Concurrency Manager

Sérgio Soares* and Paulo Borba
Centro de Informatica
Universidade Federal de Pernambuco

Intent

Provide an alternative to method synchronization with the aim of increasing system per-
formance. Concurrency Manager uses knowledge about the semantics of the methods
in order to block only conflicting execution flows, allowing the non—conflicting ones to
execute concurrently.

Motivation

The advent of web—based information systems significantly increased the number of con-
current programs. Concurrent programs must control concurrency to guarantee safe im-
plementations, which avoid interference that lead systems to inconsistent states and be-
haviors. To implement some of these controls we need to use programming language
features, such as blocking methods to avoid their concurrent execution in the same ob-
ject. In the Java [6] programming language we can do this synchronizing methods with
the synchronized method modifier, which forbid concurrent execution of methods within
an object.

However, implementation of such features brings performance overhead, serializing
the execution of some operations. There are several approaches concerned about guaran-
teeing performance increasing, removing unnecessary synchronization of Java concurrent
programs [3, 1, 5]. They show the negative impact in efficiency of the Java concurrency
control mechanisms. This negative impact demands alternatives to increase programs’
performance.

Method synchronization guarantees that all concurrent execution of a method within
an object will be serialized. With this approach we can allow or block all concurrent
execution of a method. However, if some execution flows cannot be concurrently executed,
but others can, we need an intermediary approach.

Example

Consider an address book application with a class AddressBook that has a method to
register addresses. The method verifies, before registering an address in the system, if

*Supported by CAPES. Email: scbs@cin.ufpe.br
tPartially supported by CNPq, grant 521994/96-9. Email: phmb@cin.ufpe.br

there is an address with the same email of the address being registered. Two concurrent
executions that try to register addresses with the same email may get the same answer:
there is not an address with the email of the objects being registered. In this case both
execution flows will try to register the objects, which may turn the system to an incon-
sistent state, or raise an unexpected error. We can conclude that this method cannot
be concurrently executed if the objects (addresses) being registered have the same email,
otherwise concurrent execution is allowed. Therefore the address’ email can be used to
decide if an execution flow can or cannot be concurrently executed. Figure 1 shows an
UML [4] class diagram of this application.

<<Interface=>
IConcurrencyManagerdB AddressBook | " | Serlat

beginExecution(String) registerfAddress)
endExecution(String) 7

1
v
‘

H

—_

E “zugers !
CaoncurrencyManagerAs Strinll; f-‘?ddress .
beginExecution(String) S50 Sitring email
endExecution(String) i String nick

Figure 1: Address Book application’s class diagram.

The class ConcurrencyManager is user to control the AddressBook register method
execution. The method should ask permission to the ConcurrencyManager before exe-
cuting, calling the beginExecution method with the address’s email as the argument.
If another address is being registered with the same email by other execution flow, this
execution is blocked until the executing flow terminates.

The email information is part of the method semantics, as the method’s parameters
and the object’s state. The Concurrency Manager pattern uses such information to block
only the conflicting execution flows.

Either persistent application that uses databases management systems (DBMS) must
make some concurrency controls. So this pattern can be also used in such systems, besides
the idea that persistent systems already make all concurrency controls using the DBMS
features, which is not true [9].

Applicability
Use Concurrency Manager when

e You need to control concurrent access to an object, blocking just some concurrent
execution of a method within the object, allowing others. In the previous example
concurrent addresses registration can be executed since the addresses have not the
same email. Only the registrations of addresses with the same emails must be
serialized (synchronized).

e You need to control concurrency in more than one method; some flows can execute
concurrently in the methods and others cannot. For example, in a banking appli-

cation you can concurrently execute the methods deposit and withdraw, but for
different accounts. The execution of deposit and withdraw for a same account must
be serialized to avoid inconsistencies.

e You need to control methods in different objects. The objects must have the same
instance of the pattern to manage the concurrent execution in the objects. In this
case, one instance of the pattern manages methods execution in several objects.

