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Abstract. Marching Cubes’ methods first offered visual access to experimental and theoretical data. The im-
plementation of this method usually relies on a small lookup table. Many enhancements and optimizations of
Marching Cubes still use it. However, this lookup table can lead to cracks and inconsistent topology. This paper
introduces a full implementation of Chernyaev’s technique to ensure a topologically correct result, i.e. a manifold
mesh, for any input data. It completes the original paper for the ambiguity resolution and for the feasibility of the
implementation. Moreover, the cube interpolation provided here can be used in a wider range of methods. The
source code is available online.
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Figure 1: Implicit surface of linked tori generated by the classical Marching Cubes algorithm, and ours.

1 Introduction
Isosurface extractors and implicit surface tilers opened

up visual access to experimental and theoretical data, such
as medical images, mechanical pieces, sculpture scans,
mathematical surfaces, and physical simulation by finite el-
ements methods. Among those techniques, the Marching
Cubes [5] produces a surface out of a sampling of a scalar
field f : R3 → R. It has been enhanced to a wide range of
applications, from geological reconstruction [10], medical
images to 3D scanning (see [4] for an original use in the
Digital Michelangelo Project). Although this paper focuses
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on surface reconstruction from sampled data, the tilings of
cubes introduced here can be used in simple reconstruction
methods for synthetic data [2, 13] in order to guarantee the
topological consistency of the result when the precision of
the result is limited.

Marching Cubes [5] has become the reference method
when the sampled scalar field is structured on a cuberille
grid. It classifies vertices as positive or negative, according
to their comparison with a given isovalue. Then, it uses a
lookup table to tile the surface inside the cube. This method
has been enhanced and generalized in various directions,
especially to reduce the number of cubes to be evaluated.
However, most of those modern techniques still use a sim-
ple lookup table, which does not ensure the topological con-
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Figure 2: Original Marching Cubes’ lookup table.

sistency of the result.

Prior work. The main obstacles of the Marching Cubes’
derived methods are the ambiguities inherent to data sam-
pling. Those ambiguities can appear on the faces of a cube,
or inside the cube. The ambiguities on faces have been re-
solved in [8], supposing the scalar field f is trilinear over
each cube, which gave a modified lookup table [6]. Within
the same hypothesis, it is possible to resolve internal ambi-
guity as done in [7, 3]. Further approaches [12, 1, 14] com-
putes the topology of f as a volume, giving rise to more
complex algorithms that need, at the end, to tile each cube.

Contribution. In this paper, we describe an efficient and
robust implementation of Chernyaev’s Marching Cubes
33 algorithm [3] (see Figure 1). We needed to complete
Chernyaev’s paper on the internal ambiguity resolution.
We computed and tested the 730 subcases of the enhanced
lookup table. This table can be used as is into Marching
Cubes’ improvements (in particular, those who avoid empty
cell tests). Our result is guaranteed to be a manifold surface,

with no crack, with the topology of the trilinear interpola-
tion of the scalar field over each cube. The complete source
code is available online at the address listed at the end of
this paper.

Cube vs. tetrahedron. Another range of techniques for
isosurface generation is based on tetrahedra [11], as op-
posed to cubes. Those methods guarantee the topological
consistency, and have a small lookup table. However, they
have many drawbacks. They generate much more triangles,
with a weaker geometrical accuracy of the result: the cubes’
tilings are segmented even in obvious configuration, and the
vertex position cannot be adjusted to fit the geometrical tri-
linear approximation as we do with cubes. Moreover, the
ambiguity resolution that is hidden in those methods leads
to slower algorithms, which are more difficult to speed up
with hardware implementation. Our technique uses a com-
plex lookup table, that only needs to be stored, which en-
able our algorithm to be efficiently hardware accelerated.
This technique allows a topologically correct result with a
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single entry cubical lookup table, by a low complexity algo-
rithm. This is a significant practical improvement compared
to the former state of the art of isosurface tilers [9].

2 Marching Cubes with topological guaran-
tees

Marching Cubes. The Marching Cubes method produces
a triangle mesh of the preimage f−1 (α) of an isovalue α
by a scalar function f : R3 → R. We will consider α = 0
for the rest of the paper (considering f − α). This scalar
field is given by samples over a cuberille grid. The original
method sweeps the grid, and tiles the surface cube per cube.
Each vertex v of the cube is classified into positive and
negative vertices, depending whether f (v) is greater than
α or not. Thus, there are 28 = 256 possible configurations
of a cube. The usual implementation stores those 256 in a
lookup table that encodes the tiling of the cube in each case
(see Figure 2).

