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Abstract

The benefits of formally specifying programming languages are widely recognized.
Formalization is even more important for object-oriented languages whose design
involves subtle interactions between several different concepts. Many formalisms
have been proposed and Action Semantics is among the most successful. This
paper defines a set of semantic entities useful for formally specifying object-oriented
programming languages using Action Semantics. As a case study, we use these
entities to describe the object-oriented kernel of Java.
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1 Introduction

It is very important to define programming languages formally, providing an
abstraction that helps with the design of the language, and a mathematical
notation that allows a formal proof that a particular implementation of the
language satisfies the specification. Many formalisms to specify programming
languages have been proposed; typically each of them emphasizes and facili-
tates different aspects and applications of a programming language definition.

The use of an abstract and mathematical notation for the description of
programming languages, which was the main source of inspiration in the de-
sign of Denotational Semantics, turned out to be inconvenient for the specifi-
cation of real and full-scale programming languages. Actions Semantics cover
some very desirable pragmatic properties that Denotational Semantics lacks,
as readability, modularity, abstraction, comparability, and reasonability.

In [1,12,4,15,6], operational approaches are used to specify subsets of Java
[5]. The language descriptions presented in [17,14,7] use Action Semantics. In
[8] Action Semantics is also used to specify a subset of C++.

These Action Semantics descriptions independently define semantic enti-
ties and operators to support object-oriented concepts. The use of different
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semantic entities and operators by each language designer could be avoided if
a library of object-oriented semantic entities and operators existed. Our aim
is to define that library and, consequently, decrease the design time of object-
oriented programming languages and improve the readability of specifications.

We consider many important concepts of object-oriented programming lan-
guages, like instance variables and methods, static variables and static meth-
ods, classes with single and multiple inheritance, dynamic binding, overwriting
of methods, instance creation, null pointers, variables and methods visibility,
shadowing of variables (variable hiding), and treatment of exception. The
latter is actually already considered in Action Semantics.

In Section 2 we briefly describe Action Semantics, presenting examples
of its notation. Then, in Section 3, we define the object-oriented semantic
entities. After that we present a case study where we specify a subset of the
Java programming language. In the sequence, in Section 5, we present a view
of related works, and finally, in Section 6, the conclusion and future works.

2 Action Semantics

Action Semantics has all the desirable properties that formalisms for specifying
programming languages should have [18]:

s Readability. The notation used is verbose and suggestive, which improves
readability of semantic descriptions. The correspondence to well-known
concepts found in programming languages also contributes to readability.

s Modularity. The semantics of a programming language is given in terms
of a small number of standard primitive actions and action combinators.
This provides the possibility of reusing parts of previous descriptions when
specifying new languages. The polymorphic behavior of the action operators
(regarding the different kind of information they process) allows their use to
specify languages fundamentally different using the same set of operators.
Moreover, language descriptions can be organized in modules.

o Abstractness. Action Semantics is operational in flavour, but not implemen-
tation-biased.

o Comparability. The use of standard primitive actions and action combina-
tors also facilitates the semantic comparison of languages.

* Reasonability. The standard primitive actions and action combinators sat-
isfy nice algebraic properties that can be used to reason about programs
and allow us to carry out useful transformations.

Action Semantics describes the semantics of programming languages using
an order sorted algebraic specification model named unified algebras [9] and
a formal metalanguage named action notation.

Unified algebras define two kinds of entities: sorts and operators. Sorts are
used to model abstract data types and represent a set of elements with some



common properties. Operators take arguments of defined sorts and produce
values of another specified sort. The terms of an algebraic specification are
formed by the sorts defined by the specification and by the application of the
defined operators over other terms.

Action notation contains structures that represent the main concepts found
in existing programming languages. Action notation is formed by three kinds
of entities: actions, yielders and data notation.

An action is an entity that can be performed. When an action is performed,
it receives information from an outside environment, produces new information
to the environment, and returns an outcome indicating the result of the action
performance. Below we show some examples of action constructors.