Structure

The structure of Concurrency Manageris presented in the Figure 2 using an UML [4] class
diagram. This diagram is a generic diagram, if compared with the diagram presented in
Figure 1, which defines a class to encapsulate the information used to decide if an execution

flow should be blocked.

=zInterface=>
[Concurrencyhanager ClassControlled Thread

beginExecution(ConcurrencyManagerData) methodContralled() | i
endExecution{ConcurrencybanagerData) '

A

1
1
:
1
: “alUsexr
1
1
1
1

kv
ConcurrencyManagerData
matchi)

ConcurrencyManager

beginExecution(ConcurrencyManagerData)
endExecution{ConcurrencybanagerData)

Figure 2: Concurrency Manager pattern’s class diagram.

Participants

The participants of the pattern are

e ClassControlled. A concrete class with methods that can be concurrently executed
in some cases and cannot in others. The classes must have one or more instances of
the ConcurrencyManager to synchronize its methods.

e Thread. The thread that executes the controlled method(s) of the ClassControlled
objects.

e IConcurrencyManager. An interface responsible to abstract the pattern implemen-
tations and its extensions.

e ConcurrencyManager. A concrete class, which implements the IConcurrency-
Manager interface, and is responsible to control the concurrent execution of the
ClassControlled objects. This control is made based in the operation’s semantics,
which is encapsulated in the ConcurrencyManagerData object.

3

e ConcurrencyManagerData. A concrete class with the information used to forbid a
method execution. The class also has a method match to compare two instances
of the class. This method implementation is responsible to define, based in the
information of their attributes, if a ConcurrencyManagerData object matches any
ConcurrencyManagerData object already inserted in the manager, which means
that the current execution flow may conflict with another one, and hence must be
blocked.

Collaborations

Figure 3 shows a collaboration diagram modeling how a method can use the concurrency
manager to control concurrent execution. After being called by an execution flow (message
1), the controlled method creates a ConcurrencyManagerData object with the relevant
information to decide if an execution flow can execute concurrently (message 1.1). After
that, the manager’s beginExecution method is called with the created data as argument
(1.2). Based in the stored data objects, the manager verifies if there is a data object
that matches the object passed by the controlled method (1.2.1). If the objects match,
the controlled method is blocked (1.2.2); otherwise, the data object is stored in the man-
ager (1.2.3) and the controlled method executes. Just before terminating, the controlled
method calls the manager’s endExecution method with the same data object created in
the beginning (1.3). This method call removes the data from the manager (1.3.1) and
notifies the blocked execution flows (1.3.2), which become ready to execute again.

[answer] 1.2.2; wait()
. Thread [not answer] 1.2.3: add{data)
1.3.1: remave(data)

1.3.2: notify Al
—_—

l 1: controlledMethod()
1.2: beginExecution(data) {concurrent}

1.3: endExecutionidata) {concurrent}

; - ConcurrencyManager
. ElassControlled - y]
l/1.1:=:=:create:=> 1.2.1: answer = match{data) l{
[
data . ConcurrencyhManagerData [

. ConcurrencyianagerData

Figure 3: Concurrency Manager’s collaboration diagram.

In the collaboration diagram (Figure 3) the constructs { concurrent } (messages 1.2
and 1.3) means that in the presence of multiple flows of control, the operation will be
treated as atomic. Java supports this construct with the synchronized method modifier.

Figure 4 shows a sequence diagrams that specifies an execution of a controlled method
without conflicting flows.

. Thread . Class data . Concurrency . Concurrency set . Concurrency
Controlled ManagerData ManagerAB ManagerDataSet

contrallediethod() | ! ' 3
<<creates» ! .

beginExecution(data) : |
- qanswar ;= contains(data) |

There isnt ; []
conflict T e . add(data) !

~= - not answer | U

i proceed ,
{ not answer } ! : !
i i

endExeu:g:Jtinn(data) : remave(data)

a I

Figure 4: Concurrency Manager's sequence diagram of an execution flow without conflict.

Other scenario is presented in Figure 5, which shows a sequence diagram that specifies
an execution of a conflicting execution flow.

