
Aspect-Oriented Implementation Method:
Progressive or Non-progressive Approach?

Sérgio Soares
∗

Informatics Center
Federal University of Pernambuco

Recife, Pernambuco, Brazil

scbs@cin.ufpe.br

Paulo Borba
Informatics Center

Federal University of Pernambuco
Recife, Pernambuco, Brazil

phmb@cin.ufpe.br

ABSTRACT
Object-oriented programming languages provide effective means
to achieve better reuse and extensibility levels, which in-
creases development productivity. However, the object-oriented
paradigm has several limitations, sometimes leading to tan-
gled code and spread code. For example, business code tan-
gled with presentation code or data access code, and dis-
tribution, concurrency control, and exception handling code
spread over several classes. This decreases readability, and
therefore, system maintainability. Some extensions of the
object-oriented paradigm try to correct those limitations al-
lowing reuse and maintenance in practical situations where
the original paradigm does not offer an adequate support.
However, in order to guarantee that those benefits will be
achieved by those techniques it is necessary to use them to-
gether with an implementation method. Our objective is
to adapt and to analyze an object-oriented implementation
method to use aspect-oriented programming in order to im-
plement several concerns to a family of object-oriented sys-
tem. In particular, we are interested in implementing per-
sistence, distribution, and concurrency control aspects. At
the moment we are particularly interested to present some
results and get feed back about a performed experiment to
identify if and when a progressive approach is better than a
non-progressive one. In a progressive approach, persistence,
distribution, and concurrency control are not initially con-
sidered in the implementation activities, but are gradually
introduced, preserving the application’s functional require-
ments. This approach helps in dealing with the inherent
complexity of the modern applications, through the support
to gradual implementations and tests of the intermediate
versions of the application.

Categories and Subject Descriptors
D.1 [Software]: Programming Techniques—Aspect-Oriented
Programming; D.3.2 [Programming Languages]: Lan-
guage Classifications—AspectJ

∗Also affiliated to Catholic University of Pernambuco, In-
formatics and Statistics Department, Recife, Pernambuco,
Brazil.

Copyright is held by the author/owner.
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

General Terms
Languages, Standardization, Experimentation

Keywords
Aspect-oriented programming, separation of concerns, As-
pectJ, Java, implementation method, progressive implemen-
tation

1. INTRODUCTION
Usually, researchers and software engineers do not give

much attention to implementation methods [1, 6], because
implementation mistakes have less impact in project sched-
ule and development costs than mistakes regarding require-
ments and design.

However, the effort given to requirements and design can
be wasted if there is not a commitment with the imple-
mentation activity. This is necessary in order to increase
productivity, reliability, reuse, and extensibility levels. For
example, the maintenance activity usually has the highest
cost [3, 5], which is inversely proportional to reuse and ex-
tensibility. This motivates the continuous search to increase
those levels.

Object-oriented programming languages provide effective
means that help to increase productivity, reliability, reuse,
and extensibility levels, but has several limitations, some-
times leading to tangled code and spread code, decreasing
readability, and therefore, system maintainability. Exam-
ples are, business code tangled with presentation code or
data access code, and distribution, concurrency control, and
exception handling code spread over several classes. To solve
these limitations, techniques, like aspect-oriented program-
ming, aim to increase software modularity in practical situ-
ations where object-oriented programming does not offer an
adequate support.

2. ASPECT-ORIENTED PROGRAMMING
We believe that aspect-oriented programming (AOP) [4],

is very promising [9, 11]. AOP tries to solve the inefficiency
in capturing some of the important design decisions that
a system must implement. This difficulty leads the imple-
mentation of these design decisions spread through the func-
tional code, resulting in tangled code with different concerns.
This tangling and scattering code hinders development and
maintenance of these systems. AOP increases modularity
by separating code that implements specific functions and



affects different parts of the system. These are called cross-
cutting concerns.

By separating concerns AOP allows implementing a sys-
tem separating functional and non-functional requirements.
For example, a set of components written in an object-
oriented programming language, such as Java, might im-
plement functional requirements. On the other hand, a set
of aspects (crosscutting concerns) related to the properties
that affect system behavior might implement non-functional
requirements. Using this approach, non-functional require-
ments can be easily manipulated without impacting the busi-
ness code (functional requirements), since they are not tan-
gled and spread over the system. In this way, AOP allows
the development of programs using such aspects, including
isolation, composition and reuse of part of the aspects code.

