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1 I n t r o d u c t i o n  

Current research efforts focus on providing more efficient 
and effective design methods for 3D modeling systems. 
In this paper a new deformation technique is presented. 
Among other things, arbitrarily shaped bumps can be de- 
signed and surfaces can be bent along arbitrarily shaped 
Curves. 

The purpose of this research is to define a highly inter- 
active and intuitive modeling technique for designers and 
stylists. A natural way of thinking is to mimic traditional 
trades, such as sculpturing and moulding. 

Furthermore, with this deformation technique, the mod- 
eling tool paradigm is introduced. The object is deformed 
with a user-defined deformation tool. 

This method is an extension of the Free-Form Deforma- 
tion (FFD) technique proposed by Sederberg and Parry 
[17]. 
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Geometric modeling has always been a major research area 
in computer graphics. Geometric modeling includes both 
the definition of the geometric model and the development 
of design methods. Often, systems offer design methods im- 
posed by the underlying geometric model or use geometric 
models imposed by the design methods. This solution is ef- 
ficient for specific applications. However, general modeling 
systems require less specific geometric models and several 
design methods that are as easy as possible to use and that 
can be combined with each other to increase the power of 
the system. A growing trend is thus to dissociate the un- 
derlying geometric model and the design methods so that 
the geometric model becomes transparent to the user. 

This paper describes an interactive deformation tech- 
nique independent of the geometric model. As we wanted 
to define a highly interactive and intuitive modeling tech- 
nique usable by designers and stylists, it was natural to try 
to mimic traditional tools, such as sculpturing or moulding. 
The use of the sculpturing metaphor for geometric model- 
ing is not recent. Several authors have suggested tools that 
allow a designer to see the design operations as sculpturing 
tools [12, 19, 7, 2, 1, 5, 17, 8, 15]. 

Our goal is to change the shape of an existing surface ei- 
ther by adding arbitrarily shaped bumps to it or by bending 
it along an arbitrarily shaped curve. Four problems must 
be considered: 

• The position of the deformed region on the surface. 

• The size of the deformed region. 

• The shape of the boundary of the deformed region. 

• The shape of the deformed region (inside the bound- 
ary). 

A common practice consists of interactively moving the 
control points of a spline surface. This solution is not sat- 
isfactory for the following reasons: 

• The number of control points the user will have to 
move depends on the size of the deformed region. 
For example, the design of a large bump may require 
moving many control points whereas designing small 
bumps may be impossible. 
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• The shape of the deformed region (both along its 
boundary and within its interior) is imposed by the 
shape of the surface isoparametric lines, that is, by 
the position of the neighbouring control points. De- 
signing a bump with a circular boundary is almost 
impossible. 

• The position of the deformed region on the surface 
is imposed by the position of the control points since 
only the control points are moved. 

Some of these problems, namely small bumps, can be 
partially solved by using refinement techniques. Note, how- 
ever, that refinement has the unpleasant property of being 
non-local - -  it causes regions far from the region of interest 
to be refined as well. 

In [14] and [15] Piegl proposes a combination of control 
point-based and weight-based modifications. The weight- 
based technique, valid for rational B-spline surfaces, is a 
nice solution for the size problem. The position problem is 
partially solved by an automatic refinement technique. 

In [8], Forsey and Bartels describe a new geometric model 
where a surface is represented as a hierarchy of refined sur- 
faces. This representation solves the size problem as the 
user can choose the resolution of each region of the surface. 
However, the shape problem is not considered since the 
shape of the deformation is still influenced by the position 
of the neighbouring control points. The position problem 
is not solved either because the control point positions are 
fixed. 

In [1], Barr suggests a set of powerful transformations for 
deforming a solid object. The transformations he presents 
include stretching, bending, twisting, and tapering opera- 
tots. In spite of the fact that arbitrarily shaped deforma- 
tions are not possible, it is a very efficient method. 

Cobb [5] presents the first modehng tool allowing the 
user to define bumps with different shapes. She extends 
the basic warp technique previously discussed in [12, 19, 
7, 2] and introduces the region warp and the skeletal warp. 
With region warp, the user specifies a polygonal region that 
defines the shape of the warp boundary. Skeletal warp is 
a variation of the region warp where the region is defined 
by its skeleton. The size and the position of the deformed 
region, as well as the shape of its boundary, are user defined 
without any limitations but the shape of the interior is not 
free. Notice that Cobb solves most of the previously listed 
problems by the addition of a structure which consists of 
a region or of a skeleton. This structure is independent of 
the surface geometry. The user does not need to know the 
underlying geometric model to deform the surface. 

