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Abstract 
 

There are no papers or books in the literature that 

analyze the most suitable techniques to improve 

communication in massively multiplayer games in a 

detailed and implementation-oriented way. Most of the 

results and recommendations in this area are buried in 

proprietary systems and classified documentation. 

Based on experiments in the VLab/IGame Laboratory, 

this paper presents selected techniques and practical 

recommendations for the development of Massively 

Multiplayer Games. Optimization techniques in the use 

of sockets are given. Technologies capable of handling 

many sockets at once are explained. Also techniques 

for optimizing communication in virtual environments 

are presented. 
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1. Introduction 
 

Massively Multiplayer Games (MMGs) are computer 

games where thousands of players simultaneously 

connect themselves to persistent worlds using the 

Internet. In this type of game, the world continues to 

evolve even after the player disconnects him/herself. 

The characters used by the players are not lost after the 

player exits the game, allowing the continuous 

evolution of the characters. In order to process the 

great number of MMG players in such a complex 

environment, optimization techniques and efficient 

technologies must be applied in the communication 

between clients and servers. 

Knowledge and data about techniques and 

technologies for massively multiplayer games are still 

scarce in the literature. This paper aggregates valuable 

practical knowledge on distributed programming and 

present the best techniques to optimize communication 

in MMGs, in an integrated way that cannot be found 

elsewhere. Most of the ideas of this paper are derived 

from a previous work by the first author [Machado, 

2005]. 

Some of the techniques presented on this paper are 

operating system specific. They were selected because 

they offer better performance than other operation 

system independent techniques. 

This paper organizes the subject in three main 

areas: techniques using TCP, UDP, and sockets 

(section 3); I/O processing of multiple sockets on 

servers (section 4); and techniques for networked 

virtual environments (section 5). 

 

2. Related Work 
 

The technology used to fuel most of the today’s 

massively multiplayer games is still a mystery and the 

literature is too scarce. 

 Books on MMG are beginning to appear. However, 

some books are more an informative reference than a 

source for implementation techniques [Alexander 

2003]. Others books only introduce specific styles of 

multiplayer games [Penton, 2003]. Some game 

conferences give important tutorials and lectures on the 

subject, but they are not usually published [GDC, 

2006]. Also there are good articles in developers sites 

(www.gamedev.net), but either they are too superficial 

or too narrow. 

 Well-known general books are mandatory 

references, but they do not focus on MMG. For 

instance, general aspects of networked virtual 

environment are covered by [Singhal et al., 1999]. 

Snader [2000] presents a good work on TCP/IP 

programming. An overview of peer-to-peer technology 

can be found in [Oram, 2001]. 

 Architectures and protocols for distributed virtual 

environments adopted by IEEE and OMG are too 

heavy and excessively general to be applied in games 

[IEEE, 1993] [Kuhl, 1999]. 

 

3. Techniques Using TCP, UDP and 
Sockets 
 

On its foundation, all distributed systems must deal 

with TCP, UDP or Sockets in some level. The efficient 

use of those technologies is very important because 

they affect how communication is performed. 

 

3.1 The Naggle Algorithm and The Delayed 
Ack 
 

If TCP is to be applied at a certain point in the 

communication of a distributed system, it is important 

that two concepts be well understood: the Naggle 

Algorithm and the Delayed Ack. 



 The Naggle Algorithm consists of not sending a 

message when the message is small and there is 

another buffered message that has not received an Ack 

yet. A message is small if it is smaller than the 

maximum segment size that can be sent to another 

peer. 

 Suppose that a server wants to send the position of 

two players to a client. The first position is sent with 

the socket function send(), then the second position is 

sent with another send(). In this example, the second 

position will only be sent after the server receives an 

Ack for the first message and this can take several 

milliseconds on a WAN. A better strategy would be the 

server to aggregate the positions in a single message 

and send them both in a single function call of send() 

or to disable the Naggle Algorithm using the following 

code: 

 
BOOL b = true; 

setsockopt(socket, IPPROTO_TCP, 

TCP_NODELAY, (char*)&b, sizeof(BOOL)); 

 

 Another important concept in TCP is the Delayed 

Ack. Every message received in a TCP communication 

is not immediately acknowledged. Instead, TCP 

“waits” for the receiver to respond to the sender of the 

message. If the receiver responds to the sender, TCP 

will piggyback the acknowledgement in the response. 