Correct topology. However, this simple algorithm can
leads to cracks, as shown on Figure 3. The same config-
uration can be tiled in various ways, and the 256– entries
lookup table does not distinguish between those. Among
the different tilings, some approximate a trilinear interpola-
tion of the scalar field f over the cube. We will say a result-
ing mesh has the correct topology if it is homeomorphic to
F−1 (α), where F is equal to f at the sample vertices, and
trilinear over each cube of the grid. This allows avoiding
cracks, by applying topological test on ambiguous faces of
a cube. The same test will be done on the adjacent cube,
allowing a coherent transition from one cube to the other
one. Nielson and Hamann [8] introduced the usual face test
to resolve those face ambiguities.

Figure 3: A crack occurring on an ambiguous face in-between
cases 12 and 3 with the 256–lookup table.

By resolving face ambiguities, we avoid cracks. Nev-
ertheless, this does not guarantee the correct topology, as
with the same cube configuration and the same resolution
of ambiguous faces, there are topologically different trilin-
ear interpolations (see Figure 4). Therefore, we also need to
resolve internal ambiguity to guarantee the topology. The

technique described in this paper guarantees the topology
by providing an extended lookup table and an enhanced
analysis of each cube.

Figure 4: Two trilinear tilings of the 6th case, with the same
resolution of faces’ ambiguity.

Marching Cubes 33. Chernyaev described, with the
Marching Cubes 33 [3], the different possible topologies
of a trilinear function over a cube. He gave a tiling for each
case, adding some extra points for better geometrical ap-
proximation if necessary. He also proposed a method for
resolving internal ambiguity, although it was not complete.
We completed and enhanced this method, adding some
tricks to avoid useless tests. We computed and tested the
complete lookup table described by Chernyaev (see Fig-
ure 5).

3 Algorithm and implementation
The algorithm goes through the following 4 steps:

1. determine the case number and configuration (section
3(a) Determining the configuration).

2. lookup which faces are to be tested for this configura-
tion (section 3(b) Performing the tests).

3. determine the subcase based on the result of the face
tests (section 3(c) Determining the subcase).

4. lookup the tiling of the cube for this subcase (section
3(d) Tiling each cube).

noindent The simplicity of the algorithm relies on the
lookup table, which is actually split into three tables:

— The case table maps each of the 256 possible configu-
rations of a cube to one of the 15 cases of Figure 2, and
to a specific number designating this configuration.

— The test table stores, for each configuration, the tests
to be performed to resolve topological ambiguity.

— The tiling table stores the tiling for each configuration
and subcase (there is no need for computing any geo-
metrical transformation).
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Case 0 Case 1 Case 2 Case 3.1

Case 3.2 Case 4.1 Case 4.2 Case 5

Case 6.1.1 Case 6.1.2 Case 6.2 Case 7.1

Case 7.2 Case 7.3 Case 7.4.1 Case 7.4.2

Case 8 Case 9 Case 10.1.1 Case 10.1.2

Case 10.2 Case 11 Case 12.1.1 Case 12.1.2

Case 12.2 Case 13.1 Case 13.2 Case 13.3

Case 13.4 Case 13.5.1 Case 13.5.2 Case 14

Figure 5: Chernyaev’s lookup table.
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Figure 6: Labeling of vertices, edges and faces: vertex 0 has the lowest x,y,z coordinates, and vertex 6 the highest.

(a) Determining the configuration

The classical Marching Cubes lookup table has 256 en-
tries (represented on Figure 2 by the 15 geometrically dif-
ferent cases, i.e. that cannot be deduced by solid transfor-
mations.). Each entry represents a different vertex config-
uration, given that a vertex is simply described by its sign
(positive or negative).

Each entry is identified by an 8–bit word b, as for the
classical Marching Cubes: its ith bit is set to 1 (resp. 0) if the
ith vertex of the cube is positive (resp. negative). Figure 6
details the label of the vertices. The case table maps this
8-bit word b to the corresponding configuration of one of
the 15 cases (see Figure 2). The configuration numbering is
arbitrary.

For example, b = 129 means that only vertices 0 and 7
are positive, which is numbered in the case table as the 3rd
configuration of the case 3 (see Figure 7).