Consequences

The benefits of the pattern are:

e Performance increase. The system performance is increased by the elimination of
unnecessary synchronization. The pattern uses the system operations’ semantics
to block only conflicting concurrent execution. Performance tests made to analyze
the efficiency impact of using this pattern showed that the performance increasing
was about 20%, depending of some aspects, such as the operations workload and
the number of concurrent threads. With high workload, we can see a low syn-
chronization overhead, on the other hand, with high number of concurrent threads
the synchronization overhead will be greater [9]. These aspects variation take the
performance increasing in a range from 5% to 60%.

e Reuse. The manager class and the class responsible for the data used by the manager
can be reused in several systems.

o Fxtensibility and maintainability. The pattern uses an interface to abstract differ-
ent implementations of the manager. So, we can have different implementations
of the pattern, for example, an implementation to be used in sequential environ-
ments, which does not make any concurrent control, simplifying its implementation
before migrating the system to the concurrent environment. Note that the pattern’s
structure allows changing the concurrency control without making modifications in
business classes. This is possible because the use of the ConcurrencyManagerData

. Thread : Class data : Concurrency . Concurrency set . Concurrency
Controlled ManagerData ManagerA5 ManagerDataSet

~ contralledMethod) | cooipatess

beginExecution(data : . :
: : \data) Langwer ;= contains(data) |

wait() ; |_|

{answer |

natifyAll]) ' Conflict was Ly
: _,P»”" ! detected 3
Conflict F :
is over

! answer = contains(data) |

There isn't i add(data) |—,|
conflict 1177 T o - o= - not answer) u

il]

proceed !

{ not answer } ! =
:l | | |

endE}{et‘tution(data) (data)
! rermove(data

|]

Figure 5: Concurrency Manager’'s sequence diagram of a conflicting execution flow.

and ConcurrencyManager classes remove the code responsible for the concurrent
control from the business classes, such as the Address class. This separation of
concerns [7] (business and concurrency control) helps the system extensibility and
maintainability.

The liabilities of the pattern are:

e [ncreased number of classes. The class hierarchy becomes more complex because
new classes and interfaces are added, decreasing legibility and maintainability.

e [ncreased indirection. In order to introduce our control technique we must delegate
some calls to methods, which seems to decrease system performance. In fact, this
lost of efficiency is recompensed because only conflicting execution flows are blocked.

e Complezity. The controlled method’s code is more complex than using the synchro—
nized modifier, because to implement the pattern we must add about four new lines
of code. This contributes to decrease the system legibility and maintainability.

e Risk of deadlock. When applying the concurrency control technique to a method,
the programmer may forget to properly call the manager’s endExecution method
allowing execution flows to block indefinitely.

Implementation

To implement the Concurrency Manager we can use several approaches.

e ConcurrencyManagerData set. The simplest approach is the one where the man-
ager keeps a set of ConcurrencyManagerData objects. When a thread asks permis-
sion to execute a method passing a ConcurrencyManagerData object, the man-
ager uses the ConcurrencyManagerData match method to verify if there is an-
other object that matches this ConcurrencyManagerData. If there is not, the
ConcurrencyManagerData object is inserted in the ConcurrencyManagerData set
and the execution may proceed. If there is any, the execution flow is blocked until
the execution that inserted the object matched by the ConcurrencyManagerData
finishes. The ConcurrencyManagerData class may store a simple key, as a string,
or more complex information that is necessary to decide if an execution flow can
execute concurrently with others.

o State machine. We can also implement a state machine in the ConcurrencyManager
class. The manager should have a table to store all the system execution. Probably
the ConcurrencyManagerData class has to store the name of the method to execute
and the object id of the object being executed. With this information, the manager
can decide if this execution can be done at this time, verifying if this execution
sequence is according with the state machine definition.