Sederberg and Parry [17] present a powerful deformation 
tool ill which the representation of the surface is also hidden 
by a FFD lattice embedding the object. The deformations 
of the FFD lattice are automatically passed to the object. 
FFD has proved to be a very intuitive and efficient model- 
ing technique highly appreciated by designers [3]. It solves 
the size and the position problems but not the shape one. 
The intrinsic parallelepipedical shape of the FFD lattice 
prohibits arbitrarily shaped deformations. 

This paper introduces an extension of the FFD technique 
called EFFD, for Extended Free-Form Deformation. The 
new method uses non-parallelep~pedical 3D lattices. The 
shape of the user defined lattice will induce the shape of the 
deformation. This paper mainly describes surface deforma- 
tion although the technique is suitable for object deforma- 
tion as well. Deformations produced by this technique are 
more general than Cobb's warps, they are not restricted 
to bumps, and all the advantages of FFD are not only re- 
tained but extended. In addition, both the boundary and 
the interior of the deformation are arbitrarily shaped. 

After a presentation of our implementation of Seder- 
berg and Parry 's  FFD technique, the EFFD method is 
described. The steps of the deformation process are de- 
tailed and different classes of EFFD lattices are presented. 
Finally, some examples illustrate our approach. 

2 F r e e - F o r m  D e f o r m a t i o n s  

Free-Form Deformation (FFD) [17, 16, 13] consists of em- 
bedding the geometric model or the region of the model 
that has to be deformed into a parallelepipedical 3D lattice 
regularly subdivided, as shown in Figure 1. The deforma- 
tions of the FFD lattice are then automatically passed to 
the model. Let l, m and n be the number of subdivisions 
along each of the three directions, U, V and W. These 
numbers can be chosen by the user depending on the de- 
formation he wants to produce (in Figure 1, I = 2, m = 1 
and n = 2). 
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Figure 1: A parallelepipedical lattice 

In our implementation the 3D lattice is represented by 
a tensor product piecewise tricubic B~zier volume. This 
volume is defined by an array of (31+1) x (3m+1) x (3n+1) 
control points Pijk. Each subdivision element, also named 
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"chunk" by Clark in [4], is thus defined by : 

3 

L(u,v,w)= E Bi(u)Bj(v)Bk(w)Pijk (1) 
i,j,k=O 

with 0 _~ u,v,w < 1, where the Bi(t)  are the degree 3 
Berstein polynomials, the Pijk are the chunk control points. 

The Free-Form Deformation technique is decomposed 
into two steps : 

• Before deforming the 3D lattice, the coordinates u~, 
vs and w~, in the lattice parameter  space, of each ob- 
ject point  are computed.  Wi th  parallelepipedical lat- 
tices, this step requires only the solution of three lin- 
ear equations. For any point X interior to the lattice, 
0 < u s < l ,  0 < v ~  < m a n d 0 < w ~  < n .  

• After deforming the 3D lattice, the deformed positions 
of the object  points are computed.  The deformed po- 
sition Xlfa of an arbitrarily point  X with coordinates 
(us, v~, w~) in the lattice parameter  space is computed  
in two steps. First, determine the chunk where the 
point  lies by comput ing the floor values (u0, v0, w0) 
o f u s , v s  and w~. Let u = u ~ - u 0 , v  = v ~ - v 0  and 
w = w8 - w0 be the X coordinates in the chunk pa- 
rameter  space. The  second step consists of comput ing 
the Cartesian coordinates of X f l d  from u, v, w and the 
matr ix of the 4 × 4 × 4 control points Pijk of the chunk, 
according to equation (1). 

Tensor product  B6zier volumes are used throughout  the 
paper. Naturally, as claimed by Sederberg and Parry, other 
bases such as B-spUnes or volumes of higher degree could 
be considered as well. The  piecewise s tructure of the vol- 
ume allows the user to design local deformations on the 
3D lattice. This will be very impor tan t  for the proposed 
extensions. 

