Concurrency Control with Java and Relational Databases

Sérgio Soares and Paulo Borba
Informatics Center
Federal University of Pernambuco
Recife, PE, Brazil
{scbs,phmb}@cin.ufpe.br

Abstract

As web-based information systems usually run in con-
current environment, the complexity for implementing and
testing those systems is significantly high. Therefore it is
useful to have guidelines to introduce concurrency control,
avoiding ad hoc control strategies, which may have a neg-
ative impact in efficiency and may not guarantee system
safety. This paper defines guidelines for concurrency con-
trol in web—based information systems implemented in Java
with relational databases. In particular, we show where
Java and relational database concurrency control mecha-
nisms should be used in order to implement our concur-
rency control strategy. Additionally, we analyze the perfor-
mance of different concurrency controls approaches. The
main point of the guidelines is to guarantee system correct-
ness without redundant concurrency control, both increas-
ing performance and guaranteeing safety.

1. Introduction

As web-based information systems usually run in con-
current environment, the complexity for implementing and
testing those systems is significantly increased. In fact, sub-
tle implementation errors might appear and are usually dif-
ficult to detect and locate. This indicates that we need ade-
quate ways to implement concurrent programs. In particu-
lar, it is useful to have guidelines to introduce concurrency
control, avoiding ad hoc control strategies, which may have
a negative impact in efficiency, making redundant controls.
Moreover, ad hoc control strategies may not guarantee sys-
tem safety, adding new race conditions that lead to invalid
executions.

In order to avoid those problems, the guidelines pre-
sented here guarantee safety, standardizing the control
strategies, favoring system extensibility, and improving
maintainability. Contrasting with general well-known [11,
14] design patterns for concurrency control, our guidelines

are more effective for developing web—based systems be-
cause they are tailored to a specific architecture widely used
to develop this kind of system. They also assume the use of
relational databases for implementing persistence, and con-
sider the databases concurrency control support. We also
analyze the performance of several concurrency controls,
identifying the most efficient ones.

Since our architecture demands the manipulation of both
Java [10] objects and database tables, we must use pro-
gramming languages concurrency control mechanisms over
the objects. Our guidelines use concurrency control mech-
anisms of both Java and relational databases, which are
widely used for implementing web-based information sys-
tems. The guidelines indicate where each mechanism shall
be used in order to guarantee system correctness without re-
dundant and expensive concurrency control. Therefore pro-
grammers know which concurrency controls must be im-
plemented by the database mechanisms and which ones the
programming language features must implement. A pes-
simist approach can leave all the concurrency control to
the database management system. However, this approach
does not manipulate objects, avoiding several benefits of the
object—orientation.

The negative impact on efficiency caused by program-
ming language concurrency control mechanisms, and the
need for guidelines that support the correct and efficient in-
troduction of concurrency control, has been reported by sev-
eral researchers [3, 1, 6]. They are worried in guaranteeing
execution efficiency, avoiding unnecessary synchronization
in Java concurrent programs. Our approach differs in the
sense that it is not general, but tailored to a specific architec-
ture and considers both language and database concurrency
control mechanisms. Although specific, a wide range of ap-
plication can be developed using this architecture. Some
examples are shown in the next section.

We applied our guidelines to two real web—based infor-
mation systems. In the first one, which was already imple-
mented and running, we used the guidelines as a mechanism
for checking whether the system controls concurrency cor-



rectly. This helped us to validate the guidelines, since some
concurrency control that our guidelines define was used in
those systems, such as using transactions only when it is
necessary. In the second system, the guidelines were ap-
plied during the implementation phase and were responsible
up to 10% for the implementation time, which demonstrate
the small impact of them.

This paper is structured in five sections. In Section 2
we present a specific architecture to developing web—based
information systems. After that, in Section 3, we define
the concurrency control guidelines, which aim to guarantee
safety and efficiency. We identify the mechanism (database
or programming language) that should be used in each sit-
uation of the presented architecture. We discuss the perfor-
mance impact of different concurrency control approaches
in Section 4. Related approaches and conclusions are pre-
sented in Section 5.

2. A Specific Architecture for Web—based Sys-
tems

This specific architecture, which the guidelines are tai-
lored in, tries to provide some requirements that can be con-
sidered general to web-based information systems, includ-
ing the ability to work in a distributed environment, guar-
antee data integrity and persistence in production environ-
ment, possibility to change the persistence mechanism, or
use volatile data, for requirements validation, and be easily
maintained. In order to attend those requirements a layer
architecture and design patterns were used in a Java im-
plementation. This layer architecture aims to separate data
management, business rules, communication (distribution),
and presentation (user interface) concerns. Such structure
prevents tangled code, for example, business code interlac-
ing with data access code, and design patterns allow us to
reach greater reuse and extensibility levels.

