
enJine: Architecture and Application of an Open-Source Didactic
Game Engine

Ricardo Nakamura, João Bernardes, Romero Tori

Escola Politécnica da Universidade de São Paulo,

Department of Computer Engineering and Digital Systems, Brazil

a) Spaceship Racing

b) Lego Adventure

Figure 1: Screenshots from two sample games made with enJine by students

Abstract

In this paper we present enJine, an open-source
didactic game engine, its architecture and some results
of applying it as a support tool for teaching Computer
Graphics in a computer engineering course. The
evolution of the engine’s requisites and architecture is
discussed, as well as the plans for future development
of the software.

Keywords: game engine, game development,
educational software tools, computer graphics.

Author’s contact:
{ricardo.nakamura, joao.bernardes,
romero.tori}@poli.usp.br

1. Introduction

This paper presents “enJine” [EnJine Homepage 2006],
an open-source game engine based on the Java 3D API
and therefore sharing multiplatform and object-
oriented characteristics of the Java language. EnJine's
main purpose is to serve as a didactic tool to aid in
teaching game design and computer science, especially
computer graphics and software engineering subjects.
For this reason, the project is aimed at providing an
open, well-structured game engine that remains simple
enough to allow the development of relatively complex
games in a short time span. Given these characteristics,

enJine may also be used as a test-bed for research in
game development, virtual and augmented reality and
other related fields.

 The enJine project has evolved considerably along
its nearly four years of existence. Currently, the
following features are among the ones that may be
found in enJine, despite its simplicity of use:

• 3D rendering based on Java 3D (which, in turn,

currently uses DirectX or OpenGL);
• Stereo sound;
• Skin-and-bones animation;
• Multi-stage collision detection (currently only

implementing subspace and bounding volume filters)
and ray-casting collision detection;

• An abstract input layer to simplify the use of non-
conventional input devices;

• 2D Overlay;
• .X and .OBJ model loaders;
• Core classes constituting a game's basic architecture:

the game, its stages, game objects (which are very
flexible) etc.;

• A framework package to facilitate the creation of
certain games (currently only single-player games);

• Separation between graphical and logical update
cycles.

 EnJine is a stable tool, tested by a considerable
number of users with concrete results (Figure 1 shows

screenshots from two games made by students, for
instance), but is, regardless of that stability, an ongoing
project with much to be added. Features planned for
future versions range from Networking, Augmented
Reality and Shader support (being studied now) to
Scripting, Artificial Intelligence and Physical
Simulation (in a longer time frame).

 The evolution of the enJine project and its
requirements are presented in section 3, but first,
section 2 discusses some related works. Section 4
discusses enJine’s architecture and features. Section 5
gives a brief overview of the process of creating a
game with enJine, while the last two sections discuss
the results and conclusions obtained so far with this
work.

2. Related Work

One of the main motivation for the development of
enJine was that at the time the project started (2002) no
similar work had been found either for engines for
educational games or for didactic game engines. Even
today there are few related initiatives and none of the
ones found and discussed here has the same approach
and objectives as those of enJine.

 Coleman et al. [2005], for instance, have developed
a didactic game engine for teaching game design and
programming, called Gedi. This tool, although having
similar didactic objectives, as is the case of enJine, is a
2D engine and is built on top of the Direct3D API.

 Peternier et al. [2006] have developed a platform
for teaching computer graphics, named MVisio,
composed of a set of compact applications, used to
teach specific computer graphics techniques and
algorithms, and a pedagogical-oriented graphic engine,
for practical developments. Unlike enJine, MVisio is
not aimed to game development, being a more general-
purpose 2D/3D graphics engine, instead.

 Another approach can be found in Game Maker
[Game Maker 2006], which is a didactic tool to teach
game programming. It is focused on 2D games
(although some features for 3D rendering are available)
and presents both a visual programming interface and a
customized object-oriented scripting language.

 As stated by Peternier et al. [2006], there are a lot
of free and open graphics engine, like Ogre [Ogre
2006] and Crystal Space [Crystal Space 2006], but
these libraries are not designed for didactic purposes,
consuming too much time in learning effort. Another
drawback for these non-didactic tools is that their
architectures often are not sufficiently clear, light,
elegant and easy to extend for teaching purposes. That
may be a consequence of an effort towards
optimization or of such an architecture not being
among their requirements.