In our implementat ion the deformation is specified by 
moving the (1 + 1) x (m + 1) × (n + 1) control points  (the 
P3iaj3k) corresponding to the corner control points of the 
volume elements (or chunks). Only these points are rep- 
resented on Figures i and 2. The tangents  at the corner 
control points can also be modified by the user. The other  
control points  are automatical ly updated.  Two modes ex- 
ist for the manipulat ion of corner control points. Cons tant  
tangent  mode, where the tangents  of the point  remain con- 
s tant  when the point  is moved, and non-constant  tangent  
mode where the tangents  of the point are upda ted  accord- 
ing to the position of the neighbour points simulating a 
C-Spline interaction [4]. These two modes can be chosen 
independently for each of  the three directions. 

3 E x t e n d e d  F r e e - F o r m  Defor -  
m a t i o n s  

FFD is a very intuitive modeling technique but  it is too 
restrictive to allow real sculpturing of  surfaces. The re- 
striction is mainly due to the shape of the lattice. As seen 

previously, FFD solves only the size and the position prob- 
lems but  not  the shape one. For example, defining a circular 
b u m p  on a surface is not  possible with FFD (see Figure 5a). 
One would like to use a cylindrical lattice instead of the par- 
allelepipedical one (see Figure 5b). The E F F D  technique 
presented in this paper  allows arbitrari ly shaped deforma- 
tions by using non-parallelepipedical lattices. EFFD lat- 
tices are equivalent to FFD lattices; only the initial lattice 
shape is different. The E F F D  technique can be described 
in four steps: 

1. Edit ing an E F F D  lattice. 

2. Associating an E F F D  latt ice with the surface. 

3. "Freezing" an E F F D  lattice. 

4. Deforming the surface. 

Notice tha t  the E F F D  lattice is defined independently of 
the surface to which it will be applied. The E F F D  lattice is 
a deformation tool tha t  is designed by the user and stored 
into a toolbox or a library until it is used. The modeling 
tool paradigm faithfully reproduces tradit ional tools and 
greatly increases the power of the modeling system. The 
user can adapt  the modeling system to his needs by defining 
his own tools. Each of the four steps of EFFD will now be 
explained in detail. 

3.1 E F F D  l a t t i c e s  

3 . 1 . 1  P r i s m a t i c  l a t t i c e s  

The prismatic lattice is a very significant special case. Pris- 
matic lattices are especially useful for applying a deforma- 
tion to a surface. We have seen previously that  the de- 
formation technique consisting of moving interactively the 
control points of a spline is not satisfactory because the 
shape, the size, and the position of the deformation are 
constrained by the geometry of the surface. The purpose 
of prismatic lattices is to redefine the geometry of the sur- 
face. From a user point  of view, the geometry as well as 
the type (polygonal, B-spline, B~zier...) of the surface are 
hidden by a new user defined structure,  the E F F D  lattice. 
The prismatic lattice is positioned on the surface such that 
the surface passes through the lattice (see Figures 6a to 
l l a ) .  Only the corner control points, the P3i3j3k are shown 
on the shaded pictures presented in this paper. Then, the 
user works directly on the EFFD lattice by moving some 
of its points and the deformations are automatical ly passed 
to the surface. All the surface points inside the EFFD will 
be deformed. The  E F F D  can be applied to non-planar sur- 
faces or, for example, to surfaces tha t  have already been 
deformed with another  E F F D  lattice. The height of the 
prismatic lattice must  thus be adjusted such that  the de- 
sired region of the surface fits into it. The  shape of the pris- 
matic lattice is of pa ramount  importance.  Control  points 
and consequently isoparametric lines must  be carefully po- 
sitioned in order to allow the desired deformation. 

Two classes of prismatic lattices are defined, the elemen- 
tary prismatic lattices and the composi te  prismatic lattices. 
There is no restriction on the shape of elementary prismatic 
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lattices. All prismatic lattices obtained by moving or merg- 
ing any points of a parallelepipedical lattice are valid. It is 
therefore advised not to define lattices that intersect them- 
selves. The cylindrical lattice (see Figure 2) is a useful 
lattice obtained by welding two opposite faces of a para2- 
lelepipedical lattice and by merging all the points of the 
cylinder axis. Control points along one of the directions 
(V on Figure 2) are defined in order to approximate cir- 
cles. An exact representation of a cylindrical lattice is only 
possible with rational splines. Other elementary prismatic 
lattices can be designed by moving and merging some of 
the points of a parMlelepipedical lattice. 