Figure 1 presents an UML [4] class diagram that illus-
trates the software architecture and design patterns [13, 9, 5]
considered here, for a simple bank example. Accesses to
the system are made through a unique entry point, the sys-
tem facade [9] (Bank). The system facade also implements
the Singleton [9] design pattern to guarantee that there is
just a single instance of this class, which is the instance to
be distributed over the user interfaces. The facade is com-
posed of business collections, target of facade methods del-
egation. Accounts are registered, updated, and queried in
a web client implemented using Java Servlets technology.
Section 3 provides more details about the classes of the soft-
ware architecture.

Although the guidelines presented in this paper have
been defined for a specific layer architecture and associated
design patterns [13], this architecture can be used to imple-
ment several kinds of system, but it is especially useful for

<<Facade>>
Barnk
registerfAccount account)
depositiString number, double value)
transfer(String from, String to, double value)

|

<<Business Collection=>
AccountsRecords
registerfAccount account)
deposit(String number, double value)
withdraw(String number, double value)
transfer(String from, String to, double value)

<<User Interface>>
AccountRegisterServiet

«<<|Business-Datax»>
AccountsCaollectionlnterface

<<Business Basicx>

H
Account <<Persistent Data Collection==

AccountsCollectionRDB
nurnber e
balance he—erylr=8 0
retrieve()
remove()
update()

deposit(double value) |
withdraw(double value)

Figure 1. Architecture’s class diagram.

the development of web—based information systems.

3. Concurrency Control Guidelines

In this section we indicate the concurrency control mech-
anisms (programming language or database) that should be
used in each part of the code structured according to the
pattern presented in the previous section (see Figure 1).
By following those guidelines we can have a safe, non-
redundant, and efficient concurrency control. We define
specific guidelines for each kind of class of the architecture
presented in Section 2. The guidelines prevent naive con-
trols such as synchronizing all the system access methods
(facade’s methods) or implementing database transactions
for all those methods. We also indicate the most commonly
applied concurrency control techniques according to our ex-
perience acquired through the implementation and analysis
of systems that use the same software architecture consid-
ered here.

General guidelines, based in basic principles of concur-
rency control, are needed to avoid concurrent executions of
non—-atomic methods and methods that read the attributes
modified by the non-atomic ones. Examples of this kind of
method are the ones that access long or double attributes,
since the Java specification [10] does not guarantee atomic
assignments to these types. To avoid such concurrent execu-
tions we can use the Java synchronized method modifier,
which serializes concurrent executions of modified methods
in the same object.



3.1. Business Basic Classes

We start to define the specific guidelines with the busi-
ness basic classes (see Figure 1), which represent system
basic objects such as customers and accounts. First of all,
we must identify which basic objects might be concurrently
accessed.

I dentifying Concurrent Access

The data collections classes (see Figure 1) determine if an
object may be concurrently accessed because these classes
are responsible for storing and retrieving basic objects.
Usually, persistent collections that use relational databases
create a new instance, with the data retrieved from the
database, for each request to search for an object.

Therefore, if two threads, for example, try to retrieve ac-
counts with the same number, the threads will get references
to distinct copies of the object stored in the database. This
avoids concurrent access on any Account instance, since
we assume that the concurrency environment allows two or
more clients to access the system, but each user access it
sequentially.

An alternative to this approach for implementing data
collections is to use object caching to guarantee that there
will be a single object in memory for each entity stored in
the database. This approach is used by some relational and
object—oriented database access APIs [16, 17, 7] to prevent
inconsistencies that might happen, for example, in the case
of a concurrent update of two copies of the same account.
In this case, concurrent requests to retrieve an account with
the same number will receive a same reference to the object
stored in the cache. This allows the concurrent access to
basic objects, which is controlled by basic guideline men-
tioned in the beginning of the section.

Introducing Concurrency Control

After identifying the basic objects that might be concur-
rently accessed, we must apply the general guidelines to
the corresponding classes. In the classes whose objects
are not concurrently accessed we must still analyze situa-
tions where concurrent updates of copies of the same object
should not be allowed. For example, an Account class has
methods such as deposit and withdraw, which update the
balance attribute based on its old value. Concurrent up-
dates of two copies of the same account might take system
to an inconsistent state.