[Tl

» bind “x” to 10: this action produces the binding of the token “x” to the
value 10.

o store true in celll: this action stores the value true in the memory location
celll.

Yielders model expressions that can be evaluated during the performance
of an action. The result of an yielder evaluation depends of the current envi-
ronment passed to the current performing action. Below we give an example
of one of the most important yielders defined by the action notation.

* the integer bound to “x": this yielder returns the integer value associated
with the token “x” in the scoped information.

The data notation models data types used by actions and yielders. Num-
bers, strings, lists, and tuples are some examples of these datatypes. An
example of a data notation for lists is presented below.

¢ head-of (_) :: list — datum: this operator returns the first element of a list.
o tail-of (_) :: list — list: this operator returns the given list without its first

element.

An Action Semantics description for a programming language is an unified
algebraic specification divided in the following modules:

o Abstract Syntax: describes the abstract syntax for the programming lan-
guage.

* Semantic Functions: describes a mapping from the abstract syntax tree
(AST) of programs to their meaning, using the action notation.

* Semantic Entities: defines the data types used by the language, and auxil-

iary sorts and operators used by the description in the previous module.

In the literature we can find many works using Action Semantics to specify
programming languages such as Pascal [11], CCS and CSP [2], Standard ML
[16] and Java [17]. For a detailed presentation of Action Semantics see [10].



3 Object-Oriented Semantic Entities

Specifying a complete object-oriented language using only the standard action
notation is a difficult task. Such a specification requires complex semantic
entities which are not given by action notation and, therefore, have to be
provided by the designer. Specifications like this, which use “proprietary”
notation, can become hard to read.

As a solution to this problem, we propose an extension of the action no-
tation that includes object-oriented semantic entities. These new semantic
entities are useful to describe languages like C4++ and Java. This section
describes these object-oriented semantic entities. A complete formal specifi-
cation is too large to fit in this paper, but can be found in [3].

3.1 Tokens

The token defined in this object-oriented model is formed by a sequence of
strings:

e token = string™.

This definition differs from that usually found in common programming lan-
guages descriptions, which define tokens as single strings, because a single
name may not be enough to identify a specific class entity. For instance, an
object can have many overloaded versions of the same method, defined in
different classes. In the present notation a method is identified using a pair
containing the class name and the method name.

To make the specifications more readable, we define the data types class-
name, method-name, and variable-name used to represent, respectively, class
names, method names, and variable names in specifications. The first data
type is defined as a single string and the others are defined as tokens. We
also define the following special tokens: constructor, superclass and self. The
sort constructor identifies the method that initializes a recently created object;
the sort superclass represents the superclass of the class of the current object;
finally, the sort self identifies the current object.

3.2 Objects

The object structure is initially left open to allow their extension by the de-
signer:

e object =0 .
Therefore, we propose a standard simple object structure to represent an
object. In this structure, an object is composed by a pair containing the class

information and a set of bindings that stores the object internal structure. A
binding is a mapping from tokens to bindable elements.

e object > object of (class, bindings).



Some basic operators for objects are defined: the operator “¢ bound in 0” is
used to retrieve the meaning of the identifier ¢ in the object o; the operator “o
instance of ¢” tests if the object o is an instance of the defined class ¢; finally
the operator “o cast to ¢” returns another object, produced from the object o,
with static scope changed to fit in the scope requirements defined in class c.

3.3 Classes

The specification of the class structure is also left open:
o class = O .

The object-oriented semantic entities define a basic class structure. A class is
formed by a tuple whose elements are: a class name, a set of superclasses, a
redirection, an object, and a set of class components.

e class > class of (class-name, class*, redirects , object, class—component*).

e redirects = map [ token to token ].
The class name is a string used to identify the class. The set of superclasses
contains the definitions of the superclasses. The redirection is used to identify
class elements more precisely. It is defined as a function that maps single
names (strings) to more complete names (with class name information). This
structure is used to decide which version of an overridden class element should
be used in some class scope. The object is used to store static variables and
methods. Finally, the class components define the class body.