P3o6 
_ _ , _ _ -  " j  
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P330 * p..  ̂  Pug0 

Figure 2: A cylindrical lattice 

3 .1 .2  C o m p o s i t e  p r i s m a t i c  l a t t i c e s  

Elementary prismatic lattices are not general enough. 
Composite lattices must be introduced in order to allow 
the design of some unconnected shapes (see the "8" exam- 
ple in Figure 9). Composite prismatic lattices are defined 
as several elementary lattices welded together; see 3.1.4 bee- 
low. 

3.1 .3  N o n - p r i s m a t i c  l a t t i c e s  

Non-prismatic lattices can also be used to create deforma- 
tions of objects and some non-prismatic lattices such as 
sphericM lattices can be very attractive. Composite non- 
prismatic lattices are also valid. However, the use of lattices 
which are too complex can lead to unpredictable results. 

3 . 1 . 4  E F F D  l a t t i c e  d e s i g n  p r o c e s s  

From a user point of view, an EFFD lattice is defined either 
from a predefined three-dimensionnal lattice or from two- 
dimensionual lattices. 

• Predefined EFFD lattices include parallelepipedical 
and cylindrical lattices. The number of subdivisions 
(or chunks) along each axis is user definable. In Figure 
6a, a predefined cylindrical lattice with respectively 2, 

12 and 1 subdivisions along each of the three U, V and 
W axis has been selected. This lattice has then been 
transformed by selecting one plane of points out of 
two and by moving them toward the axis. Valid edit- 
ing methods include moving (both points and tangents 
can be moved either alone or as a group), merging, 
inserting (by subdividing the lattice) and removing 
points. 

• EFFD lattices can also be created from two- 
dimensional lattices in the same way as surfaces are 
defined from curves (loft, sweep, extrusion,...). 2D 
lattices are similar to surfaces. Traditional surface 
modeling methods are employed to define them. Valid 
editing methods for non-predefined 3D lattices are the 
same as for predefined 3D lattices. In the "S" exam- 
ple (see Figure 8a), the 3D EFFD lattice is defined 
from a two-dimensional lattice. The 2D lattice is a 
loft on three curves, two of them being an offset from 
the middle one. 

Two elementary two-dimensional lattices can be welded 
together in order to form a composite two-dimensional lat- 
tice and further a composite three-dimensional lattice. The 
welding operation is realised by merging the points of each 
lattice. Two or more points of the same lattice can also 
be merged. When merging two points (P0 and P1), two 
of their tangents (tO with tl  and t'0 with t ' l )  are merged 
either automatically or on user request such that merged 
points are equivalent to other points (see Figure 3). In 
order to be able to assure tangent continuity at a merged 
point, the two tangents t"0 and t" l  must be marked as 
aligned, which is also done either automatically or by user 
request. 

toe "PO -t'O 

Figure 3: Merging two points 

Some tricky cases cannot be solved automatically, such 
as the one representing the center point of the "8" lattice, 
in Figure 4. In this cas% the four points, P0, P1, P2 and 
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P 3  are  merged together ,  as well as ~0, t l ,  t2, t '2  and  t '0, 
trl, t3, t'3. 

Figure  4: Merging  four po in t s  

When  several  po in t s  are merged together ,  such as the  
center  of a disc, some cont inu i ty  problems may  occur.  
These  p rob lems  are discussed in pa rag raph  3.1.5. Whi le  
the imp lemen ted  welding me thod  is very simple, some more  
sophis t ica ted  ones such as the  one presented  in [9], could 
be  i m p l e m e n t e d  as well. In  the  "8" example  (see Fig-  
ure 9a), the  3D E F F D  la t t i ce  is defined from a compos-  
i te  two-dimensionM la t t i ce  made  from 3 e l emen ta ry  two- 
d imensional  lat t ices,  two discs and  an exter ior  lat t ice.  

In the  future,  more  specific two-dimens ional  l a t t i ce  de- 
sign me thods  will be developed.  An example  of these meth-  
ods  is to au toma t i ca l ly  compu te  the 2D la t t ice  from ei ther  
the  skele ton of the  shape  or  from its boundar ies .  