If not, after some milliseconds, TCP sends an Ack to 

the sender. 

 

3.2 Decreasing Buffer Copies in WinSock 
 
When an application receives or sends a message, a 

buffer copy is performed, transferring data from the 

application buffer to the internal socket buffer and vice 

versa. WinSock allows the removal of this transfer, 

making the communication use only the application 

buffer. 

 In order to use this capability, WinSock overlapped 

I/O operations must be used [Microsoft, 2005]. An 

overlapped operation is an operation that is 

asynchronous (that is, it returns immediately, but the 

result is sent later to the application). After the socket 

is created, the following functions can be used: 

WSASend, WSASendTo, WSARecv, and WSARecvFrom. 

These functions receive a variable WSAOVERLAPPED, 

which is a structure that provides a communication 

medium between the initiation of an overlapped I/O 

operation and its subsequent completion. This variable 

should first be set to zero. Below is an example of an 

overlapped send operation: 

 
WSAOVERLAPPED snd_op; 

ZeroMemory(&snd_op, sizeof(snd_op)); 

WSASend(socket, buffer, num_of_buff, 

bytes_sent, flags, &snd_op, NULL); 

 

A final step is necessary in order to make WinSock  

use only the application buffer for the communication. 

This is done by setting the socket buffers to zero, as 

shown below: 

 
int zero = 0; 

setsockopt(socket, SOL_SOCKET, SO_SNDBUF, 

(char*)&zero, sizeof(zero)); 

setsockopt(socket, SOL_SOCKET,  

SO_RCVBUF,  (char*)&zero, sizeof(zero)); 

 

3.3 Using Connected UDP Sockets 
 
When the socket function connect() is called in a 

UDP socket, no message is sent. Instead, only the 

remote address and port are saved in the socket. With 

this information, it is possible to use the function 

send() with the socket instead of the function 

sendto(). 

 On some operating systems, calling sendto() 

makes the kernel do the following operations: to 

connect the socket used, to send the message, and to 

disconnect the socket. Connecting and disconnecting 

the socket like this can take as much as a third of the 

processing time for sending the message [Partridge et 

al., 1993]. 

 Besides the performance improvement, connecting 

UDP sockets allows for asynchronous error capturing. 

When an UDP message is sent to another peer and no 

applications are receiving messages at the destination 

port, an ICMP port-unreachable message is returned. 

The only way to receive this message is with a 

connected UDP socket. 

 

3.4 Sending Data from Multiple Buffers in 
Sockets 
 

When a message of dynamic size needs to be 

transferred using the common Sockets API send() or 

sendto(), it is necessary that the message be 

composed in a single buffer in order that the 

transference be performed. 

 An example of a message of dynamic size is a chat 

message that has a static header part and a dynamic 

body part. 

 WinSock allows the composition of the dynamic 

message directly in the internal socket buffer, thus 

reducing memory transfers. An example that 

demonstrates this functionality is shown below: 

 

Header header; 

Fill header parameters 

 
WSABUF msg_buffer[2]; 

msg_buffer[0].buf = &header; 

msg_buffer[0].len  = sizeof(header); 

 

msg_buffer[1].buf = chat_msg; 

msg_buffer[1].len  = chat_msg_size; 

 

WSASend(socket, msg_buffer, 2, 

&bytes_sent, flags, NULL, NULL); 

 

The type WSABUF, used for the operation, has the 

following format: 

 
typedef struct _WSABUF { 



 u_long len; 

 char FAR * buf; 

} WSABUF, FAR * LPWSABUF; 

 

where len is the buffer length and buf is a pointer to 

the buffer. 

 

 The description of WSASend is as follows: 

 
int WSAAPI WSASend(SOCKET s, LPWSABUF 

buf, DWORD cnt, LPDWORD sent, DWORD 

flags, LPWSAOVERLAPPED ovl, 

LPWSAOVERLAPPED_COMPLETION_ROUTINE func) 

 

where s is the socket, buf is a vector of WSABUF, cnt 

is the number of buffers in the vector, sent is the 

number of bytes sent, flags is similar to the flags 

used in the conventional send, ovl and func are used 

for overlapped operations. 

