Nonconvex Rigid Bodies with Stacking

Eran Guendelman*
Stanford University

Abstract

We consider the simulation of nonconvex rigid bodies focusing
on interactions such as collision, contact, friction (kinetic, static,
rolling and spinning) and stacking. We advocate representing the
geometry with both a triangulated surface and a signed distance
function defined on a grid, and this dual representation is shown
to have many advantages. We propose a novel approach to time
integration merging it with the collision and contact processing al-
gorithms in a fashion that obviates the need for ad hoc threshold
velocities. We show that this approach matches the theoretical so-
lution for blocks sliding and stopping on inclined planes with fric-
tion. We also present a new shock propagation algorithm that al-
lows for efficient use of the propagation (as opposed to the simul-
taneous) method for treating contact. These new techniques are
demonstrated on a variety of problems ranging from simple test
cases to stacking problems with as many as 1000 nonconvex rigid
bodies with friction as shown in Figure 1.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling 1.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation;

Keywords: rigid bodies, collision, contact, friction, nonconvex

1 Introduction

Dynamic volumetric objects are pervasive in everyday life, and the
ability to numerically simulate their behavior is important to a num-
ber of industries and applications including feature films, computer
games and the automobile industry. One can differentiate between
highly deformable volumetric objects and those where the defor-
mation is either negligible or unimportant, and in the latter case
efficiency concerns usually lead to rigid body approximations.
[Chatterjee and Ruina 1998] notes the weakness of the rigid body
approximation to solids and discusses some known flaws in state
of the art collision models. Moreover, they discuss some com-
mon misconceptions mentioning for example that the coefficient of
restitution can be greater than one in frictional collisions. [Stewart
2000] emphasizes the difficulties with nonunique solutions point-
ing out that it is often impossible to predict which solution occurs
in practice since it depends on unavailable details such as material
microstructure. He states that one should repeat the calculations
with random disturbances to characterize the potential set of solu-
tions. [Barzel et al. 1996] exploited this indeterminacy by adding

*e-mail: {erang, rbridson} @stanford.edu
fe-mail: fedkiw @cs.stanford.edu

Robert Bridson*
Stanford University

Ronald Fedkiw
Stanford University

|

Figure 1: 1000 nonconvex rings (with friction) settling after be-
ing dropped onto a set of 25 poles. Each ring is made up of 320
triangles, and each pole is made up of 880 triangles.

random texture and structured perturbations to enrich and control
the motion respectively. The goal of rigid body simulation then
becomes the construction of plausible motion instead of predictive
motion. While the physicist strives towards synthesizing a family of
solutions that are predictive in the sense that they statistically rep-
resent experimental data, the interest in graphics is more likely to
focus on obtaining a particularly appealing solution from the set of
plausible outcomes, e.g. see [Chenney and Forsyth 2000; Popovi¢
et al. 2000].

With this in mind, we focus on the plausible simulation of non-
convex rigid bodies emphasizing large scale problems with many
frictional interactions. Although we start with a triangulated sur-
face representation of the geometry, we also construct a signed dis-
tance function defined on a background grid (in the object frame)
enabling the use of fast inside/outside tests. The signed distance
function also conveniently provides a normal direction at points on
and near the surface of the object. We take a closer look at the usual
sequence of simulation steps—time integration, collision detection
and modeling, contact resolution—and propose a novel approach
that more cleanly separates collision from contact by merging both
algorithms more tightly with the time integration scheme. This re-
moves the need for ad hoc threshold velocities used by many au-
thors to alleviate errors in the contact and collision algorithms, and
correctly models difficult frictional effects without requiring micro-
collision approximations [Mirtich and Canny 1995a; Mirtich and
Canny 1995b] (which also use an ad hoc velocity). We also intro-
duce a novel algorithm that increases the efficiency of the propaga-
tion method for contact resolution. The efficiency and robustness
of our approach is illustrated with a number of simple and complex
examples including frictional interactions and large contact groups
as is typical in stacking.

2 Previous Work

[Hahn 1988] considered rigid body collisions by processing the col-
lisions chronologically backing the rigid bodies up to the time of
impact. [Mirtich 2000] used a timewarp algorithm to back up just

the objects that are involved in collisions while still evolving non-
colliding objects forward in time. This method works well except
when there are a large number of bodies in contact groups, which
is the case we are concerned with in this paper. [Hahn 1988] pro-
cessed collisions with static friction if the result was in the friction
cone, and otherwise used kinetic friction. If the approach veloc-
ity was smaller than a threshold, the objects were assumed to be in
contact and the same equations were applied approximating con-
tinuous contact with a series of “instantaneous contacts”. [Moore
and Wilhelms 1988] instead proposed the use of repulsion forces
for contact only using the exact impulse-based treatment for high
velocity collisions.

[Baraftf 1989] proposed a method for analytically calculating
non-colliding contact forces between polygonal objects obtaining
an NP-hard quadratic programming problem which was solved us-
ing a heuristic approach. He also points out that these ideas could
be useful in collision propagation problems such as one billiard ball
hitting a number of others (that are lined up) or objects falling in a
stack. [Baraff 1990] extended these concepts to curved surfaces.
[Baraff 1991] advocated finding either a valid set of contact forces
or a valid set of contact impulses stressing that the usual preference
of the latter only when the former does not exist may be misplaced.
For more details, see [Baraff 1993]. [Baraff 1994] proposed a sim-
pler, faster and more robust algorithm for solving these types of
problems without the use of numerical optimization software.

[Bhatt and Koechling 1995] discussed the nonlinear differen-
tial equations that need to be numerically integrated to analyze
the behavior of three-dimensional frictional rigid body impact and
pointed out that the problem becomes ill-conditioned at the sticking
point. Then they use analysis to enumerate all the possible post-
sticking scenarios and discuss the factors that determine a specific
result. [Mirtich and Canny 1995b] integrated these same nonlinear
differential equations to model both contact and collision propos-
ing a unified model (as did [Hahn 1988]). They use the velocity
an object at rest will obtain by falling through the collision enve-
lope (or some threshold in [Mirtich and Canny 1995a]) to identify
the contact case and apply a microcollision model that reverses the
relative velocity as long as the required impulse lies in the friction
cone. This solves the problem of blocks erroneously sliding down
inclined planes due to impulse trains that cause them to spend time
in a ballistic phase.

