
PDC: Persistent Data Collections pattern

Tiago Massoni Vander Alves Sérgio Soares Paulo Borba∗

Centro de Informática

Universidade Federal de Pernambuco

Introduction

The object–oriented applications layer architecture [2, 3] allows the distribution of classes
into well–defined layers, according to each crosscutting concern of an application (busi-
ness, communication, data access, etc.) to obtain separation of concerns. Elements from
different layers communicate only through interfaces. However, we have to refine these
layers by filling them with specific classes. The complete set of these classes, related to
business and data access concerns, was transformed into a design pattern, called PDC
(Persistent Data Collections), which is presented in this paper.

Brief

Provide a set of classes and interfaces in order to separate data access code from business
and user–interface code, promoting modularity.

Context

When developing persistent object–oriented information systems applications using spe-
cific Application Programming Interfaces (APIs) that lead to interwoven code making
maintenance and reuse difficult.

Problem

Obtain better maintenance and reuse levels when using persistence mechanisms to develop
an object–oriented application.

Forces

• Developers should be able to address the business aspects of an application inde-
pendently from persistence operations.

∗Supported in part by CNPq, grant 521994/96–9. Electronic mail: {tmasson,vralves}@us.ibm.com,
{scbs,phmb}@cin.ufpe.br. Av. Professor Luis Freire s/n Cidade Universitária 50740–540 Recife PE
Brazil.

1



• Ad hoc implementations directly using specific Application Programming Interfaces
(APIs) usually lead to interwoven code that is hard to maintain. For example, a
Java [8] program can use the JDBC API (Java Database Connectivity API [14]) for
manipulating persistent data within business code.

• The type of persistent storage or vendor may change over the life of an application.

• Business classes may be reused by other applications.

• It may be non-trivial to deal with some aspects from persistent systems, such as
enabling connections to database platforms and managing transactions efficiently.

• The system performance should not be affected.

Solution

The basic idea of PDC is to avoid mixing data access code with business code from
domain-related objects, leading to extensibility and reusability. For this purpose, we
propose the separation of design classes in two types:

• classes describing business logic objects.

• classes for data manipulation and storage, with specific persistence code.

The communication between these two types of classes is carried out through inter-
faces, which guarantee independence between the business layer and the data access layer.
Business code will be the same, regardless of how data access operations are implemented.

PDC suggests the use of persistent data collections, which contain code for manipu-
lating a group of persistent objects of an application. These collections represent a clear
distinction between the ”data” and the ”data set”, being the core of our solution. Our so-
lution is complemented by ideas taken from other well-defined design patterns, as Facade,
Abstract Factory and Bridge [7]. The goal is to reduce the impact caused by modifications
in the system functional and non–functional requirements.

As in the example in Figure 3, for each important domain object which will be persis-
tent in the application (like Account), we create two other classes: the business collection
(AccountRecord) and the data collection (AccountRepositoryJDBC) classes, represent-
ing business and persistent collections of domain objects, respectively. Furthermore, each
persistent domain class must inherit from the PersistentObject class, indicating that
its objects will be stored persistently.

The Bank class encapsulates all services offered by the application (applying the Facade
pattern [7]). The object from this class calls methods on all business collection objects
of the application (as AccountRecord), in order to implement the services. The business
collection in turn uses persistence-related services from its corresponding persistent data
collection (as the insert and search methods).

The PersistenceMechanismJDBC class is used by Bank and persistent data collections
(as AccountRepositoryJDBC) for performing database platform services, such as connec-
tion and transaction management. These issues are addressed by specific methods in the
persistence mechanism.

2



In order to request services from the data access layer, the business objects send mes-
sages to data access objects only through interfaces, which provides extensibility for the
design of the application. In the example, the IAccountRepository interface separates
business collections from persistent data collections, and the IPersistenceMechanism

interface isolates specific persistence mechanism services from its business clients, such as
the Bank class.

As in the example above, we can use PDC to structure the application using a set
of specific classes, separating business and user–interface concerns from persistence con-
cerns. Such application is easier to maintain and to extend, since its core functionality
is decoupled from data access code. In addition, classes from the application can also be
reused by other applications.