 

3.5 Implementing Reliability on UDP 
 

There are many cases were it is useful to have a 

reliable UDP protocol implemented. This protocol 

makes sure that the messages sent are received at the 

destination, but no order is enforced in the arrival of 

the messages to the application.  

 The usual way to implement reliability for message 

communication is using timers and retransmission. 

When a message is sent, a timer is started. If a time 

limit is reached, the timer will expire and the message 

will be retransmitted. When the other peer receives a 

message, it replies with an acknowledgment of arrival. 

 An important decision that must be handled is the 

choice of a proper time to wait until retransmission, 

called Retransmission Timeout (RTO). If a bad choice 

of RTO is made, a waste of time and computational 

resources will occur.  

 For a good choice of RTO it is important to take 

into consideration the estimated time that a message 

takes to be transferred from a sender to a destination 

and back to the sender. This time is called round trip 

time (RTT). Considering that there is an error between 

the current RTT and the estimated RTT (SRTT), the 

following algorithm (known as the Jacobson/Karels 

algorithm) can be applied: 

 
error = RTT – SRTT 

SRTT = SRTT + (error / RTTINF) 

VARRTT = VARRTT + [(|error| - VARRTT) / VARRTTINF] 

RTO = SRTT + (VARRTT * VARINC) 

 

Where: 

 

RTTINF is a value that defines how much of the 

difference between the current and estimated round 

trip time is transferred to the estimated value; 

 

VARRTT is the deviation (variation) between different 

round trip times, that is: an estimative of the 

variation of RTT; 

 

VARRTTINF is similar to RTTINF and defines how 

much of the difference between VARRTT and 

error is transferred to VARRTT; 

 

VARINC is a value that increases the influence of 

VARRTT. 

Suggested values for RTTINF, VARRTTINF and 

VARINC are 8, 4 and 4 respectively.  

 Once the RTO limit is exceeded, a suggested action 

is to double the RTO: 

 
RTO = RTO * 2 

 

 The message retransmission can be implemented 

using a thread that sleeps until the nearest 

retransmission time. The pseudo-code for sending 

messages is as follows: 

 
SendMessage(Msg) 

{ 

 SendUDPMessage(Msg) 

RTO = SRTT + (VARRTT * VARINC))  

 Add Msg to retransmission list 

Activate retransmission thread event to recalculate the 

smallest RTO 

} 

 

 The retransmission thread is presented below: 

 
RetransmissionThread() 

{ 

 Infinite Loop 

 { 

  If retransmission list is empty 

   sleep time = infinite 

  else 

   sleep time = smallest RTO from list 

result = WaitEvent( thread activation, sleep time) 

if result == time limit expired  

{ 

 SendUDPMessage(Msg) 

   RTO = RTO * 2 

   Reposition the message in the list 

  } 

  else  

   Deactivate the retransmission thread event 

 } 

} 

 

WaitEvent is responsible for making the thread sleep 

until a thread activation event is flagged or a time limit 

is surpassed. 

 

4. Technologies for I/O Processing of 
Multiple Sockets in Servers 
 
Massively multiplayer servers need to process I/O for 

thousands of players and, in order to be effective, they 

need to use the most efficient technologies that are 

available. 

 The usual methods for processing I/O for multiple 

sockets are: (a) the use of blocking sockets with 

multiple threads, with a thread for each client; (b) the 

use of the blocking function select(). Both methods 



have shortcomings and are not designed to handle the 

kind of workload that a massively multiplayer server 

must handle.  

 More efficient methods exist, but they come with 

the loss of portability. The most efficient methods are 

operating system dependent. 

 

4.1 IO Completion Ports 
 
This method is suggested as the most efficient method 

for processing multiple sockets in Windows [Jones et 

al., 1999].  

 A completion port is a list in which the operating 

system adds notifications of finished asynchronous 

overlapped operations. An application using 

completion ports generally creates a thread to handle 

these notifications. For multi-processor architectures, 

one thread is usually created for each processor to 

reduce context switching.  