Implicitly defined surfaces were used for collision modeling by
[Terzopoulos et al. 1987] to create repulsive force fields around ob-
jects and [Pentland and Williams 1989; Sclaroff and Pentland 1991]
who exploited fast inside/outside tests. We use a particular implicit
surface approach defining a signed distance function on an under-
lying grid. Grid-based distance functions have been gaining popu-
larity, see e.g. [Fisher and Lin 2001; Hirota et al. 2001] who used
them to treat collision between deformable bodies, and [Kim and
Neumann 2002] who used them to keep hair from interpenetrating
the head. Although [Gibson 1998] pointed out potential difficulties
with spurious minima in concave regions, we have not noticed any
adverse effects, most likely because we do not use repulsion forces.

[Milenkovic 1996] used position based physics to simulate the
stacking of convex objects and discussed ways of making the simu-
lations appear more physically realistic. [Milenkovic and Schmidl
2001] considered stacking with standard Newtonian physics using
an optimization based method to adjust the predicted positions of
the bodies to avoid overlap. One drawback is that the procedure
tends to align bodies nonphysically. Quadratic programming is
used for contact, collision and the position updates. They consider
up to 1000 frictionless spheres, but nonconvex objects can only be
considered as unions of convex objects and they indicate that the
computational cost scales with the number of convex pieces. Their
only nonconvex example considered 50 jacks that were each the
union of 3 boxes. More recently, [Schmidl 2002] described a freez-

ing technique that identifies when objects can be removed from the
simulation, as well as identifying when to add them back. This al-
lows the stacking of 1000 cubes with friction in 1.5 days as opposed
to an estimated 45 days for simulating all the cubes.

3 Geometric Representation

Since rigid bodies do not deform, they are typically represented
with triangulated surfaces, see Figure 2. Starting with either the
density (or mass), algorithms such as [Mirtich 1996] can then be
used to compute the volume, mass and moments of inertia. For
efficiency, we store the object space representation with the center
of mass at the origin and the axes aligned with the principal axes
of inertia resulting in a diagonal inertia tensor simplifying many

2\

S
N
AVASS

=
X

A s
<>
XALE

ZAVZAY
(WAVAYZS

0
NN
" DA
~Lenks
S
S

Figure 2: Some nonconvex geometry from our simulations: the
cranium, pelvis and femur have 3520, 8680 and 8160 triangles
respectively.

In addition to a triangulated surface, we also store an object
space signed distance function for each rigid body. This is stored
on either a uniform grid [Osher and Fedkiw 2002] or an octree grid
[Frisken et al. 2000] depending on whether speed or memory, re-
spectively, is deemed to be the bottleneck in the subsequent calcu-
lations. Discontinuities across octree levels are treated by constrain-
ing the fine grid nodes at gradation boundaries to take on the values
dictated by interpolating from the coarse level, see e.g. [Wester-
mann et al. 1999]. We use negative values of ¢ inside the rigid
body and positive values of ¢ outside so that the normal is defined
as N = V¢. This embedding provides approximations to the nor-
mal throughout space as opposed to just on the surface of the object
allowing us to accelerate many contact and collision algorithms. A
signed distance function can be calculated quickly using a march-
ing method [Tsitsiklis 1995; Sethian 1996] after initializing grid
points near the surface with appropriate small negative and positive
values. This is a one time cost in constructing a rigid body model
and is currently used in several systems, see e.g. [Cutler et al. 2002;
Museth et al. 2002].

Using both a triangulated surface and a signed distance function
representation has many advantages. For example, one can use the
signed distance function to quickly check if a point is inside a rigid
body, and if so intersect a ray in the N = V¢ direction with the
triangulated surface to find the surface normal at the closest point.
This allows the treatment of very sharp objects with their true sur-
face normals, although signed distance function normals provide a
smoother and less costly representation if desired. For more details
on collisions involving sharp objects, see [Pandolfi et al. 2002].

4 Interference Detection

[Gascuel 1993; Desbrun and Gascuel 1995] found intersections be-
tween two implicitly defined surfaces by testing the sample points
of one with the inside/outside function of the other. We follow the
same strategy using the vertices of the triangulated surface as our

sample points. This test is not sufficient to detect all collisions, as
edge-face collisions are missed when both edge vertices are out-
side the implicit surface. Since the errors are proportional to the
edge length, they can be ignored in a well resolved mesh with small
triangles. However, when substantial, e.g. when simulating cubes
with only 12 triangles, we intersect the triangle edges with the zero
isocontour and flag the deepest point on the edge as an interpen-
etrating sample point. Since we do not consider time dependent
collisions, fast moving objects might pass through each other. We
alleviate this problem by limiting the size of a time step based on
the translational and rotational velocities of the objects and the size
of their bounding boxes, although methods exist for treating the en-
tire time swept path as a single implicit surface [Schroeder et al.
1994].

A number of accelerations can be used in the interference de-
tection process. For example, the inside/outside tests can be accel-
erated by labeling the voxels that are completely inside and com-
pletely outside (this is done for voxels at each level in the octree
representation as well) so that interpolation can be avoided except
in cells which contain part of the interface. Labeling the mini-
mum and maximum values of ¢ in each voxel can also be useful.
Bounding boxes and spheres are used around each object in order to
prune points before doing a full inside/outside test. Moreover, if the
bounding volumes are disjoint, no inside/outside tests are needed.
For rigid bodies with a large number of triangles, we found an in-
ternal box hierarchy with triangles in leaf boxes to be useful espe-
cially when doing edge intersection tests. Also, we use a uniform
spatial partitioning data structure with local memory storage imple-
mented using a hash table in order to quickly narrow down which
rigid bodies might be intersecting. Similar spatial partitioning was
used in, for example, [Mirtich and Canny 1995b]. Again, we stress
our interest in nonconvex objects and refer the reader to [Ponamgi
et al. 1995; Kim et al. 2002] for other algorithms that treat arbitrary
nonconvex polyhedral models. For more details on collision detec-
tion methods, see e.g. [Webb and Gigante 1992; Lin and Gottschalk
1998; Redon et al. 2002].