3. Project History

EnJine was initially a tool to help in the creation of
educational games. The need for such a tool was
perceived in an earlier project, described by Nakamura
et al. [2003a], which consists of using a commercial
game engine to develop an educational "mod" game. In
that work, Nakamura et al. [2003a] also discuss which
requirements an engine should have to better aid in the
creation of educational games.

 When the enJine project began in March 2003 it
had two main goals: to create a game engine satisfying
the requirements established in the previous research
and to study the usage of formal software development
methodologies when creating a game engine.
Nakamura et al. [2003b] describe the creation of
enJine's first version.

 At the same time the enJine was being developed,
its first educational game, called FootBot, was also
being designed and implemented. This game only
reached its prototype stage, however. At that moment a
few problems in enJine's first implementation were
noticed, and it was decided to create a completely new
version, based on the experience gained with the first
one. Among these problems we highlight: an
exceedingly complex architecture, especially in the
multiplayer game-related classes, stemming from the
will of providing a very flexible game engine, and
architectural failures that led to little decoupling in the
implementation of the input subsystem.

 The second version of EnJine was developed with
the main objective of providing a simpler, more
focused architecture that would better fit the project’s
initial goals. During development of this version it was
realized that the simplicity and clearness of enJine’s
new architecture, its object-oriented approach and the
use of scene graph, provided by Java 3D API, made it a
good tool for teaching Computer Graphics, Software
Engineering and Game Development concepts. As a
result it was decided that the main focus of enJine
should be its application as a didactic tool in itself
instead of as a didactic game development tool. Given
this change of focus in the project, development of
version 2 was interrupted and version 3, which is the
subject of this article, was started. With these new
goals in mind some requirements received less priority,
such as the “models library” mentioned by Nakamura
et al. [2003a] and network/multiplayer infrastructure.
New requirements were also included, such as
animation support and model loaders. Those features
that were omitted in this third version should be
present in the next one.

 Today, enJine version 3 is being applied as a
support tool for teaching Introductory Computer
Graphics in undergraduate Computer Science and
Computer Engineering Programs. Some of its early
results in this field are discussed in Tori et al. [2006a]

and Tori et al. [2006b], however those works are
dedicated to the teaching methodology rather the
architecture and technical details of enJine. Figures 1
and 8 show screenshots from a few sample games
made by students (in approximately 6 weeks only,
from the time they were introduced to enJine to game
completion) during these courses.

4. Architecture

Conceptually, enJine’s architecture is divided in three
layers, as illustrated in Figure 2. At the bottom lay the
Java Standard Edition API classes, as well as libraries
such as Java 3D, upon which the game engine’s
functionality is built. The middle layer contains the
different enJine modules, which are responsible for
providing services such as graphics rendering, player
input, sound output, and general game management to
user applications. The topmost layer contains a game
framework that implements some patterns of use of the
enJine services. For instance, the framework includes a
SinglePlayerGame class that contains code to set up
the enJine components necessary to create a single-
player game. The game itself is in a layer just above
the framework and is capable of accessing all the three
layers beneath its own.

 The framework layer is intended to reduce
development time and simplify initial contact with the
enJine API, but its use is not mandatory. It is expected
that experienced users will extend the classes present
in the standard enJine modules to fit their specific
needs, and most of those classes have been designed to
allow for such flexibility and extensibility.

Figure 2: enJine layered architecture

 The different enJine modules are implemented as
Java class packages. The existing packages, as well as
the dependencies existing between them, are shown in
Figure 3.

 The packages that are planned but not yet
implemented in enJine are: a network package, which
is being implemented at this time, a haptics package
within the I/O module, Scripting, Artificial Intelligence
and Physics packages.

Figure 3: enJine packages and dependencies

4.1 Core Classes

The core package contains the main entities of the
game engine: the classes Game, GameState and
GameObject. Together, these classes can be used to
model and implement the game’s structure and logic,
relying on the other modules for services such as
graphics rendering.

 The Game and GameState classes implement the
“state” design pattern [Gamma et al. 1995]. This way,
subclasses of GameState can be used to represent
game behaviors such as different game levels or
different game modes (such as a world map and an
inventory management screen). Game is the class that
encapsulates the game's main loop.

 The GameObject class can be used to represent
different game entities such as player and computer-
controlled characters and other interactive elements.