 To create a completion port the following function 

must be used: 

 
HANDLE CreateIoCompletionPort(HANDLE 

file_handle, 

 HANDLE existing_comp_port, 

 DWORD completion_key, 

 DWORD num_of_conc_threads); 

 

This function is used for two purposes: to bind a socket 

to a completion port, and to create the completion port.  

When this function is called to bind a socket to a 

completion port, all finished overlapped operations of 

the socket are notified in the completion port. When 

this function is used with the purpose of creating a 

completion port, the following actions should be 

considered: the first parameter must be defined as 

INVALID_HANDLE_VALUE; existing_comp_port 

must be defined as NULL; and completion_key must 

be ignored. The last parameter 

num_of_conc_threads defines the number of 

concurrent threads that can be executed in a 

completion port. Setting this parameter to zero will 

allow the same number of processors as threads to be 

executed in the completion port.  

 Below is an example of a completion port creation: 

 
HANDLE comp_port = CreateIoCompletionPort 

 (INVALID_HANDLE_VALUE, NULL, 0, 0); 

 

 To bind a socket to the completion port, the socket  

handle must be placed as the first parameter. The 

second parameter receives the completion port handle. 

The third parameter is a key that is sent to a thread that 

captures a notification for this socket. This parameter 

can be used to send a pointer related to the client data 

of the socket, for example: 

 
CreateIoCompletionPort( (HANDLE) socket, 

 comp_port, 

 (DWORD) client_data_pointer, 

 0); 

 

 In order to catch the notifications placed in the 

completion port the following function call must be 

used: 

 
BOOL GetQueuedCompletionStatus 

 (HANDLE comp_port, 

 LPDWORD num_of_bytes_trans, 

 LPDWORD completion_key, 

 LPOVERLAPPED * overlapped, 

 DWORD milliseconds); 

 

The first parameter is the completion port that will 

supply the thread with notifications. 

num_of_bytes_trans returns with the number of 

bytes transferred in the I/O operation. The 
completion_key parameter is the same as 

the one in CreateIoCompletionPort. The 

overlapped parameter receives a pointer to an 

OVERLAPPED structure. This parameter is passed to the 

completion port when an overlapped operation is 

performed. The milliseconds parameter defines the 

time in milliseconds the function must block. Setting 

this parameter to INFINITE makes the function block 

eternally until an event happens. If the function returns 

a value that is different from zero, the operation will be 

considered successful.  

 The following pseudo-code shows how to make use 

of the API: 

 
Function() 

{ 

 Create the completion port 

 Get the number of processors  

 For each processor 

  Create a notification handler thread 

Create an overlapped  socket (this can be done using the 

common socket() function) 

Bind the socket to the completion port 

Make an overlapped operation with the socket  

} 

 

NotificationHandlerThread() 

{ 

 Infinite Loop 

 { 

  Catch a notification from the completion port 

  If the operation was successful 

   Process the operation 

 } 

} 

 

 Sometimes it is useful to receive extra information 

about a finished operation. For example, it could be 

helpful to know if the operation was either sending or 

receiving bytes. It is possible to do that by working 

with the pointer to the OVERLAPPED type sent to 

every overlapped operation. Below is an example: 

 
struct Operation 

{ 

 OVERLAPPED ov; 

int type;  

}; 

 

Operation op; 



 

op.type = SEND_OPERATION; 

ZeroMemory(&op.ov, sizeof(OVERLAPPED)); 

 

WSASend(socket, buffer, 1, &bytes_sent, 

 flags, &op, NULL); 

 
 When the send operation above finishes and 

GetQueuedCompletionStatus returns, it will be 

possible to verify the type of operation with the 

overlapped pointer as shown next: 

 
NotificationHandlerThread() 

{ 

 … 

 Operation * op; 

GetQueuedCompletionStatus(comp_port, 

 &bytes_trans,&key, 

 (OVERLAPPED**)&op, 

 INFINITE); 

 If (op->type == SEND_OPERATION) 

  Handle the send operation 
} 

 

5. Techniques for Distributed Virtual 
Environments 

 

There are several techniques that can be applied to 

optimize the server processing. These techniques can 

greatly increase the number of players that can be 

connected simultaneously to a distributed virtual 

environment.  