5 Time Integration
The equations for rigid body evolution are

X =v, ¢,=%0q (1)
vw=F/m, L =1)

where x and ¢ are the position and orientation (a unit quaternion),
v and @ are the velocity and angular velocity, F' is the net force, m
is the mass, L = /@ is the angular momentum with inertia tensor
I = RDRT (R is the orientation matrix and D is the diagonal inertia
tensor in object space), and 7 is the net torque. For simplicity we
will consider F' = mg and thus v, = g throughout the text, but our
algorithm is not restricted to this case. While there are a number of
highly accurate time integration methods for noninteracting rigid
bodies in free flight, see e.g. [Buss 2000], these algorithms do not
retain this accuracy in the presence of contact and collision. Thus,
we take a different approach to time integration instead optimizing
the treatment of contact and collision. Moreover, we use a simple
forward Euler time integration for equations 1 and 2.

The standard approach is to integrate equations 1 and 2 forward
in time, and subsequently treat collision and then contact. Generally
speaking, collisions require impulses that discontinuously modify
the velocity, and contacts are associated with forces and accelera-
tions. However, friction can require the use of impulsive forces in
the contact treatment, although the principle of constraints requires
that the use of impulsive forces be kept to a minimum. [Baraff
1991] suggested that this avoidance of impulsive behavior is nei-
ther necessary nor justified and stressed that there are algorithmic
advantages to using impulses exclusively. This naturally leads to
some blurring between collision and contact handling, and provides

a sense of justification to the work of [Hahn 1988] where the same
algebraic equations were used for both and the work of [Mirtich
and Canny 1995b] who integrated the same nonlinear differential
equations for both. However, other authors such as [Moore and
Wilhelms 1988; Sims 1994; Kokkevis et al. 1996] have noted dif-
ficulties associated with this blurring and proposed that an impulse
based treatment of collisions be separated from a penalty springs
approach to contact. They used the magnitude of the relative ve-
locity to differentiate between contact and collision. [Mirtich and
Canny 1995b] used the velocity an object at rest will obtain by
falling through the collision envelope (or some threshold in [Mir-
tich and Canny 1995a]) to identify the contact case and applied a
microcollision model where the impulse needed to reverse the rel-
ative velocity is applied as long as it lies in the friction cone. They
showed that this solves the problem of blocks erroneously sliding
down inclined planes due to impulse trains that cause them to spend
time in a ballistic phase.

A novel aspect of our approach is the clean separation of col-
lision from contact without the need for threshold velocities. We
propose the following time sequencing:

e Collision detection and modeling.

e Advance the velocities using equation 2.
e Contact resolution.

e Advance the positions using equation 1.

The advantages of this time stepping scheme are best realized
through an example. Consider a block sitting still on an inclined
plane with a large coefficient of restitution, say € = 1, and suppose
that friction is large enough that the block should sit still. In a stan-
dard time stepping scheme, both position and velocity are updated
first, followed by collision and contact resolution. During the po-
sition and velocity update, the block starts to fall under the effects
of gravity. Then in the collision processing stage we detect a low
velocity collision between the block and the plane, and since € =1
the block will change direction and bounce upwards at an angle
down the incline. Then in the contact resolution stage, the block
and the plane are separating so nothing happens. The block will
eventually fall back to the inclined plane, and continue bouncing
up and down incorrectly sliding down the inclined plane because
of the time it spends in the ballistic phase. This is the same phe-
nomenon that causes objects sitting on the ground to vibrate as they
are incorrectly subjected to a number of elastic collisions. Thus,
many authors use ad hoc threshold velocities in an attempt to prune
these cases out of the collision modeling algorithm and instead treat
them with a contact model.

Our new time stepping algorithm automatically treats these
cases. All objects at rest have zero velocities (up to round-off error),
so in the collision processing stage we do not get an elastic bounce
(up to round-off error). Next, gravity is integrated into the velocity,
and then the contact resolution algorithm correctly stops the objects
so that they remain still. Thus, nothing happens in the last (position
update) step, and we repeat the process. The key to the algorithm is
that contact modeling occurs directly after the velocity is updated
with gravity. If instead either the collision step or a position update
were to follow the velocity update, objects at rest will either incor-
rectly elastically bounce or move through the floor, respectively. On
the other hand, contact processing is the correct algorithm to apply
after the velocity update since it resolves forces, and the velocity
update is where the forces are included in the dynamics.

One must use care when updating the velocity in between the
collision and contact algorithms to ensure that the same exact tech-
nique is used to detect contact as was used to detect collision. Oth-
erwise, an object in free flight might not register a collision, have
its velocity updated, and then register a contact causing it to incor-
rectly receive an inelastic (instead of elastic) bounce. We avoid this
situation by guaranteeing that the contact detection step registers a
negative result whenever the collision detection step does. This is

<

Figure 3: The block and inclined plane test with standard time
integration (the block erroneously tumbling) and our new time
integration sequencing (the block correctly at rest).

easily accomplished by ensuring that the velocity update has no ef-
fect on the contact and collision detection algorithms (discussed in
Section 6).

We repeated the experiment of a block sliding down an inclined
plane from [Mirtich and Canny 1995b] using the methods for col-
lision and contact proposed throughout this paper and our newly
proposed time step sequencing. We used a coefficient of restitu-
tion € = 1 in order to accentuate difficulties with erroneous elastic
bouncing. Using our new time stepping scheme the decelerating
block slides down the inclined plane coming to a stop matching
theory, while the standard time stepping scheme performs so poorly
that the block bounces down the inclined plane as shown in Figure
3. Of course, these poor results are accentuated because we both
set € = 1 and do not back up the simulation to the time of collision
(which would be impractical and impossible for our large stacking
examples). Figure 4 shows a comparison between theory and our
numerical results. For both the acceleration and deceleration cases,
our numerical solution and the theoretical solution lie so closely on
top of each other that two distinct lines cannot be seen. Moreover,
our results are noticeably better than those depicted in [Mirtich and
Canny 1995b] even though we do not use a threshold velocity or
their microcollision model.