In this model we define a class as a subsort of object. This property helps
to describe languages where classes can be seen as ordinary objects belonging
to a special class. Java and Smalltalk are examples of this kind of language.
This property is also useful to handle class (static) and instance (non-static)
components with a uniform notation.

e class < object.

The sort metaclass is defined to represent the class of classes when they
are handled like objects:

e metaclass : class.

e metaclass = O .

Its definition is language dependent and is left open.

3.4  Class Components

The object-oriented semantic entities specify three kinds of components which
can be defined inside classes: constructors, methods, and variables.

e constructor _ :: method — class-component.
e _method _ named _ :: qualifier, method, method-name — class-component.

e _variable _ _:: qualifier, type, variable-name — class-component.



The last two entities are qualified with flags indicating its type (static/non
static) and access level (public, protected, private):

e qualifier = public | protected | private | static.

The constructor and method _ named operators define new methods in the
class body. The constructor m operator defines a method m used to initialize
a recently created instance of the class. The operator ¢ method m named
n defines a new ordinary method m named n. Both operators use the sort
method to specify the method body. A method is just an alias to the Action
Semantics sort abstraction. The definition of method considers that method is
a subsort of the Action Semantics sort bindable. This is necessary to enable
us to associate tokens with methods in bindings.

e method = abstraction.
method < bindable.

The design of the object-oriented semantic entities makes transparent to the
designer the process of making binds to class components, simplifying the
specification.

A variable definition contains information about its type and name. The
type specification is shown below:

o type =10
e type > class
e allocate for type _ :: type — action[allocating][giving a cell].

The type definition is left open because it is a language dependent feature. We
define that classes are types and there is an operator (defined by the language
specification) that allocates memory for types.

3.5 Handling Classes and Objects

The action that creates a class structure, returning it as a transient value, has
the following signature:

e class named _ subclass of _ with _ ::
class-name, class-name , class-components — action[ giving a class ].

It is responsible to initialize the class fields and allocate memory to static
variables, if any.
The action that creates a new instance of a given class is declared as follows:

e new instance of _ :: class — action [ giving a object ]

The recently created object is returned in transient information. If the instan-
tiated class defines a constructor, it will be executed receiving the given data
for the new instance of action.

The object-oriented semantic entities also define some auxiliary operators:
the operator classes of ¢ returns the set of superclasses of the class ¢; the



operator ¢; is subclass of ¢; checks if the class ¢; is a subclass of the class
¢y; finally, the operators create object ¢ and create static object ¢ are used
to initialize non-static and static class components, respectively; the designer
should extend them if new kinds of class components are created.

4 Case Study: Java Object Oriented Kernel

To illustrate the use of the semantic entities introduced in this paper, we
describe a subset of the Java programming language that includes class dec-
larations with inheritance, method calls, and object creation. Here we focus
on the parts of the definition that make use of the object-oriented semantic
entities just introduced. A complete description of this language is available

in [3].

4.1 Abstract Syntax

A program in the specified subset of Java is formed by some class declarations
followed by a block that defines the startup code for the program.

Program = [ ClassDeclaration” “in” Block ].

A class declaration is formed by the keyword “class” followed by the class
name, the superclass declaration, and some declarations of class components
between braces.

ClassDeclaration = [ “class” Identifier SuperClass “{” ClassDecl” “}" ].
SuperClass = [ ( “extends” ldentifier)’ ].

There are three kinds of class component declarations in the language: variable
declaration, abstract method declaration, and ordinary method declaration.

ClassDecl = [ Qualifier Type Identifier “;" ] |
[ “abstract” Qualifier Type Identifier “(”
FormalArguments “)" “;" ] |
[ Qualifier Type Identifier “(" FormalArguments “)” Block ].

Qualifier = [ ( “static” | “public” | “private” | “protected” >* .