 

5.1 Goal Based Dead Reckoning 
 
Dead Reckoning is a technique were the current 

position of an object is estimated based on previous 

information about that object [Singhal et al., 1999] 

[Singhal and Cheriton, 1994]. For example: based on 

the last position and direction of a ship, her current 

position is estimated using the formula below: 

 
current ship position = last ship position + last ship 

direction * time passed since last information 

 

 An improvement to Dead Reckoning is the Goal-

oriented Dead Reckoning proposed by Szwarcman et 

al. [2001]. In this type of Dead Reckoning, the clones 

in each client are autonomous objects that are free to 

act based on their goals. Messages are sent only when 

goals are deviating beyond certain limits. The goals 

can be anything: moving to a position, attacking an 

enemy, etc. Only the goals are transmitted through the 

network and this can result in a good reduction of 

traffic. Goal-oriented Dead Reckoning is not adequate 

for all types of games. In action games, for example, 

where the movement is generally controlled 

completely by the player, this type of Dead Reckoning 

is difficult to apply. Goal-oriented Dead Reckoning is 

good for massively multiplayer games that use a 

movement similar to Real Time Strategy Games, 

where the player only select the location he/she wants 

to be and then the selected unit moves by itself to the 

specified location. 

 
5.2 Command Time Synchronization 
 
Command Time Synchronization is a “movement 

prediction technique” that synchronizes objects of a 

distributed environment to be in the right place at the 

right time, even with the presence of latency 

[Alexander 2003]. 

 Suppose a player wants to move to a certain 

location in the world. The player client sends a 

message to the server telling about the movement and 

then the server sends a message to all other clients 

about the player movement. There is some time 

elapsed from the moment the client sends the message 

to the moment the server receives the message. There 

is even more time elapsed in the moment the other 

clients receive the player movement. So, if the player 

starts moving right away after sending the movement 

message, he/she will arrive at the destination before the 

server and possibly much before the other clients. This 

leads to a great divergence in local game states 

between the peers of a distributed environment. 

 Command Time Synchronization is a “movement 

prediction technique” that synchronizes the players by 

using a shared global time and by modifying the player 

speeds based on the estimated moment of the arrival of 

the player in a particular destination. Below is an 

example: 

 In Figure 1, Client 1 requests to move a tank to the 

position 30. The tank is currently at the position 0 and 

it starts moving at speed 10. A message is sent to the 

server and it arrives at time 1 second. The server starts 

moving the tank to the position and it sends a message 

to all players (including Client 1) that the tank should 

arrive at position 30 at second 4, since the tank speed is 

10 and it takes 3 seconds to arrive at the destination 

(Figure 2).  
 

 

 

 

 

 

 

 

Fi

gure 1: Second zero, tank at position 0. 

 

 

 

Figure 2: Second One, message arrives at server. 

 

 In the above example, the message takes one 

second to arrive at each client. All clients receive the 

message “tank from client 1 arrives at position 30 at 

second 4” and adjust the tank speed to meet the time 



scheduled. In Client 1, the tank is already at position 

20 since 2 seconds have passed. Then, the Client 1 

changes the speed to 5 allowing the tank to reach 

position 30 at second 4. On the other clients, the tank 

speed is set at 15 allowing the tank to reach position 30 

in two seconds (Figure 3). 

 

 
Figure 3: Second Two, message arrives at clients. 

 
5.3 Communication Culling  
 
Usually it is not necessary to send information to a 

client about another player that cannot be easily 

perceived, e.g.: a player in another corner of the virtual 

world. The client probably will not be able to see the 

other player, so there is no need to send information 

about its movement. 

 Computer graphics has often to handle a similar 

problem. It is generally very expensive to send all the 

data of a scene to the GPU for rendering; so, 

techniques for only sending what the camera can see 

were developed. A lot of hierarchical data structures 

from Computer Graphics can also be used for 

communication culling; a lot of them can be found in 

[Möller et al. 1999]. 