6 Collisions

When there are many interacting bodies, it can be difficult to treat
all the collisions especially if they must be resolved in chronologi-
cal order. Thus instead of rewinding the simulation to process col-
lisions one at a time, we propose a method that simultaneously re-
solves collisions as did [Stewart and Trinkle 2000; Milenkovic and
Schmidl 2001]. While this does not give the same result as process-
ing the collisions in chronological order, there is enough uncertainty
in the collision modeling that we are already guaranteed to not get
the exact physically correct answer. Instead we will obtain a physi-
cally plausible solution, i.e. one of many possible physically correct
outcomes which may vary significantly with slight perturbations in
initial conditions or the inclusion of unmodeled phenomena such as
material microstructure.

Collisions are detected by predicting where the objects will move
to in the next time step, temporarily moving them there, and check-
ing for interference. The same technique will be used for detecting
contacts, and we want the objects to be moved to the same po-
sition for both detection algorithms if there are no collisions (as
mentioned above). In order to guarantee this, we use the new ve-
locities to predict the positions of the rigid bodies in both steps.
Of course, we still use the old velocities to process the collisions
and the new velocities to process the contacts. For example, for
the collision phase, if an object’s current position and velocity
are x and v, we test for interference using the predicted position
x' =x+At(v+Atg), and apply collision impulses to (and using) the
current velocity v. During contact processing, we use the predicted
position x' = x + AtV and apply impulses to this new velocity v'.
Since v = v+ Arg was set in the velocity update step, the candidate
positions match and the interference checks are consistent.

The overall structure of the algorithm consists of first moving

Decelerating Down Ramp Decelerating Down Ramp

vel (m/s)

0.0 05 1.0 15 2,0 0.0 05 1.0 15 2,0
time(s) time(s)
Accelerating Down Ramp Accelerating Down Ramp

vel (m/s)

) %
0.0 05 1.0 1.5 20 0.0 05 1.0 1.5 20
time(s) time(s)

Figure 4: Theoretical and our numerical results for two tests of
a block sliding down an inclined plane with friction. The curves
lie on top of each other in the figures due to the accuracy of our
new time sequencing algorithm.

all rigid bodies to their predicted locations, and then identifying
and processing all intersecting pairs. Since collisions change the
rigid body’s velocity, v, new collisions may occur between pairs
of bodies that were not originally identified. Therefore we repeat
the entire process a number of times (e.g. five iterations) moving
objects to their newly predicted locations and identifying and pro-
cessing all intersecting pairs. Since pairs are considered one at a
time, the order in which this is done needs to be determined. This
can be accomplished by initially putting all the rigid bodies into a
list, and then considering rigid bodies in the order in which they ap-
pear. To reduce the inherent bias in this ordering, we regularly mix
up this list by randomly swapping bodies two at a time. This list is
used throughout our simulation whenever an algorithm requires an
ordering.

For each intersecting pair, we identify all the vertices of each
body that are inside the other (and optionally the deepest points
on interpenetrating edges as well). Since we do not back up the
rigid bodies to the time of collision, we need a method that can deal
with nonconvex objects with multiple collision regions and multi-
ple interfering points in each region. We start with the deepest point
of interpenetration that has a nonseparating relative velocity as did
[Moore and Wilhelms 1988], and use the standard algebraic colli-
sion laws (below) to process the collision. Depending on the magni-
tude of the collision, this may cause the separation of the entire con-
tact region. If we re-evolve the position using the new post-collision
velocity, this collision group could be resolved. Whether or not it is
resolved, we can once again find the deepest non-separating point
and repeat the process until all points are either non-interpenetrating
or separating. While this point sampling method is not as accurate
as integrating over the collision region as in [Hirota et al. 2001], it
is much faster and scales well to large numbers of objects.

We developed an aggressive optimization for the point sampling
that gives similarly plausible results, (see e.g. Figure 5). As before,
one first labels all the non-separating intersecting points and ap-
plies a collision to the deepest point. But instead of re-evolving the
objects and repeating the expensive collision detection algorithm,
we simply keep the objects stationary and use the same list of (ini-
tially) interfering points for the entire procedure. After processing
the collision, all separating points are removed from the list. Then
the remaining deepest nonseparating point is identified and the pro-
cess is repeated until the list is empty. In this manner, all points in
the original list are processed until they are separating at least once

Figure 5: A billiard ball hits one end of a line of billiard balls,
and the collision response propagates to the ball on the far right
which then starts to roll.

during the procedure. The idea of lagging collision geometry was
also considered by [Baraff 1995] in a slightly different context.
Each body is assigned a coefficient of restitution, and when two
bodies collide we use the minimum between the two coefficients as
did [Moore and Wilhelms 1988] to process the collision. Suppose
the relative velocity at the collision point was originally u _, with
(scalar) normal and (vector) tangential components, © reln = Urel ‘N

and u =U,, — ”rel,nN respectively. Then we apply equal and

rel

rel,t
opposite impulses j to each body to obtain v/ = v+ j/m and
o' = @+ I"!(r x j) where r points from their respective centers
of mass to the collision location. The new velocities at the point of
collision will be u' = u+ K j where K = § /m+r*TI~1r* with § the
identity matrix and the “*” superscript indicating the cross-product
matrix. Finally, ”/rel,n = Uyl +NTKTNjn where K- is the sum of
the individual K’s and j = j,N is our frictionless impulse. So given
a final relative normal velocity “/rel,n = —&u,, . we can find the
impulse j. Immovable static objects like the ground plane can be

treated by setting K = 0 and not updating their velocities.