Structure

Figure 1 details the structure of PDC, using an UML class diagram [4]. The class names
denote the element of the pattern itself, including classes with the ”Interface” stereotype,
which denote interfaces containing only method signatures to be implemented by the
indicated classes.

Figure 1: Class diagram of PDC.

The participants of the pattern are presented as follows, along with their matching
elements of the example presented in Figure 3:

3



• Facade. This class provides a simple interface to all services of a complex sys-
tem [7]. A facade offers a simple default view of the system that is useful for most
clients. It keeps references to the several BusinessCollection objects of the ap-
plication, and delegates calls to them. Additionally, it implements the Singleton
pattern, thus exactly one instance of this class will be active during execution. This
element is represented by the Bank class in the example.

• BusinessBasic. This class represents a business basic concept, reflecting clearly
the problem domain (for instance, account, client, investment). If we choose this
class to inherit from an abstract class containing abstract data access methods (see
Implementation Section), the BusinessBasic class has to implement those methods.
Using this approach, although some data access code is placed within a business
class, the business code of the class does not depend on the data access code. Such
code on a business basic class can be easily removed or replaced, with no impact on
business code. In the example, this class is represented by the Account class.

• BusinessCollection. This class represents a grouping of objects from a sig-
nificant business basic class, on the business’ perspective. It contains methods
for inserting, querying, updating, and deleting business objects, with verification
and tests of preconditions related to the object manipulation. Furthermore, the
BusinessCollection class also contains methods directly related to the application
domain. This element is represented by the AccountRecord class in the example.

• PersistentDataCollection. This class contains methods for manipulating per-
sistent objects of a specific business basic class. The code for these methods de-
pends on a specific API for accessing some persistence platform, thus any changes
to this platform will cause direct impact on this class, but absolutely no impact
on business code (since the IBusiness–Data interface isolates these changes). The
PersistentDataCollection class implements methods from a IBusiness–Data in-
terface and depends on services from the PersistenceMechanism class in order
to perform database operations, more specifically for finer granular transactions
and database connections. In the example, the role of this class is played by the
AccountRepositoryJDBC class.

• IBusiness–Data. This interface establishes a communication protocol between
BusinessCollection objects and PersistentDataCollection objects. A business
collection class depends on this interface for storing and retrieving objects from the
database. This approach promotes modularity, since changes to the data access code
do not have impact on business code. In the example, this interface is represented
by IAccountRepository.

• PersistenceMechanism. This class contains methods that implement specific ser-
vices related to a database platform, such as connecting to and disconnecting from
the database, and transaction management. Methods related to connection manage-
ment open and maintain a database connection for a service from the application,
making this connection available to one or more PersistentDataCollection ob-
jects involved in the accomplishment of the service. Methods related to transaction
management open, confirm or abort transactions, in order to provide consistency
among all operations used to accomplish an application service. The code of these

4



methods depends on a specific persistence API. This class is represented by the
PersistenceMechanismJDBC class in the example.

• IPersistenceMechanism. This interface is defined in order to provide indepen-
dence between the business classes and the PersistenceMechanism class (which
implements this interface). Therefore, if we change the database platform, we have
to replace the old PersistenceMechanism object by a new object, but this modifi-
cation does not have impact on business classes. The Facade class depends on this
interface for invoking transaction methods. The example presents an interface with
the same name.

Dynamics

Figure 2 shows a sequence diagram [4] of a typical scenario for the use of PDC, using the
approach of data access methods encapsulated into a business basic class (see Implementa-
tion Section). The Facade object creates a PersistenceMechanism object, whose services
will be requested during execution. Next, a service on the Facade object is called, which
in turn begins a transaction (invoking a method on the PersistenceMechanism object)
and delegates the call to a BusinessCollection object in order to perform this service
(a querying operation that retrieves data from the database). The BusinessCollection

object performs all validation and tests on the input data, then invokes an operation
to manipulate persistent data on the corresponding PersistentDataCollection ob-
ject (through the corresponding business–data interface). The latter creates an empty
BusinessBasic instance and fills it with database information (calling deepAccess, which
in turn executes queries through services offered by the PersistenceMechanism object,
as the executeQuery method), returning the resulting object to the Facade object. In
the end of the operation, the Facade object confirms the end of a database transaction,
invoking commitTransaction on the PersistenceMechanism object.