3.1.5 Continuity versus complexity 

Cont inu i ty  is one of the  most  i m p o r t a n t  problems to con- 
sider when working with  piecewise surfaces or  volumes. Be- 
fore examining  cont inu i ty  cons t ra in ts  for volumes,  let us 
recall  some results  on piecewise surfaces continuity;  see [6] 
for a comple te  survey. Assuming  non-degenera te  4-sided 
cubic patches ,  known resul ts  are  as follows: 

• C 1 and G 1 smooth  connect ion between patches  de- 
fined over a topological ly  rec tangula r  network can be 
guaran teed .  

• C 1 cont inui ty  cannot  be gua ran teed  if more  than  4 
pa tches  meet  a t  a point .  

• For  G 1 cont inui ty  a round  an n-pa tch  corner  (n>4) ,  
cons t ra in t s  in te r twin ing  often requires e i ther  to sub- 
d ivide  pa tches  or to increase their  degree (cf. [6]). 

W i t h  degenera te  pa tches  cons t ra in t s  p ropaga t ion  is even 
more i m p o r t a n t .  W i t h  volumes the p rob lem is more  tricky. 

Surface cont inu i ty  p r o p e r t y  can easily be ex tended  to pris- 
ma t i c  volumes bu t  general  non-pr i smat ic  volumes can lead 
to  unsolved con t inu i ty  problems.  Even when a solution to 
the  cont inui ty  p rob lem exists,  ma in ta in ing  this cont inui ty  
may  be  penal iz ing for the  E F F D  technique.  For  example,  
as con t inu i ty  cons t ra in t s  require  the  increase of the  degree 
or of the subdiv is ion  level of  chunks,  edi t ing points  have 
to be added  au tomat ica l ly .  This  is not  convenient  for the 
user  and  al lowing only la t t ices  for which cont inui ty  prob-  
lems are  easily solved (wi thou t  add ing  points)  is too restric- 
tive. Our  choice is thus  not  to res t ra in  volume complexi ty  
bu t  r a the r  to  insure  la t t ice  con t inu i ty  only for the simplest  
cases. W h a t  is i m p o r t a n t  for the  user is the  surface con- 
t inu i ty  bu t  not  the  la t t i ce  continuity.  Depending  on the 
surface type,  i t  is often possible  to guarantee  the surface 
cont inui ty  even if  la.ttice con t inu i ty  is not  assured (for ex- 
ample  wi th  spline surfaces).  Thus,  ~rom our po in t  of view, 
la t t i ce  cont inui ty  is not  a p r ima ry  concern. 

3.2 A s s o c i a t i n g  a l a t t i c e  w i t h  t h e  sur-  
face  

The  next  s tep  consists  in tak ing  an  E F F D  la t t ice  out  of the  
l ib ra ry  and  associa t ing  i t  wi th  the  desired surface. A list 
of E F F D  la t t ices  may  be assoc ia ted  with the  surface. As- 
socia t ing  an  E F F D  la t t i ce  wi th  a surface consists of adding 
the  la t t ice  to the  list. Whi le  an E F F D  la t t i ce  is associated 
with  a surface, one can st i l l  edi t  i t  w i thou t  deforming the 
surface. A t  this  t ime,  an a t t r a c t i v e  capab i l i ty  is the  posi- 
t ioning  c o m m a n d  which allows moving the E F F D  lat t ice  to 
a user specified po in t  on the  surface. 

3 .3  F r e e z i n g  a l a t t i c e  

Every th ing  is now ready  to deform the surface. Assuming 
tha t  s eve ra l l a t t i ce s  a re  assoc ia ted  with  the  surface, the user 
mus t  first select one of  the  E F F D  la t t ices  and "freeze" it. 
Freezing a la t t ice  consists  in comput ing  the u , ,  v, and w, 
coordina tes  of each po in t  of the  surface in the  E F F D  lat t ice 
p a r a m e t e r  space. For  each surface only one E F F D  lat t ice  
can be frozen a t  a t ime.  W i t h  a rb i t r a r i l y  shaped  lattices, 
f inding the (u , ,  vs, ws) coord ina tes  of the surface points  
is decomposed  into two steps. F i r s t ,  the  chunk where the 
po in t  is supposed  to lie is de te rmined  by using the convex 
hull  p r o p e r t y  of B6zier volumes.  T h e  (u, v, w) coordinates  
inside the chunk are then c o m p u t e d  using Newton approx- 
imat ion.  Two prob lems  have to be considered:  the  tech- 
nique convergence and  the  degenera ted  chunks t rea tment .  