 Each instance of GameObject aggregates one or
more objects that implement specialized services
provided by the enJine, as shown in Figure 4. This
modular design allows the creation of game entities
with very different characteristics and behavior
through the reuse of the same common components.

 The choice of using classes instead of interfaces for
these services was made to stress the distinction
between logical and visual behavior in game entities.
For instance, with interfaces, the user might be able to
implement all services in a single class in a way that
they are tightly coupled and any sense of independence
between logical behavior and rendering is lost.

Besides, this choice encourages the use of object
aggregation, which is considered a good practice in
object-oriented programming.

Figure 4: GameObject architecture

 When instantiated within a GameObject, the
Viewable class, indicates that that game entity
requires graphics rendering services. All visual
changes to objects (including animation) should be
encapsulated in a Viewable object.

 The Updater class indicates the object has some
sort of dynamic behavior and thus requires that its
logical state be constantly updated. This dynamic
behavior may be the result of player input, some
Artificial Intelligence algorithm or Physical
Simulation, for instance.

 An instance of Collidable within a game entity
indicates that that object should be included in
collision detection computations. This class
encapsulates the entity's bounding volume and its
response to collisions.

 Finally, the Messenger class allows the exchange
of messages between game objects, one of the main
requirements for educational games (or simply for
games with a more complex narrative or interaction)
mentioned by Nakamura et al. [2003a].

 Currently, elements of game scenery are also
represented by subclasses of GameObject. While this
solution is correct in many cases, one of the future
extensions of enJine is to support more efficient game
map structures.

4.2 The I/O Subsystem

The I/O subsystem actually comprises three packages,
which are responsible for the services of graphics
rendering, sound output and user input handling in
enJine.

 The graphics package is built on the functionality
provided by the Java 3D API in retained mode. By
design, the Java 3D classes are exposed through the
enJine, so that it can be used as a tool for didactic
activities related to that graphics library. Moreover,
this allows users to explore any new capabilities that
are added to Java 3D in future versions.

 Rendering in the enJine is performed through the
Viewable abstract class, following the Observer
design pattern [Gamma et al. 1995]. Objects that
subclass the Viewable class must provide a Java 3D
scene graph branch that corresponds to the object’s
visual representation. Whenever the game view is
rendered, each Viewable is notified so that they can
update that representation.

 The ability to load and render skinned meshes has
been recently added to enJine. Users can create models
in software packages that support this style of
animation and export them in the “.X” format, and then
load and use these models in their games. Currently
there are plans to support different model formats and
to develop a tool to optimize model representations for
enJine.

 Currently, enJine provides basic functionality
regarding sound and input. This includes playback of
popular sound file formats, with pan and volume
controls, and support for keyboard and mouse inputs.
However, as the input system decouples specific input
methods and the intended actions, it is possible to
extend it to other input devices.

 Figure 5 shows the relationship between objects
from the different classes of the input system. Each
input device (such as a joystick or keyboard) is
represented by a subclass of InputDevice.
InputDevices have a set of InputSensor objects
that represent elements such as joystick buttons or axes
and keyboard keys. On the game side, instances of the
InputAction class are used to model player
commands, such as "jump", "move left" or "open
menu". The class InputManager is used to bind
InputActions to InputSensors.

Figure 5 - Input System

4.3 enJine Framework

As the enJine was designed to be used as a didactic
tool, it was necessary to provide features that would
help learning to use it. This is the primary function of
the enJine Framework layer.

 The Framework provides a set of classes that
exemplify how to use the other enJine packages to
construct a game. Furthermore, it contains a
SinglePlayerGame class, which implements much of
the code needed to integrate and initialize the objects
needed to create a single-player game.

 Figure 6 shows how the SinglePlayerGame class
contains a set of four managers, all singletons [Gamma
et al. 1995], to control the update of individual objects.

Figure 6: SinglePlayerGame

4.4 Future Development of the enJine

There are many plans to extend the functionality of
enJine, while still maintaining it useful as a didactic
tool for game development. Two of the most
interesting additions are support for augmented reality
games and networked games.

 Previous versions of the enJine featured multiplayer
game support that was versatile but very complex. This
was found to go against the goals of the project and for
this reason, it was removed. Now a new module for
network support, which will be restricted to a client-
server model and present other restrictions to make it
simpler, is being implemented by undergraduate
students and will be integrated in one of enJine's future
versions, as soon as it is properly tested. Once the
network package is available, classes to help creating
multiplayer games will be added to the enJine
Framework.