A variable declaration is formed by a qualifier, a type, and a name. An ab-
stract method declaration is formed by the keyword “abstract”, a qualifier,
a return type, a name, and an arguments declaration. An ordinary method
declaration is formed by a qualifier, a return type, a method name, an argu-
ments declaration, and a block of commands. The qualifier determines the
visibility of the declared element and whether it is static or not.

When executing an object-oriented program, we handle the declared classes
and objects using method calls and object-oriented expressions.

MethodCall = [ Expression “.” ldentifier “(" Arguments “)" | |

nouon

[ “super” “.” Identifier “(" Arguments “)" ].



Method calls are commands beginning either by an expression (the object that
receives the message), or the keyword “super”, indicating that this method
will be searched in the superclass of the current object; after that there is a
method name and arguments.

OOExpression = [ “new” Identifier “(" Arguments “)" ] |
MethodCall |

[ “super” “.” Identifier | | [ Expression “.” Identifier .

Object-oriented expressions can be an instance creation, a method call, or a
variable access.

4.2 Semantic Functions

This section defines the semantics of the object-oriented kernel of Java using
the semantic entities described in this paper. The semantics of programs is
defined by the following function.

e run _:: Program — action.
run [ d “in" b ] =
‘ pre-elaborate d before elaborate d
hence
‘ execute b.

To execute a program we need to prepare the environment defined by the pro-
gram (operator pre-elaborate), build the environment declarations (operator
elaborate), and finally execute the main program (operator execute).

. * .
e pre-elaborate _ :: Declaration — action.

The semantic function pre-elaborate defines the global bindings used inside of
the declared classes. Its definition uses only the standard action notation.

The semantic function elaborate declares classes defined by Java programs.
To declare a class we must obtain the superclass defined by the declaration
(operator retrieve superclass) and build the class components specified (opera-
tor build class components), create the class structure (operator class named),
and finally produce the declaration using the primitive action rebind.

e elaborate_ :: ClassDeclaration — action.

elaborate | “class” i:ldentifier s:SuperClass “{" d:ClassDecl “}" | =
‘ retrieve superclass s

and

‘ build class components d

then

class named 7 subclass of (given classes # 1) with

(given class-components#?2)

then

‘ rebind 7 to the given class.




Using the object-oriented notation proposed in this paper the designer does
not need to have any knowledge of the internal structure used to represent
classes. Also a more intuitive notation is available to make the semantics of
class declarations simpler and the results more readable.

The semantic function build class components produces class components
semantic entities from the syntactic entity ClassDecl. Here we show its signa-
ture and its definition for method declarations.

e build class components _ :: ClassDecl — action.

build class components [ ¢:Qualifier Type i:ldentifier “(”
f:FormalArguments “)" b:Block | =
‘ get qualifier ¢
and
give abstraction of
‘ elaborate formal f before execute b
then
| give (given qualifier#£1) method (given method#2) named .

Initially we retrieve the method qualifier (semantic function get qualifier) and
build the method abstraction (operator abstraction of). Finally we use the pro-
duced data to build the class component using the operator method _ named
of the object-oriented semantic entities. The most complex tasks involved
in declaring methods (overridding superclass methods, binding instance vari-
ables, and hiding private declarations, for instance), common in most object-
oriented languages, are handled internally by the operator method _ named.

The semantic function get qualifier just builds class components from their
equivalent syntactic entities. The semantic function execute specifies how to
execute commands of Java. Its signature and definition for method calls is
described below.

o execute _ :: MethodCall — action.
execute [ e:Expression “.” i:ldentifier “(" a:Arguments )" | =
‘ evaluate e
and
‘ evaluate argument a
then
enact application of
| the method i bound in (given object#1) to (rest of given data).

Initially the expression indicating the object that receives the message and
the arguments are evaluated; afterwards the action retrieves the abstraction
related with this method and object (operator bound in) and executes the
method (action enact). This is another example of how the object-oriented
semantic entities can simplify the description of object-oriented programming
languages. In normal specifications, the designer has to worry about the
current object information that is passed to the method and understand how



the object’s private scope is built.