 A simple data structure that allows fast detection of 

objects near a player is the grid. A grid divides the 

world in several rectangles of equal size. Each 

rectangle stores information about the objects that are 

occupying its space. The rectangle where an object is 

located can easily be calculated by the following 

expressions: 

 
rectangle x = object pos x / rectangle width 

rectangle y = object pos y / rectangle height 

 

 In order to obtain the objects near a player, it is a 

simple case of getting the objects in the rectangle 

occupied by the player and possibly the objects in the 

rectangles considered close. This region where the 

objects are considered close and possibly perceptible 

by the player is called “area of interest”. Figure 4 

shows the grid culling technique (the black objects are 

being sent to the player, while the white objects are 

not). 

 

Figure 4: Grid Culling 

 
5.4 Load Balancing 
 
To process a massively multiplayer world is not a task 

for a slow server. In order to handle this kind of 

workload it is useful to break the world processing 

between multiple servers, allowing the use of single 

CPU computers in the processing. 

 When using multiple servers to handle the 

processing it is important to distribute intelligently the 

workload between the processors, otherwise a single 

processor can become overloaded and degradation of 

the player experience starts taking place. 

 One way to balance the workload is to break the 

world in rectangles leaving each server responsible for 

processing everything that happens inside a specific 

rectangle. While a player is inside a rectangle, he/she 

will only communicate with the server in charge. The 

moment the player passes to another rectangle, another 

server takes charge and the player starts 

communicating only with this new server. 

 It takes some time to connect to the new server, so 

it is useful to extend the rectangles frontier so that the 

client enters the new server rectangle already 

connected and receiving information about objects in 

the new area. To make this work properly, during 

frontier travel the client will be connected to the two 

servers of the frontier. This technique is shown in 

figure 5.  

 

 

 
 
 
 
 
 
 
 
 

Figure 5: A client traveling through a frontier. 

 
 The problem with using rectangles is that in the  

corners the client will be connected with up to four 

servers, as shown in Figure 6. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 6: Client connecting to four servers in a rectangle 

divided world. 

 

 One alternative to the use of rectangles is using 

hexagons. When the world is divided in hexagons, the 

clients are never connected to more than three servers 

(Figure 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Client connecting to three servers in a hexagon 

divided world. 

 

 An improvement in the load balancing is to 

consider dynamic areas of influence, in order to avoid 

an excess of players in a single region. These areas can 

be implemented by moving frontiers. 

 Other ideas for load balancing can be found in 

[Kozovits, 2004]. 

 

5.5 Level of Detail 
 
Level of Detail is another technique that is also used in 

Computer Graphics [Singhal et al. 1999]. The idea is 

that there is no need to send a lot of information to the 

player about objects that hardly affect the player’s 

experience. 

 Usually the objects that have greater effect on the 

player’s experience are the objects that are near 

him/her. So the update rate of those objects should be 

higher than the update rate of objects that are far away. 

 Structures like the grid used for communication 

culling explained in the session 5.3 can help in the 

choice of what objects should receive greater update 

rates. For example: objects inside the player rectangle 

receive greater update rate then the objects in the 

neighbor rectangles. 

 
5.6 Message Aggregation  
 
Another technique that allows the reduction of bytes 

transferred is message aggregation [Singhal et al. 

1999]. If there is a group of messages that need to be 

sent to a client, it is better to join them and send a 

single message than to send a large number of small 

messages. 

 This is because messages sent using UDP have a 

header part of 28 bytes and messages sent using TCP 

have a header part of 40 bytes. So, the lesser the 

number of messages sent to a client, the smaller is the 

number of bytes wasted on header parts. 

 

6. Conclusion 
 

This work tries to group the most important techniques 

that massively multiplayer games must make use in 

order to use computer resources efficiently. 

 The literature on this subject is still scarce and 

more interdisciplinary research is required, especially 

in the area that overlaps distributed programming and 

computer network with computational geometry and 

computer graphics. 

 An important topic missed in this paper is 

multicasting. The use of multicasting would allow a 

great reduction in the number of messages. Information 

on this topic can be found in [Day, 2004] [Lukianov, 

2001]. 

 Techniques on security and cheating are not 

considered in this paper, because the focus here is on 

communication. Also, no comments are made on 

simplified techniques that although less robust can lead 

to good results in a short development time. In this 

particular the work by Feijo and Binder [2004] is 

recommended. 
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