 At the same time, there has been development of
new enJine functionality to support the processing of
video captured from a webcam using JarToolKit
[2006] that will be integrated in enJine's future
versions. This video data can be used both as a new
input method, by interpreting user movements and
gestures, and to allow the inclusion of the player’s
image in the game through extensions of both the input
and graphics packages.

 The use of shaders in enJine is another feature
planned for future versions in a very near future,
making use of the shader functionality in Java 3D
available in versions 1.5 and higher. The integration of

Scripting, Artificial Intelligence and Physical
Simulation packages still has no estimated time frame.

5. Using enJine

This section presents a sample scenario of use of the
enJine, to illustrate how its components interact. To
create a single player game, users have two options.
They may subclass the core Game class or use the
SinglePlayerGame class in the framework package.
For new users of the enJine and for most simple games,
the latter choice is preferable.

 Assuming the SinglePlayerGame class is
adopted, the user must create one or more GameState
subclasses to represent the different modes and levels
of the game. A simple game with a title screen and one
level might require two of those classes. Each
GameState implementation requires code to initialize
and remove the necessary game resources. Figure 7
illustrates a sample set of game states and transitions
between them, represented as a finite state machine.

Figure 7: A sample set of game states

 The game developer must also create one or more
subclasses of GameObject to represent different types
of entities in the game. In many cases, a single subclass
containing common state information is enough, since
appearance and behavior is defined through aggregate
objects. Therefore, the developer must create classes
that instantiate objects from classes such as Viewable
and Updater, which will be used to build the complete
game entities. Except in very simple games, it is
advisable that an object factory [Gamma et al. 1995] be
implemented to perform the creation of those entities.

It is also necessary to create one subclass of the
Viewable for each type of object with different visual

behavior. For instance, if many objects in the game use
skinned models that are loaded with enJine’s .X loader,
a single class can be created to load and animate any
.X model. Different GameObjects can use objects of
this class.

 For most games, it will be necessary to create one
or more subclasses of the Collidable class. These
classes are responsible for defining the collision
volumes for the objects and for providing their
collision-response behavior.

 Lastly, the game developer must add code (usually
to a GameState) that binds an input device to the
game actions that can be performed by the player. This
way, one or more game entities can receive and
process the input actions.

 Once the basic game structure is completed, it is
possible to add features like an overlay to display game
data superposed to the game scene. This can be
accomplished by creating a class that implements the
Overlay interface from the io.graphics package and
binding it to one of the active game views. This is
typically performed at the initialization stage of a game
state.

 Sound effects and background music can be added
to a game in enJine using the GameAudio and
SoundElement classes. Each SoundElement object
represents a single data file of either sound effects or
music. These objects are added to an instance of
GameAudio, which provides methods for playback and
control of those elements.

6. Results

EnJine 3.0 has been successfully used as a support tool
for teaching Computer Graphics [Tori et al. 2006a]
[Tori et al. 2006b]. Its open and easy-to-learn
architecture, constructed over the object-oriented scene
graph data structure provided by Java 3D, has proved
to be an efficient didactic platform, allowing students
to develop relatively complex game projects in as few
as four laboratory classes. Figures 1 and 8 show some
of these projects. Using a game engine in computer
graphics classes is a good way for applying to practical
students activities almost all fundamental concepts,
algorithms and techniques seen in theoretical classes.
Conversely, problems and questions arisen during
game project activities, as well as questions concerning
the low level computer graphics implementation of the
game engine itself can be discussed back in theoretical
classes.

 Besides its didactic applications enJine has also
been used as a platform for researches in game
technology. Its open, simple and extensible
architecture makes it easy to experiment with new
techniques, algorithms and solutions for game
development. Currently some researches in augmented

reality technology applied to game development are
taking place at INTERLAB. Eventually the results of
these experiments can be incorporated in future
versions of enJine.

7. Conclusion

This paper presented enJine, an open-source didactic
game engine developed at INTERLAB, Interactive
Technologies Laboratory, at Escola Politécnica da
Universidade de São Paulo. EnJine has been used as a
support tool for teaching introductory computer
graphics undergraduate courses and as a platform for
researches in new techniques and technologies applied
to game development, especially augmented reality
technology and software engineering for game
development. Its source code, pre-compiled
distribution, documentation and samples are available
at the website http://enjine.iv.incubadora.fapesp.br.