Sample Code

Consider the application that registers addresses and verifies, before register an address,
if there is an object in the system with the same email of the object to be registered,
see Figure 1. A possible concurrent execution that tries to register two objects with the
same email may turn the system to an inconsistent state. Consider that in a concurrent
execution both threads make the email verification and receive a reply that there is not
an object with the email of the ones being registered, so, the threads will try to insert the
objects. Note that these execution flows cannot execute concurrently, but the flows that
try to insert addresses with different emails can be concurrently executed. Therefore, we
can implement the Concurrency Manager pattern to control these executions.

The following implementation of the Concurrency Manager makes a simplification of
the pattern. The ConcurrencyManager class keeps a keyword set (String set) that is used
to control concurrent execution over then, instead to keep a ConcurrencyManagerData
set. To implement this set we use the java.util.HashSet, a class that implements an
object set without any concurrency control.

public class ConcurrencyManager {
private HashSet keys;
public ConcurrencyManager() {
keys = new HashSet();
}

We need to define a method to receive a String parameter to inform that a thread
will start to execute some operation over this String. If this keyword is already in the
set the execution is blocked, meaning that another thread is executing over this keyword.
The HashSet class has a method to verify if there is an object in the set. We use this
method to find if the keyword is already in the keyword set. We also use the method

wait inherited from Object class, superclass of all Java classes. This method blocks an
execution until being notified to resume it.

public synchronized void beginExecution(String keyword) {

try {
while (l!keys.add(keyword)) {
wait();
}
}

catch(InterruptedException ex) {
throw new RuntimeException("Unexpected error");
}
}

We also need a method to inform that the execution over a String (keyword) is
finished. This method removes the keyword of the set, using the HashSet remove method,
and releases a thread that is blocked waiting to execute by calling the method notifyAll,
other method inherited from Object.

public synchronized void endExecution(String keyword) {
try {
if ('keys.remove(keyword)) A
throw new RuntimeException("Keyword not found");

}
}
finally {
notifyAl1();
}

Now we need programming in the business class the code that negotiates with the
manager. The conflicting executions are the ones that try to register objects with a
same email. So we use the ConcurrencyManager class to synchronize only the conflicting
execution, which are the ones registering addresses with the same email. The keyword
to be used is the object’s email, so if two threads try to register two objects with the
same email, the second one’s execution is blocked until be released by the first one. The
following example shows how the ConcurrentManager class is used in this example.

public class AddressBook {
private AddressCollection addresses;
private ConcurrencyManager manager;

The AddressBook class defines an AddressCollection, which is responsible to store
the Address objects, and a ConcurrencyManager that is responsible to control the con-
currency over the method register.

public void register(Address address) throws EmailException {

1: String email = address.getEmail();
2: try {

3: manager .beginExecution(email) ;
4: if (laddresses.hasEmail(email)) {
5: addresses.insert(address);
6: }

7: else {

8: throw new EmailException();
9: }

10: }

11: finally {

12: manager .endExecution(email) ;
13: +

3

As we sad before, this example makes a simplification when do not use a Concurrency—
ManagerData object to send the method information to the Concurrency Manager. In
the register method of the AddressBook class we use the method’s semantics, in this
case the address’ email, to avoid invalid concurrent execution, as described before, calling
the beginExecution method of the ConcurrencyManager class (line 3). This method
call must be done before execute the method in order to ask the manager permission to
continue the execution. Therefore, other thread that tries to register another address with
the same email will be blocked. Just before terminating the execution we must call the
endExecution method (line 12) telling the Concurrency Manager to remove the key added
in the manager’s set and to release the blocked threads, if there are any. This execution
is made inside a finally clause, which guarantees that the command will be executed,
independent of what happen in the method execution, since the method execution may
raise an exception before finishes its execution [6]. If this occurs and programmer forgot
to call the endExecution method inside a finally block, the key will not be removed
from the manager’s set, which allows the executions flows, blocked because of this key, to
block indefinitely.

Known Uses

The Concurrency Manager pattern uses the idea of semantics—based concurrency con-
trol [2]. This approach uses the operations’ semantics to improve performance, decreasing
operations’ serialization. For example, “two operations conflict if they both operate on
the same data item and one of them is a write”. The concurrency pattern differs from
this approach because the programmer must define what is the semantics of conflicting
operations, when implementing the concurrency manager data.