(b) Performing the tests

To determine the topology of the graph of f inside each
cube, it is not sufficient to know the sign of f over each
vertex, even when f is trilinear. For example, Figure 7
shows two trilinear tilings of a cube with the same sign
of the vertices. When two or more adjacent vertices of a
face have the same sign, the topology of the isosurface
on that face is obvious. Otherwise, this ambiguity can be
resolved using the tests described in section 4(a) Resolution
of faces ambiguities. When the positive vertices of a cube are
connected by edges or through the faces, and also are the
negative vertices, the topology of the interior of the cube is
obvious. Otherwise, this ambiguity can be resolved using
the method described in section 4(b) Resolution of internal
ambiguities.

To know which test are necessary to perform, a test table
stores for each configuration of each ambiguous case (cases
3,4,6,7,10,12 and 13) the label of the faces to be tested.
The interior test sometimes requires an edge code further
describing the configuration, which are stored at specific
position in the tiling table (see section 4(b) Resolution of
internal ambiguities). The labels of the edges and faces are

detailed on Figure 6, face 7 stands for the interior.

Figure 7: Case 3, configuration 3: two different tilings of the
ambiguous face 4.

For example, with b = 129, the 3rd entry of the test table
of case 3 is just ’4’, which means that face 4 is ambiguous
(there is no adjacent vertices with the same sign) and has to
be tested (see Figure 7).

(c) Determining the subcase

The branching of those tests determines the subcase to
be tiled (represented on Figure 5 by the 32 geometrically
different cases). This branching is hard–coded for the sim-
ple cases (see table 1). For complex cases (cases 7 and 13),
other small tables are used to map the result of the tests to
their corresponding subcase.

For example, with b = 129, the subcases of case 3 are
determined by only one test, and is thus hard–coded. The
cube will be tiled according to subcase 3.1 if the test is
negative, and to subcase 3.2 otherwise (see Figure 5 and
Figure 7).

(d) Tiling each cube

Each cube is tiled with triangles according to the tiling
table. Each code of the tiling sequences identifies an edge
of the cube (see Figure 6) on which a vertex of the cube’s
tiling will be computed. The 12th code means interior ver-
tex. The vertices of the final triangulation are computed by
barycentric interpolations on the edges of the cube. Each
group of 3 consecutive edge codes in the tiling table corre-
sponds to a triangle.
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Case Face tests Interior Test Subcase # triangles
1st 2nd 3rd

0 0
1 1
2 2
3 - 3.1 2

+ 3.2 4
4 - 4.1 2

+ 4.2 6
5 3
6 - - 6.1.1 3

- + 6.1.2 7
+ 6.2 5

7 - - - 7.1 3
+ - - 7.2 5
- + - 7.2 5
- - + 7.2 5
+ + - 7.3 9
+ - + 7.3 9
- + + 7.3 9
+ + + + 7.4.1 9
+ + + - 7.4.2 9

8 2
9 4
10 + + 10.1.1 4

- - - 10.1.1 4
- - + 10.1.2 8
+ - 10.2 8
- + 10.2 8

11 4
12 + + 12.1.1 4

- - - 12.1.1 4
- - + 12.1.2 8
+ - 12.2 8
- + 12.2 8

13 45 subcases, testing all the 6 faces and eventually the interior
14 4

Table 1: A reduced representation of the test table. Case 13 has 45 entries to map the results of all the possible tests to the right
subcase.
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For example, with b = 129, the 3rd configuration of case
3 corresponds in the tiling table to

{ 3,0,8,11,7,6,
7,8,6,8,0,6,3,11,6,3,6,0 }

Subcase 3.1 corresponds to the first sequence of the tiling
table (2 triangles), and subcase 3.2 to the second one (4
triangles), as shown on Figure 7. As each tiling of the same
subcase has the same number of triangles, those sequences
are easily distinguished even if stored in the same table.

4 Ambiguity resolution
This section describes the methods used to test the faces

and interior of a cube, when the values at the vertices yield
an ambiguous configuration. Those tests are used in step 2
of the algorithm, to resolve those ambiguities on a face (see
section 4(a) Resolution of faces ambiguities) or on the interior
of a cube (see section 4(b) Resolution of internal ambiguities).

(a) Resolution of faces ambiguities

Figure 8: Face ambiguity test (Chernyaev’s illustration [3]).

Face ambiguity arise when two opposite vertices A and
C of the face are positive, and the two others B and D
are negatives (see Figure 7 and Figure 8). We supposed
the scalar field F is trilinear on each cube, thus, bilinear
on each face. Therefore, F−1 (α) restricted to the face is a
hyperbola (see Figure 8). Testing whether the center of the
hyperbola is positive or negative (i.e. whether the positive
vertices are connected inside the face) reduces (for α = 0)
to testing the sign of F (A) · F (C)− F (B) · F (D).