Consequences

The use of PDC offers the following benefits:

• Support for independent implementation. PDC’s layer architecture allows to address
the business aspects independently from persistence operations. This abstraction is
promoted by interfaces between the business layer and the data access layer.

• Maintainability. The pattern’s structure increases the system maintainability by
separating business code from data access code. Therefore, changes in the data
access classes should not interfere in the business classes.

• Extensibility. The pattern makes it easier to seamlessly change the database tech-
nology or vendor, minimizing or even eliminating impact on business code. In-
terfaces between the business layer and the data access layer promote the desired
extensibility for the application.

• Use of several persistence platforms. The resulting code is able to support stor-
ing objects into several persistence platforms, such as files, relational and object–
oriented databases, by creating a number of implementations for the persistence

5



Figure 2: Dynamics of PDC.

mechanism class and for each persistent data collection class; all of these classes
must implement the corresponding interfaces.

• Reuse. Due to the structure provided by the pattern, business classes can be easily
reused by another application based on other database technologies. In addition,
changes to data access issues are simpler, since they are restricted to data access
code.

• Abstraction. As the pattern abstracts the persistence problem by using interfaces,
persistence implementation may use complex algorithms or APIs to deal with some
non-trivial aspects from persistent systems, such as enabling connections to database
platforms and managing transactions efficiently.

• Support for progressive implementation. During early phases of the application
development, functionally complete prototypes are constructed, where business col-
lection classes depend on business–data interfaces, but the latter are implemented
by volatile data collections (storing objects in memory only). Later, data access
code can be added seamlessly, replacing volatile data collections by specific per-
sistent data collection objects, then adding a persistence mechanism object. Such
approach enables addressing the business problems independently from persistence
operations, simpler validation of user requirements, and simplification of tests [9].

6



The liabilities of the pattern are:

• Increased number of classes. For each significant business basic class, we have to
create up to three additional classes and one interface. However, their structure is
simple and their generation can be simply automated by tools.

• Increased indirection. In order to introduce the layer architecture we must use dif-
ferent kinds of classes that delegate some calls to others, which may decrease system
performance. In fact, this lost of efficiency is minimal, since these indirections are
locally executed, and the additional execution time is irrelevant when compared
to the overhead of the IO operations that read from and write to the persistence
mechanism.

Implementation

Here we consider how to implement PDC using JDBC as the data access API for using
relational database services. Consider the following implementation issues:

• Java platform. The pattern elements must be implemented in the Java program-
ming language, since JDBC is part of the Java platform.

• Inheritance in the business basic class. Most code for manipulating objects using
JDBC can be contained in business basic classes, within methods inherited from an
abstract class (PersistentObject in our banking example). It can be considered
a miscellaneous of business and data access code, even though those inherited data
access methods are not invoked by business code (as mentioned earlier). One alter-
native for such situation is to transfer all code for manipulating persistent business
basic objects to the persistent data collection classes. The disadvantage of such ap-
proach is that changes in a business basic class will also reflect in the corresponding
persistent data collection class; it is necessary to implement a new persistent data
collection for each new platform. On the other hand, in this approach changes in
the persistent platform will not affect the business basic classes.

• Transactions. Using JDBC, we can easily implement transactions using database
services. We must use the setAutoCommit, commit and rollback methods on the
Connection class in order to implement a transaction when implementing a sequence
of operations, which must be executed as a single one.

• Business basic subclasses. A business basic class can be specialized in business
basic subclasses, depending on the business rules. In the case of business collection
and persistent data collection classes (including business–data interfaces), we can
choose from two design alternatives: one is to create a class for each business basic
subclass; another is to use only one class, in order to avoid duplicate code. A
detailed discussion about this topic is presented in a related work [15].