7 Static and Kinetic Friction

The collision algorithm above needs to be modified to account for
kinetic and static friction. Each body is assigned a coefficient of
friction, and we use the maximum of the two possible coefficients
when processing a collision as did [Moore and Wilhelms 1988].
Like [Hahn 1988; Moore and Wilhelms 1988], we first assume that
the bodies are stuck at the point of impact due to static friction

and solve for the impulse. That is, we set "‘/relt = 0 so that ”/rel =
—&u,,; ,N allows us to solve), = u,,+ Ky j for the impulse j by

inverting the symmetric positive definite matrix K. Then if j is in
the friction cone, i.e. if |j— (j-N)N| < uj-N, the point is sticking
due to static friction and j is an acceptable impulse. Otherwise, we
apply sliding friction.

Define T = ”rel,t/|”rel,t
puted with the impulse j = j,N — 1 j,T. Then take the dot product
of ul , =u,,+K;j with N to obtain ”/rel,n = Uy +NTK;j or
reln = Ureln +NTKTj. Plugging in the definition of j we can
solve to find j, = —(e+ l)urel’n/(NTKT (N —uT)) from which the
kinetic friction impulse j is determined.

| so that the kinetic friction can be com-

—&u

8 Contact

After a few iterations of the collision processing algorithm, the
rigid bodies have been elastically bounced around enough to ob-
tain a plausible behavior. So even if collisions are still occurring,
we update the velocities of all the rigid bodies and move on to con-
tact resolution. Since the contact modeling algorithm is similar to
the collision modeling algorithm except with a zero coefficient of
restitution, objects still undergoing collision will be processed with
inelastic collisions. This behavior is plausible since objects under-
going many collisions in a single time step will tend to rattle around
and quickly lose energy.

The goal of the contact processing algorithm is to resolve the
forces between objects. As in collision detection, we detect contacts
by predicting where the objects will move to in the next time step
disregarding the contact forces, temporarily moving them there,

and checking for interference. For example, objects sitting on the
ground will fall into the ground under the influence of gravity lead-
ing to the flagging of these objects for contact resolution. All inter-
acting pairs are flagged and processed in the order determined by
our list. Once again, multiple iterations are needed especially for
rigid bodies that sit on top of other rigid bodies. For example, a
stack of cubes will all fall at the same speed under gravity and only
the cube on the bottom of the stack will intersect the ground and
be flagged for contact resolution. The other cubes experience no
interference in this first step. However, after processing the forces
on the cube at the bottom of the stack, it will remain stationary and
be flagged as interpenetrating with the cube that sits on top of it
in the next sweep of the algorithm. This is a propagation model for
contact as opposed to the simultaneous solution proposed in [Baraff
1989].

The difficulty with a propagation model is that it can take many
iterations to converge. For example, in the next iteration the cube
on the ground is stationary and the cube above it is falling due to
gravity. If we process an inelastic collision between the two cubes,
the result has both cubes falling at half the speed that the top cube
was falling. That is, the cube on top does not stop, but only slows
down. Even worse, the cube on the ground is now moving again and
we have to reprocess the contact with the ground to stop it. In this
sense, many iterations are needed since the algorithm does not have
a global view of the situation. That is, all the non-interpenetration
constraints at contacts can be viewed as one large system of equa-
tions, and processing them one at a time is similar to a slow Gauss-
Seidel approach to solving this system. Instead, if we simultane-
ously considered the entire system of equations, one could hope
for a more efficient solution, for example by using a better itera-
tive solver. This is the theme in [Milenkovic and Schmidl 2001]
where an optimization based approach is taken. We propose a more
light-weight method in Section 8.2.

Similar to the collision detection algorithm, for each intersect-
ing pair, we identify all the vertices of each body that are inside
the other (and optionally the deepest points on edges as well). Al-
though [Baraff 1989] pointed out that the vertices of the contact
region (which lie on the vertices and edges of the original model)
need to be considered, we have found our point sampling method to
be satisfactory. However, since we have a triangulated surface for
each object, we could do this if necessary. As in [Hahn 1988; Mir-
tich and Canny 1995b] we use the same equations to process each
contact impulse that were used in the collision algorithm, except
that we set € = 0. We start with the deepest point of interpenetration
that has a non-separating relative velocity, and again use the stan-
dard algebraic collision laws. Then a new predicted position can
be determined and the process repeated until all points are either
non-overlapping or separating. Although the aggressive optimiza-
tion algorithm that processes all points until they are separating ar
least once could be applied here as well, it is not as attractive for
contact as it is for collision since greater accuracy is usually desired
for contacts.

For improved accuracy, we propose the following procedure.
Rather than applying a fully inelastic impulse of € = 0 at each point
of contact, we gradually stop the object from approaching. For ex-
ample, on the first iteration of contact processing we apply impulses
using € = —.9, on the next iteration we use € = —.8, and so on un-
til we finally use € = 0 on the last iteration. A negative coefficient
of restitution simply indicates that rather than stop or reverse an
approaching object, we only slow it down.

In the collision processing algorithm, we used the predicted po-
sitions to determine the geometry (e.g. normal) of the collision. Al-
though it would have been better to use the real geometry at the time
of collision, the collision time is not readily available and further-
more the accuracy is not required since objects are simply bouncing
around. On the other hand, objects should be sitting still in the con-

g
E t— ~u

Figure 6: Although the propagation treatment of contact and
collision allows the stacking and flipping of boxes as shown in
the figure, our shock propagation algorithm makes this both
efficient and visually accurate.

tact case, and thus more accuracy is required to prevent incorrect
rattling around of objects. Moreover, the correct contact geometry
is exactly the current position (as opposed to the predicted posi-
tion), since the contact forces should be applied before the object
moved. Thus, we use the current position to process contacts.

8.1 Contact graph

At the beginning of the contact resolution stage we construct a con-
tact graph similar to [Hahn 1988; Baciu and Wong 2000] with the
intention of identifying which bodies or groups of bodies are resting
on top of others. We individually allow each object to fall under the
influence of gravity (keeping the others stationary) for a character-
istic time At (on the order of a time step), and record all resulting
interferences adding a directed edge pointing towards the falling
object from the other object. Then we apply a simple topological
sort algorithm that uses two depth first searches to collapse strongly
connected components resulting in a directed acyclic graph. For a
stack of cubes, we get a contact graph that points from the ground
up one cube at a time to the top of the stack. For difficult problems
such as a set of dominoes arranged in a circle on the ground with
each one resting on top of the one in front of it, we simply get the
ground in one level of the contact graph and all the dominoes in a
second level. Roughly speaking, objects are grouped into the same
level if they have a cyclic dependence on each other.