Consider a possible execution where the balances of
copies of the same Account are concurrently modified,
where two threads concurrently execute three operations: to
request an account to the data collection, to deposit a value
in the retrieved object, and to update the object in the data

collection. After executing, the account’s balance infor-
mation may be inconsistent because each thread works with
a different copy of the same object, and the second copy to
be updated overwrites the first one.

In order to avoid this problem with concurrent updates
of object copies, our guideline suggests the implementation
of an update control for each persistent object. This can be
done using a timestamp-based technique that adds version
information to those objects. Note that this technique is not
an implementation of a database algorithm such as times-
tamp ordering [12]. The idea is to allow object updating just
if there is not a newer version of it stored in the database.
Otherwise, the operation must be restarted.

3.2. Data Collection Classes

The data collections classes (see Figure 1) are responsi-
ble to store and retrieve basic objects. They implement the
business—data interfaces, which are abstractions of the sys-
tem’s data management. These interfaces allow us to easily
extend the system changing the data management mecha-
nism, by providing implementations of the business—data
interfaces to the respectively data management mechanism.

In the persistent data collections we can also find concur-
rency problems when an object is inserted, updated, or re-
moved from the database. In these cases we must guarantee
that database features are properly used; we must include,
update, or remove an object inside a database transaction.
In this way, we can assume that great part of the concur-
rency control, regarding to data update, is implemented by
the database. Considering this, we must guarantee that the
methods of the facade are atomic regarding database access.
We can do this by implementing database accesses with a
single SQL command, or by implementing transactions in
the facade’s methods, using the persistence mechanism in-
terface services. To guarantee the atomicity of the data col-
lection methods we must follow the following steps:

o Identify data collection methods that directly or indi-
rectly execute two or more SQL commands;

o Identify business collection methods that call the data
collection methods identified in the last step;

o Identify facade methods that call business collection
methods identified in the last step;

e The facade methods identified in the last step
must use the persistence mechanism interface meth-
0ds beginTransaction, commitTransaction and
rollbackTransaction to implement a transaction
on its body.

For example, in the following update method of the
Bank class, the underlined pieces of code are responsible
for the transaction mechanism implementation.



public class Bank {
private AccountsRecords accounts;
private PersistenceMechani smnterface pm
public void updat e(Account account) {
try {
pm begi nTransacti on();
account s. updat e(account) ;
pm commi t Tr ansacti on() ;
}
catch (DBTransacti onException e) {
pmrol | backTransacti on();
}
oo
}

Assuming that in order to update an account we had to
invoke two SQL commands.

3.3. Facade and Business Collection Classes

The business collection classes are responsible for im-
plementing verifications and validations according to the
application business logic. Such classes use the business—
data interface services to store and retrieving basic objects.
The facade class [9] provides an unified interface with all
system services, grouping all instances of the business col-
lection classes.

Our guidelines for business collections and facade are
mainly concerned with identifying business logic that might
lead to race conditions. An example of this kind of rule is
verifying, before insert an object in a collection, if there is
an object with the same code, or any sort of information that
is used in a primary key sense, of the object to be inserted.
A concurrent execution that tries to register two objects with
the same code may lead the system to an inconsistent state.
Automatically allocating a code for each object, for exam-
ple, using a relational database sequence, or implementing
this sequence in the business collection, which eliminates
the need for the code verification, can avoid this problem.

For other business verifications that generate situations
like the one described in the last paragraph we must pre-
vent the concurrent execution synchronizing the methods
responsible for the verification. Therefore we should use the
synchronized method modifier or the Concurrency Man-
ager pattern [15], which, provides an alternative to method
synchronization aiming performance increasing. Concur-
rency Manager uses knowledge about the semantics of the
methods in order to block only conflicting execution flows,
allowing the non—conflicting ones to execute concurrently.

Another concurrency problem occurs when, for exam-
ple, the facade class implements some operation with mul-
tiple calls to methods of business collections. This will in-
directly call methods of the data collections, which implies
in executing more than one SQL command to the database.
As we mentioned in Section 3.2, when an operation cannot

be executed with a single SQL command, we must imple-
ment transactions in the facade’s methods, using the per-
sistence mechanism interface services. The same control
is valid when a business collection implement an opera-
tion with multiplies calls to data collections methods. One
example of this kind of method is the business collection
method transfer, which might be implemented by a call
to withdraw followed by a call to deposit.