 Some current issues on enJine project are:
providing more complete support for sound effects and
music; including more utility classes in the framework
package; and optimizing the code, especially for model
loading, animation and collision detection.

 Future plans for enJine project include: new
features such as shaders, network and multiplayer
functionality; incorporation of research results, such as
augmented reality capabilities, gesture recognition and
real time video avatar; application of enJine as a
didactic tool for other disciplines in computer science
and computer engineering programs, such as software
engineering, artificial intelligence and human-
computer interface design; use of enJine in game
design courses.

 Besides the integration of new features and
expansion of enJine's didactic use, future developments
include the optimization of parts of the code, such as
the skin-and-bones animation algorithm, for greater
speed, without complicating enJine's architecture.
Stress and performance tests still need to be executed
in different hardware configurations to better quantify
enJine's reliability, performance and dependence on
hardware such as graphics accelerator cards. The
creation of an interactive and graphical IDE (integrated
development environment) is also being studied. Such
tool would be aimed to increase the productivity of
implementations based on enJine, without preventing
users from direct accessing all desired levels and
resources of enJine architecture.

Acknowledgements

The authors would like to thank Escola Politécnica da
Universidade de São Paulo and Centro Universitário
Senac for their support, and Fundação de Amparo à
Pesquisa do Estado de São Paulo (FAPESP), for
hosting the project “enJine” in its “Incubadora Virtual
de Conteúdos”. The authors would also like to thank

all their former students and the researchers from
Interactive Technology Laboratory (Interlab) that
directly or indirectly participated in the development of
“enJine” software.

References

COLEMAN, R., ROEBKE, S. AND GRAYSON, L., 2005. Gedi: A

Game Engine for Teaching Videogame Design and
Programming. Journal of Computer Science in Colleges,
21(2), 72-82.

CRYSTALSPACE 3D HOMEPAGE [online]. Available from:

http://www.crystalspace3d.org/ [Accessed 28 August
2006].

ENJINE HOMEPAGE [online]. Available from: http://enjine.iv.

fapesp.br [Accessed 28 August 2006].

GAME MAKER [online]. Available from:

http://www.gamemaker.nl/ [Accessed 10 October 2006].

GAMMA, E., HELM, R. JOHNSON, R. AND VLISSIDES, J., 1995.

Design Patterns: Elements of Reusable Object-Oriented
Software. USA: Addison-Wesley.

JARTOOLKIT HOMEPAGE [online]. Available from:

http://jerry.c-lab.de/jartoolkit/ [Accessed 28 August
2006].

NAKAMURA, R., TORI, R., BERNARDES JR., J. L., BIANCHINI,

R. AND JACOBER, E., 2003. A Practical Study on the

Usage of a Commercial Game Engine for the
Development of Educational Games. In: Proceedings of
the Games and Digital Workshop, 4-5 November 2003
Salvador. [S.l.]: SBC, 1 CD-ROM.

NAKAMURA, R., TORI, R., JACOBER, E., BIANCHINI, R., AND

BERNARDES JR., J. L., 2003. Development of a Game
Engine Using Java. In: Proceedings of the Games and
Digital Workshop, 4-5 November 2003 Salvador. [S.l.]:
SBC, 1 CD-ROM.

OGRE 3D HOME [online]. Available from:

http://www.ogre3d. org/ [Accessed 28 August 2006].

PETERNIER, A., THALMANN, D. AND VEXO, F., 2006. Mental

Vision: a Computer Graphics teaching platform. Lecture
Notes in Computer Science: Technologies for E-learning
and Digital Entertainment, 3942, 223-232.

TORI, R., BERNARDES JR., J. L. AND NAKAMURA, R., 2006.

Teaching Introductory Computer Graphics Using Java
3D, Games and Customized Software: a Brazilian
Experience. In: Proceedings of Siggraph 2006 Educators
Program, 30 July – 3 August 2006 Boston. New York:
ACM Press.

TORI, R., NAKAMURA, R. AND BERNARDES JR., J. L., 2006.

Ferramentas e metodologia para ensino de fundamentos
de computação gráfica em cursos da área de computação.
To be presented at the II Workshop de Computação
Gráfica e Educação, 8-11 October 2006 Manaus.

a) Downhill

b) Object Hunt

c) Coop Squash

d) Cooper 2006

Figure 8: Screenshots from a few more sample games made with enJine by students