3. IMPLEMENTATION APPROACHES
No matter how good the programming language, an im-

plementation method is important to define activities to be
executed and the relations between them, including their
execution order. Our main goal is to define an implemen-
tation method using aspect-oriented programming, helping
to develop better software with better productivity levels.
Our implementation method will guide the implementation
of persistence, distribution, and concurrency control con-
cerns that conforms to specific software architecture. De-
spite being specific, the software architecture can be used to
implement several kinds of systems.

These aspects can be implemented in different ways and
in a different order. They might be implemented at the
same time as the functional requirements are being imple-
mented. Another idea is to follow a progressive approach,
where persistence, distribution, and concurrency control are
not initially considered in the implementation activities, but
are gradually introduced, preserving the system’s functional
requirements.

This progressive approach helps in decreasing the impact
in requirements changes during the system development,
since a great part of the changes might occur before the final
version of the system is finished. This is possible because
a completely functional prototype is implemented without
persistence, distribution, and concurrency control, allowing
requirements validation without interference of these non-
functional requirements and without the effort to imple-
ment those. At this time the system uses non-persistent
data structures, such as arrays, vectors, and lists, and is
executed in a single-used environment. Moreover, the pro-
gressive approach helps in dealing with the inherent com-
plexity of modern systems, through the support to gradual
implementation and tests of the intermediate versions of the
system.

3.1 Approaches analysis
We performed an experiment with graduate students us-

ing AspectJ [7] and the implementation approaches to iden-
tify if and when the progressive approach is better than the
non-progressive one. The experiment was carefully designed
using recommendations of experts in the empirical area [10,
8, 2].

We divided the students in pairs and randomly assigned
to a project. There were two kinds of project; both had
the same resulting system, however one had to follow one
a progressive approach, and the other a non-progressive ap-

proach. In the experiment execution they implemented a
simple information system with operations to register, change,
and retrieve information. We simulate development prob-
lems like requirement changes and modeling problems and
we also simulate code generation to support the develop-
ment. An interesting result of this experiment was new in-
terferences between the aspects that were not identified in
the previous experiment.

In this experiment we collected data in order to evaluate
the benefits and liabilities to implement a system using a
progressive approach. Examples of the data collected are
implementation time, debugging time, time to correct er-
rors and requirements changes, number of lines affected by
changes, and a form to get the anonymous feedback about
the experiments from the students. The experiment exe-
cution is already finished, however we had some problems
during data collection, which did not allow we to use some
of the values. The others values showed that the progressive
approach maybe more effective in those experiments. How-
ever, we did not have enough groups to provide statistical
analysis, we only used data of two groups. Therefore, we are
planning to run the experiment again taking care of how the
data will be collected allowing us to validate this previous
experiment.

4. REFERENCES
[1] Scott Ambler. Process Patterns-Building Large-Scale

Systems Using Object Technology. Cambridge
University Press, 1998.

[2] Victor Basili, Richard Selby, and David Hutchens.
Experimentation in Software Engineering. IEEE

Transactions on Software Engineering,
SE-12(7):733–743, July 1986.

[3] D. Coleman, D. Ahs, B. Lowther, and P. Oman. Using
Metrics to Evaluate Software System Maintainability.
IEEE Computer, 24(8):44–49, August 1994.

[4] Tzilla Elrad, Robert E. Filman, and Atef Bader.
Aspect–Oriented Programming. Communications of

the ACM, 44(10):29–32, October 2001.

[5] R. Graddy. Succesfully Applying Software Metrics.
IEEE Computer, 27(9):18–25, September 1994.

[6] Ivar Jacobson, Grady Booch, and James Rumbaugh.
The Unified Software Development Process.
Addison-Wesley, 1999.

[7] Gregor Kiczales, et. all. Getting Started with AspectJ.
Communications of the ACM, 44(10):59–65, October
2001.

[8] Gail Murphy, et. all. Evaluating Emerging Software
Development Technologies: Lessons Learned from
Assessing Aspect-Oriented Programming. IEEE

Transactions on Software Engineering, 25(4):438–455,
July/August 1999.

[9] Gail Murphy, et. all. Does aspect–oriented
programming work? Communications of the ACM,
44(10):75–77, October 2001.

[10] Shari Pfleeger. Design and Analysis in Software
Engineering. Software Engineering Notes, 19(4):16–20,
October 1994.

[11] Sérgio Soares, Eduardo Laureano, and Paulo Borba.
Implementing Distribution and Persistence Aspects
with AspectJ. In OOPSLA’02, pages 174–190. ACM
Press, November 2002. SIGPLAN Notices 37(11).