3.4. Commonly Applied Controls

After implementing and analyzing some running web—
based systems that use the layer architecture and the de-
sign patterns presented here, we can identify which concur-
rency controls were frequently applied. Some of the sys-
tems we implemented and analyzed are a system to manage
a telecommunication company’s clients, a system for per-
forming on—line exams, a the system for registering health
complaints to the health authorities.

The only concurrency control in the facade class, usu-
ally, is implementing transactions. In the business col-
lections there are some calls to the concurrency manager
methods in order to avoid interference by business verifica-
tions. Method synchronization is made only in the update
method of the data collections classes that implement the
timestamp mechanism, and in some business collections
methods that do not use the concurrency manager. This
happens when the system has few simultaneous users ac-
cessing the system and these methods are lightweight, as
discussed in the following section. In the basic classes, the
concurrency control commonly applied is to implement the
timestamp mechanism in the classes whose copies of the
same object cannot be concurrently updated. This is our al-
ternative to intuitive controls that tend to synchronize and to
implement transactions in all facade methods, which is not
efficient nor safety.

4. Performance Evaluation

In this section we present and analyze performance
tests with different techniques and concurrency control ap-
proaches, including the ones suggested by the guidelines
definition. The tests show that some of these approaches
are not recommended, validating the advantages of the ap-
proach suggested by our guidelines. Moreover, the tests
support the decision of which alternative to use for concur-
rency control, since some of our guidelines offer more than
one solution for some problems.

4.1. Performance Tests

We implemented a small customers registering system,
which allows customers registering, retrieving, and updat-



ing. The tests execute these three operations in different ver-
sions of the system, each one implementing different con-
currency controls. We first compare the following versions:

¢ No control: system without concurrency control;

e Synchronized facade: all facade class methods syn-
chronized;

e Facade with transactions: all facade class methods im-
plementing transactions;

e Suggested Control: applying the defined guidelines,
with the concurrency manager in the business collec-
tion and the timestamp for the basic class.

Only the synchronized facade approach and the one that
applies our guidelines guarantee system correctness, if ap-
plied separately. In fact, the former just guarantees system
correctness if two copies of a basic object can be concur-
rently updated, otherwise the approach is not safety. The
no control approach is used as a reference to measure the
controls impact.

The second test measures the impact of the timestamp
mechanism, so we compare the following system versions:

¢ No control: system without concurrency control;

e Timestamp: timestamp mechanism implemented for
the Customer basic class;

We also analyze our alternative for method synchroniza-
tion, comparing the following system versions:

e Synchronization in the Business Collection: business
collection insert method synchronized;

e Concurrency Manager in the Business Collection:
business collection insert method using the Concur-
rency Manager pattern;

For each of the different versions we also analyze varia-
tions in the controlled methods. Thus, we can measure the
impact of different concurrency controls in different types
of systems represented by those variations. For example,
variations on method execution time were implemented by
including a loop that increases the execution time in approx-
imately 100%, which we called heavyweight methods. An-
other variation in the tests is an increasing in the system
workload. We tested the system with workloads between 3
and 600 threads concurrently accessing the system. There-
fore we could simulate a situation of extreme concurrency,
hardly found in access rates of real systems. For instance,
we collected numbers for a considerably used web system
that has a reasonable access rate of more than 400 users
(not hits) accessing the system in an hour, whereas our ex-
periments execute in few seconds. In our tests there were

12 available connections with the persistence mechanism,
which were shared between the threads, without concurrent
access to them.

4.2. Performance Analysis

The following paragraphs summarize the tests with the
different variations such as system workload and method
weight.

General Approachesfor Concurrency Control

Figure 2 presents a bar chart that compares the no concur-
rency control system with the approach that synchronizes
all facade methods, the one that implements transactions in
all facade methods, and the approach that applies our guide-
lines.

140
120

9 100 @ Synchronized facade
g 80 B Facade with transactions
é 60 O Suggested Control

40
20
0 T T

3 8 18 30 45 60 180 300 450 600
Number of threads

Figure 2. Impact of concurrency controls.

The chart shows that synchronizing all facade methods
is a very expensive approach, increasing the execution time
up to 120%. We can notice a significant overhead, more
than 50%, when implementing transaction for all facade
methods. This is a motivation to apply our guidelines for
concurrency control, because it indicates exactly which fa-
cade methods must implement transactions. We can con-
clude that our guidelines impact is small, less than 10%, if
compared with the others approaches. However, this is a
necessary impact to guarantee the system safety.