• Concurrency control. One concurrency problem arises when using a connection pool
to manage the connections with the persistence mechanism. Each execution flow
(thread) must obtain a connection from the connection pool before communicating

7



with the persistence mechanism. Usually there is a single connection pool contain-
ing all the connections of the system, and thus this poll is accessed concurrently.
Moreover, we need to apply some concurrency control to the system. Examples of
others situations in which concurrency control should be addressed are interference
by business rules (system policies), unsafe data types, and other race conditions [12].

• Volatile data collections. We can use this type of class for storing objects in a
non–persistent manner, in order to support progressive implementation. Using this
approach, we can abstract from persistence or any other non–functional requirement,
when implementing functional prototypes for the application. These prototypes
can be useful for validating user requirements and simplifying tests. This class
also implements its corresponding business–data interface, but its methods use in–
memory data structures like arrays or lists to manipulate business objects.

• Abstract factories. Variations of PDC can include classes which represent abstract
factories [7], in order to increase extensibility and reusability of business classes.
An abstract persistence factory class can be introduced, containing a method for
creating a persistence mechanism object, and such method can be implemented by
a subclass of the abstract factory, the concrete factory. The facade object can call
this method to instantiate the persistence mechanism, without making a explicit
call to its constructor method. The same idea can be used for creating persistent
data collections, isolating the business classes (facade and business collection classes)
from the instantiation code. In both cases, the information needed by the concrete
factories to instantiate the objects is placed in simple text or XML configuration
files.

Sample Code

We now provide a brief sketch of the implementation of the main elements of PDC using
Java and the JDBC API, in the banking application example introduced in Figure 3.
First, we present a business basic class, Account, which reflects directly the problem
domain. The public modifier in classes and methods is omitted by brevity.

class Account extends PersistentObject {

private Number number;

private double balance;

void credit(double value) { balance = balance + value; }

...

/* Data access operations */

void insert() throws StoringException {

try {

String sql = "insert into account values (";

sql += "ID = "+super.getId(); // get the object id

sql += "NUMBER = "+this.getNumber();

sql += "BALANCE = "+this.getBalance();

super.pm.executeUpdate(sql);

} catch (SQLException e) { throw new StoringException(); }

}

8



Figure 3: Example of PDC applied to a banking application.

Two of the attributes and one business operation, credit (containing only business code
and not invoking any data access method), are presented above. In another portion of
the class, there are data access methods inherited from the PersistentObject class,
containing specific code for database operations in this class (as the insert method).
Any exception related to the data access API (SQLException) is replaced by a general
database exception (StoringException).

In addition, this class contains methods with the deep prefix, which are special op-
erations for manipulating attributes which are references to other objects or collection
of objects (as the number attribute). The deepInsert method in the Account class has
an IPersistenceMechanism interface parameter receiving a reference to a persistence
mechanism object in order to perform the corresponding database operation:

void deepInsert (IPersistenceMechanism pm)

throws StoringException {

super.pm = pm;

this.number.deepInsert(pm);

this.insert();

}

...

}

9



Notice that deepInsert is called first for the attribute, before the insert for the Account
object. This order is followed in operations to write data to the database, due to a
restriction of relational databases, which forces the code to insert rows in auxiliary tables
first (number attribute), then insert a row in the main table (Account object). In this
way, the relationships can be established with no errors. This order does not need to be
followed in operations querying the database. Operations deleting data from the database
depend on the referential integrity defined for the tables involved.

Although there is business code along with data access code in the same class, the
business methods do not depend on the data access methods, since the former do not
invoke the latter. Therefore, we can insert and remove data access methods with no
impact on business code (a process easily automated by tools). The PersistentObject

class is presented below:

abstract class PersistentObject {

protected long id;

protected IPersistenceMechanism pm;

abstract void insert() throws StoringException;

abstract void deepInsert(IPersistenceMechanism pm)

throws StoringException;

abstract void access() throws StoringException;

abstract void deepAccess(IPersistenceMechanism pm)

throws StoringException;

...