• The  convergence and  consequent ly  the  de te rmina t ion  
of the  s t a r t ing  poin t  of Newton i t e ra t ion  is usually 
considered as a del ica te  problem.  However, for our 
problem,  experience has  proved t h a t  choosing u = 0.5, 
v = 0.5 and  w = 0.5 as a s t a r t i ng  po in t  leads  to very 
good convergence. No divergent  cases have been so 
far noted.  A s imple  solut ion has thus  been chosen. 
I t  consists  of  subd iv id ing  the  chunk in order  to get a 
be t t e r  s t a r t i ng  po in t  when no convergence is detected.  
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W i t h  degenera ted  chunks, m a t r i x  inversion required 
by the Newton  technique may  not  be possible  because  
of different ial  vanishing.  In this  case, as proposed  by  
Luk£cs in [11], the pseudo-inverse  ma t r i x  me thod  is 
used. 

3 . 4  Deforming the surface 

W h e n  an E F F D  la t t i ce  is frozen, all the  t r ans format ions  
app l ied  by  the  user to  the  la t t i ce  are passed to  the surface 
when the  user selects the  u p d a t e  command.  Only  moving 
t r ans fo rma t ions  are  valid for frozen lat t ices.  The  C 1 conti-  
nu i ty  along the in te rsec t ion  of an exter ior  face of the  la t t ice  
wi th  the  ob jec t  can be assured ei ther  by keeping the  two 
p lanes  of control  po in t s  ad j acen t  to the  la t t i ce  border  fixed 
or by  guaran tee ing  the  surface cont inu i ty  as suggested in 
3.1.5. The  c o m p u t a t i o n  of the  X1.ra coord ina te  po in ts  of 
the  deformed surface is equivalent  to  the  F F D  one. 

The  presen ted  me thod  has  been imp lemen ted  with  polyg- 
onal  surfaces but ,  as F F D ,  i t  also works  wi th  other  surfaces, 
such as spline surfaces, and  i t  should work with h ierarchica l  
surfaces [8] as well. W h a t e v e r  surface is used, a subdivis ion 
technique  such as t h a t  of Gr iessmai r  et  al. [10] is recom- 
mended  in order  to ma in ta in  an accep tab le  resolut ion of 
the  surface. The  technique of Gr iessmai r  et  al. is valid 
for po lygonal  surfaces. Each  polygon is subdiv ided  into  
t r iangles  t h a t  are  again  subdiv ided  according to a given 
accuracy  threshold .  

Cons ider ing  a surface wi th  several  la t t ices  pos i t ioned on 
it, the  de format ion  process can be descr ibed  as follows: 

Loop  1: 

Deform the  unfrozen la t t ices  (move, insert ,  re- 
move and merge control  points)  

Freeze one of the  surface E F F D  la t t ices  

Loop  2: 

Deform the frozen E F F D  la t t i ce  (move 
points)  

U p d a t e  the  surface 

End  loop 2 

Unfreeze the  E F F D  la t t i ce  

End  loop 1 

The  ab i l i ty  to work  wi th  several  E F F D  la t t ices  associa ted  
with  the same surface is very impor t an t ;  i t  a l lows the user 
to app ly  successively different  shaped  deformat ions .  

In order  to  allow for an  exact  repe t i t ion  of the same de- 
fo rmat ion  on several  surfaces, a recording opera to r  has to 
be implemented .  

4 E x a m p l e s  a n d  c o n c l u d i n g  re- 
m a r k s  

Some simple examples  of surfaces deformed using the  
E F F D  technique  are  i l lus t ra ted  in F igures  6 to 11. F igures  

6a to l l a  present  the  in i t ia l  surfaces wi th  the  E F F D  lat-  
t ices pos i t ioned on them.  In F igures  6b to l l b ,  the  E F F D  
la t t ices  have been frozen, some of their  points  have been 
moved,  and  the surfaces upda t ed .  Both  the  deformed lat-  
t ices and the  deformed surfaces are  shown. In Figures  6c 
to  l l c ,  shaded  pic tures  of the  resul t ing surfaces or objects  
are  shown. 