This chart shows data observed by executing lightweight
method. In systems with heavyweight methods the exe-
cution time increases 50%, but the difference of execution
time between the approaches is lower.

Timestamp

Similar to the results of the previous test, we can see in Fig-
ure 3 the performance impact of the timestamp mechanism.
The impact with lightweight methods is smaller then with
heavyweight methods. This occurs because of the number
of connections, which restricts the number of concurrent re-
quests to the persistence mechanism. If the methods of the
data collection are heavier they take more time to execute



and keep the connections for a bigger time, delaying the ex-
ecution of others threads. In these tests we had 12 available
connections with the persistence mechanism. Although a
considerable impact in the case of heavyweight methods,
this is a necessary control to guarantee system correctness.
However, increasing the number of available connections
adding more connections might decrease this impact.

Timestamp

= N
=]

O Lightweight methods
5 B Heavyweight metods

Impact (%)

3 6 18 30 45 60 180 300 450 600
Number of threads

Figure 3. Timestamp mechanism impact.

Concurrency Manager

The last test compares the concurrency manager design pat-
tern and the synchronized modifier performance to con-
trol the concurrency in the business collection methods. We
considered another variation besides the system workload
and methods weight: some of the tests lead to race condi-
tion, on the same basic object, allowing the evaluation of
our solution according to this aspect. This variation is im-
plemented creating threads that try to insert, to update, and
to retrieve customers with the same code. We considered
this variation because it suggests the use of different alter-
natives in specific situations, since the concurrency manager
uses this information (methods semantics) to synchronize
the threads only when it is necessary.

Figure 4 shows the negative performance impact caused
by the synchronized modifier versus compared with the
concurrency manager. When few users are accessing
the system concurrently the synchronized modified is
slightly worst (up to 3%) than concurrency manager. For
systems that expect this access rate we suggest the adop-
tion of the synchronized modifier solution, since it is sim-
pler to implement and to maintain. For systems that expect
higher access rates, we suggest the use of the concurrency
manager, which offer a performance going of up to 20%.
This gain is bigger (up to 30%) when there is no race con-
dition over the same object, which is typically the case for
systems like the one we analyzed. In the tests with heavy-
weight methods the control impact of the synchronized
modifier is less than with lightweight methods, but still rel-
evant (10% to 20%).

synchronized versus concurrency manager

@ Without concurrency
B With concurrency

Impact (%)

3 6 18 30 45 60 180 300 450 600
Number of threads

Figure 4. Concurrency Manager versus
synchronized.

5. Conclusions

Contrasting with general well-know [11, 14] approaches
for concurrency control, we defined guidelines for develop-
ing web—based systems tailored to a specific architecture
widely used to develop this kind of system. We also as-
sume the use of relational databases, which are also widely
used for implementing web-based information systems.
Our guidelines use the concurrency control mechanism of
both Java [10], the programming language, and relational
databases. However, those approaches [11, 14] cover a big-
ger portion of the systems concurrency problems, since it is
not tailored to a specific architecture for web—based systems
using relational databases, as our guidelines.

The main point of the guidelines is to guarantee sys-
tem correctness without redundant concurrency control,
both increasing performance and guaranteeing safety. The
database management systems (DBMS) deal with a big por-
tion of the system concurrency control reducing the need for
programming language concurrency control features. This
is the case for basic classes, where language features are
only necessary if their objects are concurrently accessed.
According to our experience this is not the case for many
web-based systems developed with JDBC. However, the
DBMS do not solve all problems related to concurrency
control. Therefore we need to know where to use program-
ming language features in order to avoid redundant controls
and their negative performance impact. We have shown that
those problems can be solved through our guidelines for
concurrency control, preventing losses from 10% to 110%
in the execution time, when compared with naive solutions
such as synchronizing facade methods.

The concern about avoiding unnecessary concurrent con-
trol is topic of many works [3, 1, 6]. One of them [3]
uses global data flow analyses to identify what objects with
synchronized methods cannot be concurrently accessed in
a specific program. An advantage of this approach is that
it is completely automatized. In fact, a big portion of our
guidelines can also be automatized. Our approach differs
from this one because we guide the system implementation



to avoid unnecessary synchronization, also giving guide-
lines to control race conditions added by business polices.
However, contrasting with our approach, this related work
doesn’t guarantee system safety. It guarantees just the
safety of the optimizations made by the analyses, therefore,
the system implementation must guarantee safety before ap-
plying the analyses (optimizations). We might say that our
guidelines and this approach are complementary, since the
guidelines can be applied to guarantee the system safety be-
fore execute the data flow analyses and the optimization.