A potential use of the pattern to control the concurrency is in web—based systems with
a software architecture that has a business collection and a data collection for each basic
class. The business collections are classes where the system policies are implemented, for
example, the AdressBook class used in the previous sections. The data collections are
classes responsible for data storage, as the AddressCollection class, and basic classes

are classes that model the system’s basic objects, for example, the Address class. We can
mentioned many real web—based systems that use this architecture:

e A system to manage a telecommunication company’s clients. The system is able to
register mobile telephones and change clients and telephones services configurations.
The system can be used over the Internet.

e A system for performing on-line exams. This system has been used to offer different
kinds of exams, as simulations based on previous university entry exams, which help
students to evaluate their knowledge before the real exams.

e A complex supermarket system. A system responsible to control the sales in a
market. This system has been used in several supermarkets and other kinds of
stores.

e A system for registering health system complaints. The system allows citizens to
complaint about diseases problems and to retrieve information about the public
health system, such the location or the specialties of a health unit.

Our approach can be used in the business collection classes of these systems, where busi-
ness polices may race conditions, as the one in the address book example.

We made performance tests [9] in a toy system that implements the pattern in order
to analyze the efficiency impact. As we say in the Consequences Section, the performance
increasing goes from 5% to 60%, depending on some aspects such as method workload
and the number of concurrent threads.

Related Patterns

A related pattern is the Monitor Object [8] that synchronizes the execution of methods.
This pattern also allows methods to cooperate scheduling their execution sequences by
waiting and notifying each other via monitor conditions. The monitor conditions deter-
mine when a method should suspend, and when resume. In the Monitor Object approach,
the controlled methods has to choose what is the monitor condition to wait or to notify.
In the Concurrency Manager, the manager is the responsible to say when a method can
or cannot execute concurrently. This decision is encapsulated in the manager’s definition.
In fact, the main Concurrency Manager’s goal is to allow as many as possible concurrent
execution, to increase the system efficiency, on the other hand, the main Monitor Object’s
goal is to synchronize objects methods execution. This similarity allows us to classify our
pattern as a Concurrency Pattern [8], like the Monitor Object pattern.

The Concurrency Manager pattern may implement the Singleton design pattern to
guarantee that there is a single instance of the manager. This is necessary if we try to
centralize all concurrency controls in a single manager to control all the system executions.

Acknowledgments

We would like to give special thanks to Jorge L. Ortega Arjona, our shepherd, for his im-
portant comments, helping us to improve our pattern. We also thanks Gunter Mussbacher
for the suggestions made at the conference.

10

References

1]

Ole Agesen, David Detlefs, Alex Garthwaite, Ross Knippel, Y. S. Ramakrishna, and
Derek White. An efficient meta-lock for implementing ubiquitous synchronization. In
Proceedings of the 1999 ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 207-222, November 1999.

B. R. Badrinath and Krithi Ramamritham. Semantics-based concurrency control:
Beyond commutativity. ACM Transactions on Database Systems, 17(1):163-199, 1992.

Jeff Bogda and Urs Holzle. Removing unnecessary synchronization in Java. In Proceed-
ings of the 1999 ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 35-46, November 1999.

Grady Booch, Ivar Jacobson, and James Rumbaugh. Unified Modeling Language —
User’s Guide. Addison—Wesley, 1999.

Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and Sam
Midkiff. Escape analysis for Java. In Proceedings of the 1999 ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages, and applications, pages
1-19. ACM, November 1999.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specifi-
cation. Addison—Wesley, second edition, 2000.

David L. Parnas et al. Using documentation as a software design medium. The Bell
System Technical Journal, 60(8):1941-1977, October 1981.

Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture, Vol. 2: Patterns for Concurrent and Networked Ob-
jects. John Wiley & Sons, 2000.

Sérgio Soares and Paulo Borba. Concurrency Control with Java and Relacional
Databases (in portuguese). In V' Brazilian Symposium on Programmig Languages,
pages 252-267, Curitiba, Brazil, 23th—25th May 2001.

11