In F igures  6 and  7, the  same E F F D  la t t i ce  (see Figure  7a) 
is used to define two different  deformat ions .  In F igure  6, 
the  axis and the  i n t e rme d ia t e  cy l inders  of poin ts  are t rans-  
l a ted  whereas  in F igure  7, the  axis and  every second col- 
umn of po in ts  of the  i n t e r m e d i a t e  cyl inder  have been moved 
back.  As shown in F igures  6c and 7c, sandpies  are easily 
modeled  with E F F D .  In Figures  8 and  9 two charac te rs  are 
impressed  onto a surface. The  "8" is scu lp tu red  into  a piece 
of marb le  by  "pull ing" some of the  l a t t i ce  po in ts  whereas 
the  gran i te  "S" is scu lp tu red  by "pushing"  the  points.  

Scu lp tu r ing  and  mould ing  are accura te ly  s imula ted  by 
E F F D .  Othe r  t ypes  of de format ions  can also be repro- 
duced  with this  technique.  The  shape  of cloth-l ike surfaces 
can also be s imula ted .  F igures  10 and  11 are  two exam- 
ples where folds are  modeled  with E F F D .  In Figure  10c, 
a lea ther- l ike  cushion is shown. S t a r t i n g  with a surface of 
revolut ion embedded  in to  a cyl indr ical  E F F D  lat t ice,  the  
po in ts  of the  l a t t i ce  axis are first moved in order  to create  a 
hull  a t  the  center  of the  cushion, then the folds are designed 
by  moving some of the  i n t e rmed ia t e  po in t s  of the  la t t ice  
(see F igure  10b). In F igure  11, an oilcloth on a round table  
has been modeled.  S t a r t i ng  with  a p lanar  surface embed-  
ded into  a cyl indr ica l  la t t ice ,  the  ou te rmos t  po in ts  of the 
E F F D  la t t i ce  are  moved as shown in F igure  l l b  to create 
the folding effect. The  resul t ing  t ex tu red  pic ture  is shown 
in F igure  l l c .  

E F F D  is an easy to use and  efficient m e t h o d  for modeling 
cloth-l ike surfaces. Shapes  cannot ,  of course, be as na tu ra l  
as wi th  physical  me thods  [20] [18] bu t  it  can be an inter-  
est ing a l t e rna t ive  when o the r  me thods  are  computa t iona l ly  
prohibi t ive  or  when na tu ra lness  is no t  the  main  objective.  

Deforming a surface wi th  E F F D  technique  is very effi- 
cient. Only  a few minu tes  were needed to design most of 
the previous  examples .  I t  is very easy to implemen t  E F F D  
on a sys tem inc luding  the F F D  capabi l i ty .  This  deforma- 
t ion technique  is pa r t  of A C T I O N 3 D ,  a general  in terac t ive  
model ing  sys tem developed jo in t ly  by  S O G I T E C  and IN- 
RIA. 
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Figure 5a: A sphere deformed with a parallelepipedical 
lattice 

b: A sphere deformed with a cylindrical lattice 

Figure 6a: A lattice positioned on a planar surface 

Figure 6b: The deformed lattice and the deformed 
surface 

Figure 7b: Another lattice transformation and 
the deformed surface 

Figure 6c: A sandpie Figure 7c: Another sandpie 
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Figure 8a: An "S" lattice positioned on a sphere 

! 

Figure 9a: An"8" lattice positioned on a planar 
surface 

Figure 8b: The deformed lattice and the deformed 
surface 

Figure 9b: The deformed lattice and the deformed 
surface 

Figure 8c: An "S" sculpted into a granit sphere Figure 9c: An "8" sculpted into a piece of marble 
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Figure 10a: A cylindrical lattice positioned on a surface 
of revolution 

Figure 11a: A cylindrical lattice positioned on a 
planar surface 

Figure 10b: The deformed lattice and the deformed 
surface 

Figure 1 lb:  The deformed lattice and the deformed 
surface 

Figure 10c: A leather like cushion Figure 1 lc:  An oilcloth 
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