}

where the id and the pm attributes denote the object identity of a persistent object
and a persistence mechanism object to perform database operations, respectively. The
abstract data access methods in this class must be implemented by all business basic
classes, which will be made persistent. The StoringException exception is raised when
a problem occurs in any database operation.

In order to represent a set of business basic objects on the business’ vision, we use a
business collection class. We present the class AccountRecord, which represents a set of
bank accounts:

class AccountRecord {

private IAccountRepository accountsRep;

AccountRecord(IAccountRepository accountsRep) {

this.accountsRep = accountsRep;

}

where the constructor of AccountRecord receives as argument an object which implements
a business–data interface, and two of the business operations for this class, addAccount
and credit, are also presented. The first method inserts an Account object into the
database, raising an exception if an account with the same number already exists.

10



void addAccount(Account account)

throws StoringException, DuplicateAccountException {

if (this.accountsRep.exists(account.getAccountNumber()))

throw new DuplicateAccountException();

else this.accountsRep.insert(account);

}

The second method queries the database for a given account. If the query is successful,
a value is added to the account’s balance and the account is updated in the database.
However, if the account does not exist in the database, an exception is raised.

void credit(Number accountNumber, double value)

throws StoringException, UnknownAccountException {

if (accountsRep.exists(accountNumber)) {

Account account = accountsRep.search(accountNumber);

account.credit(value);

this.accountsRep.update(account);

}

else throw new UnknownAccountException();

}

...

}

The database is represented by the attribute accountsRep, a business–data interface with
data access operations. This interface is as follows:

interface IAccountRepository {

void insert(Account account) throws StoringException;

Account search(Number accountNumber) throws StoringException;

void update(Account account) throws StoringException;

boolean exists(Number accountNumber) throws StoringException;

...

}

where the update method is important to maintain consistency between in–memory
(volatile) and persistent objects. Other methods on this interface could be complex queries
(for instance, returning a set of objects) and methods for sequential querying.

A class implementing a business–data interface is a persistent data collection class. In
our example, this class implements its methods invoking data access methods defined in
the business basic classes. In our example, the AccountRepositoryJDBC class is presented
as follows:

class AccountRepositoryJDBC implements IAccountRepository {

private PersistenceMechanismJDBC pm;

void insert(Account account) throws StoringException {

account.deepInsert(this.pm);

}

Note that the pm attribute stores a persistence mechanism object, which is passed as an
argument for the database operations on Account objects, as in the search method.

11



Account search(Number accountNumber) throws StoringException {

Account ac = new Account(accountNumber);

ac.deepAccess(this.pm);

return ac;

}

...

}

On the other hand, if it is desired to develop a functional prototype first, we can
implement a business–data interface using a volatile data collection. In the banking
application, we can create a class which stores and retrieves Account objects from an
array. The objects will be maintained in the array only during the current execution.

The facade class of the pattern is represented by the Bank class in this application:

class Bank {

private IPersistenceMechanism pm;

private AccountRecord accounts;

Bank() throws PersistenceMechanismException {

PersistentFactory factory = PersistentFactory.getFactory();

this.pm = factory.createPersistenceMechanism();

this.accounts = new AccountRecord(

AccountDataFactory.getFactory().createDataCollection(pm));

}

void addAccount(Account account)

throws StoringException, AccountAlreadyExistsException {

this.pm.beginTransaction();

try { this.accounts.add(account); }

catch (Exception e) {

this.pm.cancelTransaction();

throw e;

}

this.pm.commitTransaction();

}

void credit(String accountNumber, double value)

throws StoringException, UnknownAccountException {

this.pm.beginTransaction();

try { this.accounts.credit(accountNumber,value); }

...

}

...

}

This persistence mechanism object is instantiated in the Bank’s constructor, in order to
initialize the system, being stored in an IPersistenceMechanism interface attribute. All
the initialization process is performed using a PersistenceFactory class, which reads a
configuration file and creates the right specific persistence factory object for the applica-
tion. This object will then create the specific persistence mechanism object for the Bank

class, promoting extensibility of the business code (the facade class does not instantiate
the persistence mechanism object directly). See the Implementation section.

