Networked Objects. Wiley &
Sons, 2000.

[14] Antonio Rito Silva, Francisco Rosa, and Teresa Goncalves. Distributed proxy: A design
pattern for distributed object communication. In PLoP’97, Monticello, USA, September
1997. http://jerry.cs.uiuc.edu/˜plop/plop97/Proceedings/ritosilva.pdf.

[15] Sérgio Soares and Paulo Borba. Progressive implementation with aspect–oriented program-
ming. In Springer Verlag, editor, The 12th Workshop for PhD Students in Object–Oriented
Systems, ECOOP02, Malaga, Spain, June 2002.

[16] Sérgio Soares, Eduardo Laureano, and Paulo Borba. Implementing distribution and persis-
tence aspects with AspectJ. In Proceedings of OOPSLA’02, Object Oriented Programming
Systems Languages and Applications. ACM Press, November 2002. To appear.

[17] Gregg Sporar. Retrofit Existing Applications with RMI. Java World, January 2001.