In this paper we analyze some alternatives to solve con-
currency problems showing, in general, that the concur-
rency manager is more efficient than the synchronized
modifier. Moreover, we show the negative impact of the
widespread use of the synchronized method qualifier, as
well as of the unnecessary implementation of transactions
in facade methods. The experiments also allow us to state
that the impact of the guidelines application in a system is
relatively small; mainly when comparing with the other ap-
proaches (see Section 4). Another advantage of our pro-
posal being based on specific software architecture, is al-
lowing the exact definition and application of the guide-
lines, giving better support to programmers. Although spe-
cific, the software architecture has been and can be used to
implement a wide range of web—based information system.
Development productivity is increased because the guide-
lines precisely indicate the points where concurrency con-
trol code must be applied, identifying classes and situations
passive of control, and which mechanism should be used to
control such problem.

We applied our guidelines in two real web—based infor-
mation systems in order to validate them. The first sys-
tem was already implemented and running, and we used the
guidelines as a mechanism for checking whether the sys-
tem controls concurrency correctly. This helped us to val-
idate the guidelines, since some concurrency control that
our guidelines define was used in those systems, such as us-
ing transactions only when it is necessary. We also found
some naive controls, which could be avoided if our guide-
lines were used. In the second system, which is another
implementation of the application implemented by the first
system, the guidelines were applied during the implemen-
tation phase. We made this to analyze the impact of using
the guidelines in the implementation time. In this case the
guidelines were responsible to 10% of the implementation
time, which shows a small impact of them.

References

[1] O. Agesen, D. Detlefs, A. Garthwaite, R. Knippel, Y. S.
Ramakrishna, and D. White. An efficient meta-lock for
implementing ubiquitous synchronization. In Proceedings
of the 1999 ACM SIGPLAN conference on Object-oriented

(2]
3]

[4]

5]

[6]

[7]

(8]
(9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

programming, systems, languages, and applications, pages
207-222, November 1999.

I. M. Author. Some related article | wrote. Some Fine Jour-
nal, 99(7):1-100, January 1999.

J. Bogda and U. Hélzle. Removing unnecessary synchro-
nization in Java. In Proceedings of the 1999 ACM SIGPLAN
conference on Object-oriented programming, systems, lan-
guages, and applications, pages 35-46, November 1999.

G. Booch, I. Jacobson, and J. Rumbaugh. Unified Modeling
Language — User’s Guide. Addison—Wesley, 1999.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. A System of Patterns: Pattern—Oriented Software
Architecture. John Wiley & Sons, 1996.

J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and
S. Midkiff. Escape analysis for Java. In Proceedings of the
1999 ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, pages 1-
19. ACM, November 1999.

O. Design. Pse pro for java api user guide, 2001.
Avaiable at http://support.odi.com/i/documentation/doc/-
psepro/pse-java/doc/pdf/pseug.pdf.

A. N. Expert. A Book He Wrote. His Publisher, Erewhon,
NC, 1999.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object—Oriented Software.
Addison-Wesley, 1994.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Lan-
guage Specification. Addison—-Wesley, second edition, 2000.
D. Lea. Concurrent Programming in Java. Addison-Wesley,
second edition, 1999.

V. Li. Performance models of timestamp-ordering concur-
rency control algorithms in distributed databases. IEEE
Transactions on Computers, 36(9):1041-1051, 1987.

T. Massoni, V. Alves, S. Soares, and P. Borba. PDC: Per-
sistent Data Collections pattern. In First Latin American
Conference on Pattern Languages Programming — Sugar-
LoafPLoP, Rio de Janeiro, Brazil, 3th-5th October 2001. To
appear in UERJ Magazine: Special Issue on Software Pat-
terns.

D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture, Vol. 2: Patterns for
Concurrent and Networked Objects. Wiley & Sons, 2000.
S. Soares and P. Borba. Concurrency Manager. In First Latin
American Conference on Pattern Languages Programming
— SugarLoafPLoP, Rio de Janeiro, Brazil, 3th-5th October
2001. To appear in UERJ Magazine: Special Issue on Soft-
ware Patterns.

A. Software. O2 technology user manual: Java relational
binding. Version 2.0, July 1997.

Sun Microsystems. The Enterprise Java Beans Specification,
October 2000. Avaiable at http://java.sun.com/products/-
ejb/docs.html.