12



Bank uses services from its AccountRecord attribute, delegating calls to the latter in
its methods. This attribute is initialized by passing as argument a new persistent data
collection object, which implements a business–data interface and receives a persistence
mechanism object. In order to maintain separation between business and data access
code, this persistent data collection object is instantiated by a specific data factory for
JDBC, which in turn was first instantiated by a static method (getFactory) in an abstract
AccountDataFactory class (see Implementation section). In the addAccount and credit

methods, the Facade class invokes methods on the persistence mechanism object for
beginning and confirming a transaction, or canceling it if some exception occurs.

The IPersistenceMechanism interface, which is used by Bank, is presented as follows:

interface IPersistenceMechanism {

void beginTransaction() throws PersistenceMechanismException;

void commitTransaction() throws PersistenceMechanismException;

void cancelTransaction() throws PersistenceMechanismException;

void connect() throws PersistenceMechanismException;

void disconnect() throws PersistenceMechanismException;

...

}

where PersistenceMechanismException is the exception raised when some error occurs
in one of those operations. A persistence mechanism class implements this interface using
specific database API operations, as in the following example:

class PersistenceMechanismJDBC implements IPersistenceMechanism {

void beginTransaction() throws PersistenceMechanismException {

try {

// requests a connection from a connection pool

Connection conn = this.requestConnection();

conn.setAutoCommit(false);

}

catch (SQLException e) {

throw new PersistenceMechanismException();

}

}

...

}

This class implements the beginTransaction method using services from the JDBC
API. First, a connection to the database is requested from a connection pool (allowed by
JDBC). If there is not any opened connection, a new one is created. Then a transaction
is initialized in the context of the connection. Any SQLException raised is replaced by a
general exception, in order to guarantee isolation between business and data access code.

Known Uses

Several organizations have been using PDC as a design pattern for many real software
projects. Most of these projects have aimed at developing from simple to complex ap-

13



plications, and satisfactory results have been collected in such situations. Some of these
systems are presented as follows:

• A system to manage clients of a telecommunication company. The system is able
to register mobile telephones and manage client information and telephone services
configuration. The system can be used over the Internet.

• A system for performing online exams. This system has been used to offer differ-
ent kinds of exams, such as simulations based on previous university entry exams,
helping students to evaluate their knowledge before the real exams.

• A complex supermarket system. A system that is responsible for the control of sales
in a supermarket. This system will be used in several supermarkets and is already
been used in other kinds of stores.

• A system for registering health system complaints. The system allows citizens to
complaint about health problems and to retrieve information about the public health
system, such as the location or the specialties of a health unit.

• This pattern is also used in undergraduate and graduate courses on object–oriented
programming at the Center of Computer Science of the Federal University of Per-
nambuco. Several kinds of systems (such as games, academic control systems, and
sales systems) have been developed in these courses.

In addition, the pattern is one of the basic patterns of the Progressive Implementa-
tion Method (Pim) [5]. Pim is a method for the systematic implementation of complex
object–oriented applications in Java. In particular, this method supports a progressive
approach for object–oriented implementation, where persistence, distribution and con-
currency control are not initially considered in the implementation activities, but are
gradually introduced, preserving the application’s functional requirements [1, 9, 11, 15].
Pim relies on the use of specific architectural and design patterns for structuring object–
oriented applications, in order to promote modularity and separation of concerns [10].
PDC is the design pattern applied for dealing with persistence.

Related Patterns

• Crossing Chasms [6]. In their set of patterns for object–relational integration,
Brown and Whitenack deal with the definition of database schemas for relational
databases, supporting the object model. These patterns can be useful in PDC (for
setting up the database tables), since they have distinct objectives (PDC aims at
structuring the application in layers for a seamless introduction of persistence).