The purpose of the contact graph is to suggest an order in which
contacts should be processed, and we wish to sweep up and out
from the ground and other static (non-simulated) objects in order
to increase the efficiency of the contact propagation model. When
considering objects in level i, we gather all contacts between ob-
jects within level i as well as contacts between objects in this level
and ones at lower-numbered levels. With the latter type of contact
pairs, the object in level i is, as a result of the way we constructed
the contact graph, necessarily “resting on” the lower level object
and not the other way around. The contact pairs found for level i
are put into a list and treated in any order iterating through this list
a number of times before moving on to the next level. Addition-
ally, we sweep along the graph through all levels multiple times for
improved accuracy.

8.2 Shock propagation

Even with the aid of a contact graph, the propagation model for
contact may require many iterations to produce visually appealing
results especially in simulations with stacks of rigid bodies. For
example, in the cube stack shown in Figure 6 (center), the cubes
will start sinking into each other if not enough iterations are used.
To alleviate this effect, we propose a shock propagation method
that can be applied on the last sweep through the contact graph.
After each level is processed in this last sweep, all the objects in
that level are assigned infinite mass (their K matrix is set to zero).
Here, the benefit of sorting the objects into levels becomes most
evident. If an object of infinite mass is later found to be in contact
with a higher-level object, its motion is not affected by the impulses
applied to resolve contact, and the higher level object will simply
have to move out of the way! Once assigned infinite mass, objects
retain this mass until the shock propagation phase has completed.

| | - = :E - ! w -
Figure 7: A heavier block on the right tips the see-saw in that di-
rection, and subsequently slides off. Then the smaller block tips
the see-saw back in the other direction. The propagation treat-
ment of contact allows the weight of each block to be felt, and
our shock propagation method keeps the blocks from interpen-

etrating without requiring a large number of contact processing
iterations.

As in contact, we iterate a number of times over all contact pairs in
each level, but unlike contact we only complete one sweep through
all of the levels. Note that when two objects at the same level are
in contact, neither has been set to infinite mass yet, so shock prop-
agation in this case is no different than our usual contact process-
ing. However, the potentially slow convergence of the usual contact
processing has now been localized to the smaller groups of strongly
connected components in the scene.

To see how this algorithm works, consider the stack of objects
in Figure 6 (center). Starting at the bottom of the stack, each ob-
ject has its velocity set to zero and its mass subsequently set to be
infinite. As we work our way up the stack, the falling objects can-
not push the infinite mass objects out of the way so they simply get
their velocity set to zero as well. In this fashion, the contact graph
allows us to shock the stack to a zero velocity in one sweep.

In order to demonstrate why the propagation model for contact
is used for a few iterations before applying shock propagation we
drop a larger box onto the plank as shown in Figure 6 (center).
Here the contact graph points up from the ground through all the
objects, and when the larger box first comes in contact with the
plank, an edge will be added pointing from the plank to the box. If
shock propagation was applied immediately the box on the ground
and then the plank would have infinite mass. Thus the large falling
box would simply see an infinite mass plank and be unable to flip
over the stack of boxes as shown in Figure 6 (center). However,
contact propagation allows both the plank to push up on the falling
box and the falling box to push back down. That is, even though
“pushing down” increases the number of iterations needed for the
contact algorithm to converge, without this objects would not feel
the weight of other objects sitting on top of them. Thus, we sweep
though our contact graph a number of times in order to get a sense
of weight, and then efficiently force the algorithm to converge with
a final shock propagation sweep. This allows the stack of boxes to
flip over as shown in Figure 6 (right).

Figure 7 shows another test where a heavy and a light block are
both initially at rest on top of a see-saw. When the simulation starts
the weight of the heavier block pushes down tilting the see-saw in
that direction. Eventually it tilts enough for the heavy block to slide
off, and then the see-saw tilts back in the other direction under the
weight of the lighter block. Our combination of contact propagation
followed by shock propagation correctly and efficiently handles this
scenario. On the other hand, if we run shock propagation only (i.e.
omitting the contact propagation phase), the see-saw either sits still
or tips very slowly since it does not feel the weight of the heavy
block.

9 Rolling and Spinning Friction

Even when a rigid body has a contact point frozen under the ef-
fects of static friction, it still has freedom to both roll and spin.
[Lewis and Murray 1995; Sauer and Schomer 1998] damped these
degrees of freedom by adding forces to emulate rolling friction and
air drag. Instead, we propose an approach that treats these effects
in the same manner as kinetic and static friction. Let u, and s des-

Figure 8: 500 nonconvex bones failing into a pile after passing
through a funnel. Exact triangle counts are given in figure 2.

ignate the coefficients of rolling and spinning friction, and note that
these coefficients should depend on the local deformation of the ob-
ject. This means that they should by scaled by the local curvature
with higher values in areas of lower curvature. Thus for a sphere,
these values are constant throughout the object.

Both rolling and spinning friction are based on the relative an-
gular velocity @, ,, with normal and tangential components ®,,, , =
®,,,-N and Oy = Oy — a)rel’nN. The normal component gov-
erns spinning and the tangential component governs rolling about
T= corel’t/|corel’t|. We modify these by reducing the magnitude
of the normal and tangential components by (i j, and U, j, respec-
tively. To keep the object from reversing either its spin or roll direc-
tion, both of these reductions are limited to zero otherwise preserv-
ing the sign. At this point we have a new relative angular velocity
®’,;, and since the objects are sticking the relative velocity at the
contact point is u/,, = 0. Next, we construct an impulse to achieve
both proposed velocities.