The sign of the center of the hyperbola is the sign
of the above expression if A is positive, and the op-
posite if A is negative. In addition, for some con-
figuration, we want the opposite of the result. This
is encoded by a negative face label in the test table.
Therefore, the implemented test returns the sign of:
sign (face label · F (A) · (F (A) · F (C)− F (B) · F (D))).

(b) Resolution of internal ambiguities

An internal ambiguity arises when two diagonally oppo-
site vertices A0 and C1 of a cube can be connected through

Figure 9: Case 4, configuration 0: two different tilings of the
interior of a cube.

the interior of the cube, creating a kind of tunnel (see Fig-
ure 4 and Figure 9). Let say those two vertices A0 and
C1 are positive (the description holds for negative vertices
also). We first resolve face ambiguity, according to section
4(a) Resolution of faces ambiguities. If there is a chain of posi-
tive vertices joining A0 to C1, connected by edges or cross-
ing ambiguous faces resolved as positive, then there is no
internal ambiguity. Otherwise, we have to test if A0 and C1

are connected only through the cube.
Suppose A0 and C1 are connected through the interior of

the cube. For X = A,B, C,D, let Xt = t·X0+(1−t)·X1.
As F is trilinear, F cannot change sign more than once
along segment. Thus, there is a plane P = (At, Bt, Ct, Dt),
where the two edges A0A1 and C1C0 are connected inside
the square At, Bt, Ct, Dt (see Figure 10). For each case,
we must find the direction of P , compute the height t of P
along the edge, and resolve the ambiguity inside the square
At, Bt, Ct, Dt.

Figure 10: Internal ambiguity test for cases 4 and 10
(Chernyaev’s illustration [3]).

Cases 4 and 10 have enough symmetry to choose always
the same direction, independently of the configuration. The
height t ∈ [0, 1] is the solution of Chernyaev’s second order
equation : a · t2 + b · t + c, with :

a = (A1 −A0) · (C1 − C0)− (B1 −B0) · (D1 −D0)
b = C0 · (A1 −A0) + A0 · (C1 − C0)

−D0 · (B1 −B0)−B0 · (D1 −D0)
c = A0 · C0 −B0 ·D0
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For the other cases, the direction of P is encoded as an edge
e inside one particular sequence of the tiling table: the 17th
edge for cases 6, 7, and 12; the 2nd edge for the case 13.5.
In that case, the height of the plane is the barycenter of the
end vertices of e, weighted by F .

In both situations, the intersection of P with the cube is a
square, with vertices At, Bt, Ct, Dt. There is no ambiguity
inside this square if 0 or 1 vertex is positive (negative
vertices are connected through the cube), if 3 or 4 vertices
are positive (positive vertices are connected through the
cube), or if 2 consecutive vertices are positive (no diagonal
connection). In the other case, the square is ambiguous, and
we resolve it in the same way as for face ambiguity.

5 Tips and tricks
The vertices of the final mesh are interpolated along an

edge. To avoid computing them more than once, they can be
all computed first. To store them, we used 3 arrays, which
assign respectively to each grid vertex an eventual index to
the mesh vertex on the edge parallel to the x, y and z axis.

The normal coordinates at each grid vertex −→p can be
computed as F

(−→p +
−→
δ

)
−F

(−→p −−→δ
)

, where
−→
δ is the

grid step along that coordinate. The normal at each point is
then interpolated linearly.

A low resolution extraction can be obtained by consid-
ering a lower resolution grid, i.e. taking into account every
other vertex or every n–th vertex.

This algorithm is guaranteed to produce manifold
meshes for any sample data, which allows working on pre-
views with the same tools as on the final mesh.

This algorithm can be used for implicit surface tiling to
construct fixed precision or exact result. In the latter case, it
allows an economic use of exact arithmetic: when an eval-
uation of the surface inside a cube is ambiguous, the cube
needs to be subdivided and the implicit function is evalu-
ated again on the subdivision cubes. The tests we provided
here can be substituted to avoid subdividing cubes guaran-
teeing a manifold result. For example, an exact evaluation
of the contour graph of F [1] gives the number of connected
components inside a cube. This topological information is
a powerful test to distinguish between subcases.

Web information

A C++ implementation together with the tables are avail-
able online at http://www.acm.org/jgt/papers/
LewinerEtAl03. A small interface allows examining
each entry of those tables.
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