• Persistent Layer and other patterns [16]. Yoder’s patterns and PDC have very
similar objectives in obtaining separation of concerns between business and data
access code. Many of the ideas presented in the Yoder’s patterns can be combined
into elements of PDC in a practical way (for instance, Transaction Manager and
Connection Manager can be instantiated as the PDC’s persistence mechanism class).
However, Yoder’s patterns do not separate definitions of “data” and “data set”, as
defined in our persistent data collections, and assuming to be applied specifically

14



to relational databases. We believe that PDC can be applied almost directly to a
number of persistence platforms, including object databases and files.

• Abstract Factory [7]. This pattern is applied in PDC to implement a persistence
factory class for creating persistence mechanism objects, which is used by a facade
class. Factories also can be used for creating persistent data collection objects
transparently for the business collection classes (see Implementation section).

• Facade [7]. The facade class of PDC is a direct implementation of the Facade
pattern.

• Singleton [7]. Usually only one facade object is required in an application. Thus
facade objects are often implemented as Singletons.

• Bridge [7]. This pattern is used in PDC as the business–data and persistence
mechanism interfaces, which play the role of a bridge between the business and the
data access layers.

• Concurrency Manager [13]. This pattern can be used in PDC to control concurrent
situations, such as interferences by business rules (system policies), unsafe data
types, and other race conditions.

Acknowledgements

We would like to give special thanks to our shepherd in this paper, Rosana Teresinha
Vaccare Braga, from ICMCSC-USP, for making important suggestions for improving this
pattern. We also thanks Jorge L. Ortega Arjona and Gunter Mussbacher for the sugges-
tions made at the conference.

References

[1] Vander Alves. Progressive Development of Distributed Object-Oriented Programs.
Master’s thesis, Centro de Informática – Universidade Federal de Pernambuco, Febru-
ary 2001.

[2] Scott Ambler. Building Object Applications that Work. Cambridge University Press
and Sigs Books, 1998.

[3] Scott Ambler. The Object Primer. Cambridge University Press, 2001.

[4] Grady Booch et al. The Unified Modeling Language User Guide. Object Technology.
Addison-Wesley, 1999.

[5] Paulo Borba, Saulo Araújo, Hednilson Bezerra, Marconi Lima, and Sérgio Soares.
Progressive implementation of distributed Java applications. In Engineering Dis-
tributed Objects Workshop, ACM International Conference on Software Engineering,
pages 40–47, Los Angeles, USA, 17th–18th May 1999.

15



[6] K. Brown and B. Whitenack. Crossing Chasms: A Pattern Language for Object-
RDBMS Integration. In J. Vlissides et. al. (eds.), Pattern Languages of Program
Design 2. Addison-Wesley, 1996.

[7] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[8] James Gosgling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-
Wesley, 1996.

[9] Tiago Massoni. A Software Process with Support to Progressive Implementation
(in portuguese). Master’s thesis, CIn – Federal University of Pernambuco, February
2001.

[10] David L. Parnas et al. On the Criteria to be Used in Decomposing Systems into
Modules. Communications of ACM, 15(12):1053–1058, December 1972.

[11] Sérgio Soares. Progressive Development of Concurrent Object-Oriented Programs
(in portuguese). Master’s thesis, Centro de Informática – Universidade Federal de
Pernambuco, February 2001.

[12] Sérgio Soares and Paulo Borba. Concurrency Control with Java and Relational
Databases (in portuguese). In V Brazilian Symposium of Programming Languages,
23th–25th May 2001.

[13] Sérgio Soares and Paulo Borba. Concurrency Manager. Technical report, State
University of Rio de Janeiro—UERJ, Rio de Janeiro, Brazil, 3th–5th October 2001.
To appear.

[14] Sun Microsystems. Java Database Conectivity Specification, 2000. Available at
ftp://ftp.javasoft.com/pub/jdbc.

[15] Euricélia Viana. Integrating Java with Relational Databases (in portuguese). Mas-
ter’s thesis, Centro de Informática, UFPE, 2000.

[16] J.W. Yoder, R.E. Johnson, and Q.D. Wilson. Connecting Business Objects to Rela-
tional Databases. In Proceedings of the 5th Conference on the Pattern Languages of
Programs, Monticello-IL-EUA, August 1998.

16