If we apply the impulse at a point, specifying the relative ve-
locity determines the impulse j and we are unable to also specify
the relative angular velocity. Thus, we assume that the impulse is
applied over an area instead. We still have v/ = v 4 j/m for the
center of mass velocity, but the angular velocity is treated differ-
ently. First we explicitly write out the change in angular momen-
tum (about our fixed world origin) due to an angular impulse j; as
xxmv + 1" = x x mv+ I+ j; which can be rearranged to give
o = o=+I""(j; —xx j). When j is equal to the cross product of
the point of contact and j, this reduces to @' = @171 (rx j) as
above, but here we consider the more general case in order to get
control over the angular velocity. The new velocities at the point of
collision will be u’ = u= (K, j+ K, j;) where K; = 8 /m+ r*I~'x*
and K, = —r*I"'. Then u/,, = u,, + K 7+ K, pjr where the
K; 7’s are the sum of the individual K;’s. Similar manipulation gives
@y = Oy + Ky 1j+ Ky jr, where Ky = —17'x* and K, =17
This is two equations in two unknowns, j and j;, so we can solve
one equation for j, plug it into the other, and solve for j;. This
requires inverting two 3 x 3 matrices.

10 Results

Besides the basic tests that we discussed throughout the text, we
also explored the scalability of our algorithm addressing simu-
lations of large numbers of nonconvex objects with high resolu-
tion triangulated surfaces falling into stacks with multiple contact
points. While the CPU times for the simple examples were negli-
gible, the simulations depicted in Figures 1, 8 and 9 had a signifi-

sized by exposing their underlying tessellation.

cant computational cost. Dropping 500 and 1000 rings into a stack
averaged about 3 minutes and 7 minutes per frame, respectively.
Dropping 500 bones through a funnel into a pile averaged about
7 minutes per frame, and we note that this simulation had about
2.8 million triangles total. All examples were run using 5 collision
iterations, 10 contact iterations, and a single shock propagation it-
eration, and all used friction.

11 Conclusions and Future Work

We proposed a mixed representation of the geometry combining tri-
angulated surfaces with signed distance functions defined on grids
and illustrated that this approach has a number of advantages. We
also proposed a novel time integration scheme that removes the
need for ad hoc threshold velocities and matches theoretical so-
lutions for blocks sliding and stopping on inclined planes. Finally,
we proposed a new shock propagation method that dramatically in-
creases the efficiency and visual accuracy of stacking objects. So
far, our rolling and spinning friction model has only produced good
results for spheres and we are currently investigating more complex
objects.

After the positions have been updated, interpenetration may still
occur due to round-off errors and in-level contact between objects.
We experimented with the use of first order physics (similar to
[Baraft 1995]) to compute a “first order impulse” to apply to the ob-
jects’ positions and orientations to effect separation (without mod-
ifying their velocities). As in shock propagation, we proceeded
level by level through the contact graph doing multiple iterations
of separation adjustments within each level before assigning infi-
nite masses to each level in preparation for the next. To reduce
bias, we gradually separated objects within a level, each iteration
increasing the fraction of interpenetration that is corrected. We plan
to investigate this further in future work.

12 Acknowledgements

Research supported in part by an ONR YIP and PECASE award (ONR N00014-01-1-
0620), a Packard Foundation Fellowship, a Sloan Research Fellowship, ONR N00014-
03-1-0071, ONR N00014-02-1-0720, NSF ITR-0121288 and NSF ACI-0205671. In
addition, R. B. was supported in part by a Stanford Graduate Fellowship.

References

BACIU, G., AND WONG, S. K. 2000. The impulse graph: a new dynamic
structure for global collisions. CGForum 19, 3, 229-238.

BARAFF, D. 1989. Analytical methods for dynamic simulation of non-
penetrating rigid bodies. Comput. Graph. (Proc. SIGGRAPH 89) 23, 3,
223-232.

BARAFF, D. 1990. Curved surfaces and coherence for non-penetrating rigid
body simulation. Comput. Graph. (Proc. SSIGGRAPH 90) 24, 4, 19-28.

BARAFF, D. 1991. Coping with friction for non-penetrating rigid body
simulation. Comput. Graph. (Proc. SIGGRAPH 91) 25,4, 31-40.

BARAFF, D. 1993. Issues in computing contact forces for non-penetrating
rigid bodies. Algorithmica, 10, 292-352.

BARAFF, D. 1994. Fast contact force computation for nonpenetrating rigid
bodies. In Proc. SIGGRAPH 94, 23-34.

BARAFF, D. 1995. Interactive simulation of solid rigid bodies. IEEE
Comput. Graph. and Appl. 15,3, 63-75.

BARZEL, R., HUGHES, J. F., AND WooOD, D. N. 1996. Plausible motion
simulation for computer graphics. In Comput. Anim. and Sim. ’96, Proc.
Eurographics Workshop, 183-197.

BHATT, V., AND KOECHLING, J. 1995. Three-dimensional frictional rigid-
body impact. ASME J. Appl. Mech. 62, 893-898.

Buss, S. R. 2000. Accurate and efficient simulation of rigid-body rota-
tions. J. Comput. Phys. 164, 2.

CHATTERJEE, A., AND RUINA, A. 1998. A new algebraic rigid body
collision law based on impulse space considerations. ASME J. Appl.
Mech. 65,4,939-951.

CHENNEY, S., AND FORSYTH, D. A. 2000. Sampling plausible solutions
to multi-body constraint problems. In Proc. SIGGRAPH 2000, 219-228.

CUTLER, B., DORSEY, J., MCMILLAN, L., MULLER, M., AND JAGNOW,
R. 2002. A procedural approach to authoring solid models. ACM Trans.
Graph.21,3,302-311.

DESBRUN, M., AND GASCUEL, M.-P. 1995. Animating soft substances
with implicit surfaces. In Proc. SIGGRAPH 95, 287-290.

FISHER, S., AND LIN, M. C. 2001. Deformed distance fields for simulation
of non-penetrating flexible bodies. In Comput. Anim. and Sim. *01, Proc.
Eurographics Workshop, 99-111.

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES, T. R.
2000. Adaptively sampled distance fields: a general representation of
shape for computer graphics. In Proc. SIGGRAPH 2000, 249-254.

GASCUEL, M.-P. 1993. An implicit formulation for precise contact mod-
eling between flexible solids. In Proc. SIGGRAPH 93, 313-320.