The semantic function evaluate defines the process of computing the ex-
pression result. Here, we present its signature and definition for new instance
creation and variable access expressions.

e evaluate _ :: OOExpression — action.

evaluate | “new” u:ldentifier “(" a:Arguments “)” ]|=
‘ evaluate arguments a
then
‘ create a new instance of the class bound to .
evaluate [ e:Expression “." i:ldentifier | =
evaluate e then give ¢ bound in given object.

To create a new class instance we just evaluate the arguments passed to the
constructor function (operator evaluate arguments) and build a new instance
using the operator create a new instance defined by the notation proposed in
this paper. To access variables of an object, we just evaluate the expression
that indicates the object and use the operator bound in to retrieve the value of
the variable. Once again, using the semantic functions defined in this paper,
the designer does not need to worry about the object representation.

4.3  Semantic Entities

To use the semantic entities of object-oriented languages we have to define the
operators left open.

o type = class | Integer | String.
o allocate for type _ :: type — action.

e allocate for type ¢ = allocate a cell.

In the example we define the sort type and the operator allocate for type. In
this case study we do not have to extend the object-oriented semantic entities
to express the language constructions.

5 Related works

In the literature we can find many works presenting semantics for object-
oriented programming languages. Various kinds of semantic models are used.
In [1], Abstract State Machine is used as a technique to model the semantics of
a Java subset; the goal is to provide a basis for the standardization of Java and
to prove the correctness of an implementation of the Java Virtual Machine.
Operational semantics is used in [12,4,15], where the purpose is mainly to prove
the type-safety of Java, and in the work reported in [6], which also includes
a derivation from the semantics of an interactive programming environment
that provides textual and graphical visualization during program execution.
In [17] Action Semantics is also used to specify a Java subset. That work



helps to validate and to understand the Java official informal specification.

Most of these works consider the same Java subset, which includes primi-
tive types, instance variables and methods, classes with inheritance, interfaces,
dynamic binding, overloading and overwriting of methods, instance creation,
null pointers, and basic exceptions. In [4] treatment of exceptions is con-
templated, as is in [1], which includes static variables, static methods, and
concurrency.

Like [17] we also use Action Semantics to specify a subset of Java; we do
not treat concurrency, but we include static variables and methods, variable
shadowing, method overload, and variable and method accessibility. Moreover,
our main goal is to provide a framework to describe the semantics of object-
oriented programming languages: not just Java, but also languages like C++
and others. The framework supports all object-oriented concepts mentioned
above, and others like multiple inheritance.

6 Conclusions and Future Works

In this work we have used Action Semantics to define semantic entities and
operators that facilitate the design of object-oriented programming languages.
These semantic entities and operators constitute a library which can be used
in the specification of particular object-oriented programming languages.

We have presented a case study based on Java, but the semantic entities
and the operators may be used to specify other object-oriented programming
languages, like C++4. Using the library, the specification of the object-oriented
kernel of programming languages like this is greatly simplified. The designer
does not have to specify the object-oriented semantic entities and works with a
simple notation. The only difficulty left should be the handling of non-object-
oriented programming features like pointers.

We independently specified the semantics of a C+4 subset [8] and a Java
subset [14,7]. It is clear that, with the semantic entities and operators pre-
sented here, our work would be easier and the results more readable.

The framework proposed does not support all object-oriented languages
yet. Some concepts were not contemplated, as method overloading. The
library can also be made more adaptable and extensible to better reflect
object-oriented programming language properties. There are object-oriented
languages with constructors not described in this paper. Eiffel inheritance
with renaming is an example. We can also consider concurrency.

Tools may be designed to generate compilers from descriptions using the
proposed framework; [13], for example, reports the generation of a compiler
from an Action Semantics description of ADA. This is our next step in this
work. This tool will be a further motivation for the development of more cases
studies.
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