GIBSON, S. F. F. 1998. Using distance maps for accurate surface rep-
resentation in sampled volumes. In Proc. of IEEE Symp. on Vol. Vis.,
23-30.

HAHN, J. K. 1988. Realistic animation of rigid bodies. Comput. Graph.
(Proc. SIGGRAPH 88) 22,4, 299-308.

HIROTA, G., FISHER, S., STATE, A., LEE, C., AND FUCHS, H. 2001. An
implicit finite element method for elastic solids in contact. In Comput.
Anim.

KiM, T.-Y., AND NEUMANN, U. 2002. Interactive multiresolution hair
modeling and editing. ACM Trans. Graph. 21, 3, 620-629.

KiM, Y. J., OTADUY, M. A., LIN, M. C., AND MANOCHA, D. 2002. Fast
penetration depth computation for physically-based animation. In ACM
Symp. Comp. Anim.

KOKKEVIS, E., METAXAS, D., AND BADLER, N. 1996. User-controlled

physics-based animation for articulated figures. In Proc. Comput. Anim.
"96.

LEWIS, A. D., AND MURRAY, R. M. 1995. Variational principles in
constrained systems: theory and experiments. Int. J. Nonlinear Mech.
30,6, 793-815.

LIN, M., AND GOTTSCHALK, S. 1998. Collision detection between geo-
metric models: A survey. In Proc. of IMA Conf. on Math. of Surfaces,
37-56.

MILENKOVIC, V. J., AND SCHMIDL, H. 2001. Optimization-based anima-
tion. In Proc. SIGGRAPH 2001, 37-46.

MILENKOVIC, V. J. 1996. Position-based physics: simulation the motion
of many highly interacting spheres and polyhedra. In Proc. SIGGRAPH
96, 129-136.

MIRTICH, B., AND CANNY, J. 1995. Impulse-based dynamic simula-
tion. In Alg. Found. of Robotics, A. K. Peters, Boston, MA, K. Goldberg,
D. Halperin, J.-C. Latombe, and R. Wilson, Eds., 407-418.

MIRTICH, B., AND CANNY, J. 1995. Impulse-based simulation of rigid
bodies. In Proc. of 1995 Symp. on Int. 3D Graph., 181-188,217.

MIRTICH, B. 1996. Fast and accurate computation of polyhedral mass
properties. J. Graph. Tools 1, 2, 31-50.

MIRTICH, B. 2000. Timewarp rigid body simulation. In Proc. SSIGGRAPH
2000, 193-200.

MOORE, M., AND WILHELMS, J. 1988. Collision detection and response
for computer animation. Comput. Graph. (Proc. SIGGRAPH 88) 22, 4,
289-298.

MUSETH, K., BREEN, D., WHITAKER, R., AND BARR, A. 2002. Level
set surface editing operators. ACM Trans. Graph. 21, 3, 330-338.

OSHER, S., AND FEDKIW, R. 2002. Level set methods and dynamic im-
plicit surfaces. Springer-Verlag. New York, NY.

PANDOLFI, A., KANE, C., MARSDEN, J., AND ORTIZ, M. 2002. Time-
discretized variational formulation of non-smooth frictional contact. Int.
J. Num. Meth. in Eng. 53, 1801-1829.

PENTLAND, A., AND WILLIAMS, J. 1989. Good vibrations: modal dy-
namics for graphics and animation. Comput. Graph. (Proc. SIGGRAPH
89) 23, 3,215-222.

PONAMGI, M. K., MANOCHA, D., AND LIN, M. C. 1995. Incremental
algorithms for collision detection between solid models. In Proc. ACM
Symp. Solid Model. and Appl., 293-304.

POPOVIé, J., SEITZ, S. M., ERDMANN, M, POPOVIé, Z., AND WITKIN,
A. 2000. Interactive manipulation of rigid body simulations. In Proc.
SIGGRAPH 2000,209-217.

REDON, S., KHEDDAR, A., AND COQUILLART, S. 2002. Fast continuous
collision detection between rigid bodies. CGForum 21, 3, 279-288.

SAUER, J., AND SCHOMER, E. 1998. A constraint-based approach to rigid
body dynamics for virtual reality applications. In Proc. ACM Symp. on
Virt. Reality Soft. and Tech., 153-162.

SCHMIDL, H. 2002. Optimization-based animation. PhD thesis, University
of Miami.
SCHROEDER, W. J., LORENSEN, W. E., AND LINTHICUM, S. 1994. Im-

plicit modeling of swept surfaces and volumes. In Proc. of Vis., IEEE
Computer Society Press, 40-55.

SCLAROFF, S., AND PENTLAND, A. 1991. Generalized implicit functions
for computer graphics. Comput. Graph. (Proc. SIGGRAPH 91) 25, 4,
247-250.

SETHIAN, J. 1996. A fast marching level set method for monotonically
advancing fronts. Proc. Natl. Acad. Sci. 93, 1591-1595.

SiMs, K. 1994. Evolving virtual creatures. In Proc. SSIGGRAPH 94, 15-22.

STEWART, D. E., AND TRINKLE, J. C. 2000. An implicit time-stepping
scheme for rigid body dynamics with coulomb friction. In IEEE Int.
Conf. on Robotics and Automation, 162—-169.

STEWART, D. E. 2000. Rigid-body dynamics with friction and impact.
SIAM Review 42, 1, 3-39.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K. 1987.
Elastically deformable models. Comput. Graph. (Proc. SSIGGRAPH 87)
21,4,205-214.

TSITSIKLIS, J. 1995. Efficient algorithms for globally optimal trajectories.
IEEE Trans. on Automatic Control 40, 1528-1538.

WEBB, R., AND GIGANTE, M. 1992. Using dynamic bounding volume
hierarchies to improve efficiency of rigid body simulations. In Comm.
with Virt. Worlds, CGI Proc. 1992, 825-841.

WESTERMANN, R., KOBBELT, L., AND ERTL, T. 1999. Real-time explo-
ration of regular volume data by adaptive reconstruction of isosurfaces.
The Vis. Comput. 15,2, 100-111.

