
Selected Techniques to Improve Communication in Massively
Multiplayer Games

Lucas E. Machado Bruno Feijó Lauro E. Kozovits*

VisionLab/IGames, Dept. of Informatics, PUC-Rio, Rio de Janeiro, Brazil

Abstract

There are no papers or books in the literature that

analyze the most suitable techniques to improve

communication in massively multiplayer games in a

detailed and implementation-oriented way. Most of the

results and recommendations in this area are buried in

proprietary systems and classified documentation.

Based on experiments in the VLab/IGame Laboratory,

this paper presents selected techniques and practical

recommendations for the development of Massively

Multiplayer Games. Optimization techniques in the use

of sockets are given. Technologies capable of handling

many sockets at once are explained. Also techniques

for optimizing communication in virtual environments

are presented.

Keywords: Distributed Virtual Environments,

Networked Virtual Environments, Massively

Multiplayer Games

Authors’ contact:
{lucas,bruno}@inf.puc-rio.br

*lek@3Dgames.com.br

1. Introduction

Massively Multiplayer Games (MMGs) are computer

games where thousands of players simultaneously

connect themselves to persistent worlds using the

Internet. In this type of game, the world continues to

evolve even after the player disconnects him/herself.

The characters used by the players are not lost after the

player exits the game, allowing the continuous

evolution of the characters. In order to process the

great number of MMG players in such a complex

environment, optimization techniques and efficient

technologies must be applied in the communication

between clients and servers.

Knowledge and data about techniques and

technologies for massively multiplayer games are still

scarce in the literature. This paper aggregates valuable

practical knowledge on distributed programming and

present the best techniques to optimize communication

in MMGs, in an integrated way that cannot be found

elsewhere. Most of the ideas of this paper are derived

from a previous work by the first author [Machado,

2005].

Some of the techniques presented on this paper are

operating system specific. They were selected because

they offer better performance than other operation

system independent techniques.

This paper organizes the subject in three main

areas: techniques using TCP, UDP, and sockets

(section 3); I/O processing of multiple sockets on

servers (section 4); and techniques for networked

virtual environments (section 5).

2. Related Work

The technology used to fuel most of the today’s

massively multiplayer games is still a mystery and the

literature is too scarce.

 Books on MMG are beginning to appear. However,

some books are more an informative reference than a

source for implementation techniques [Alexander

2003]. Others books only introduce specific styles of

multiplayer games [Penton, 2003]. Some game

conferences give important tutorials and lectures on the

subject, but they are not usually published [GDC,

2006]. Also there are good articles in developers sites

(www.gamedev.net), but either they are too superficial

or too narrow.

 Well-known general books are mandatory

references, but they do not focus on MMG. For

instance, general aspects of networked virtual

environment are covered by [Singhal et al., 1999].

Snader [2000] presents a good work on TCP/IP

programming. An overview of peer-to-peer technology

can be found in [Oram, 2001].

 Architectures and protocols for distributed virtual

environments adopted by IEEE and OMG are too

heavy and excessively general to be applied in games

[IEEE, 1993] [Kuhl, 1999].

3. Techniques Using TCP, UDP and
Sockets

On its foundation, all distributed systems must deal

with TCP, UDP or Sockets in some level. The efficient

use of those technologies is very important because

they affect how communication is performed.

3.1 The Naggle Algorithm and The Delayed
Ack

If TCP is to be applied at a certain point in the

communication of a distributed system, it is important

that two concepts be well understood: the Naggle

Algorithm and the Delayed Ack.

 The Naggle Algorithm consists of not sending a

message when the message is small and there is

another buffered message that has not received an Ack

yet. A message is small if it is smaller than the

maximum segment size that can be sent to another

peer.

 Suppose that a server wants to send the position of

two players to a client. The first position is sent with

the socket function send(), then the second position is

sent with another send(). In this example, the second

position will only be sent after the server receives an

Ack for the first message and this can take several

milliseconds on a WAN. A better strategy would be the

server to aggregate the positions in a single message

and send them both in a single function call of send()

or to disable the Naggle Algorithm using the following

code:

BOOL b = true;

setsockopt(socket, IPPROTO_TCP,

TCP_NODELAY, (char*)&b, sizeof(BOOL));

 Another important concept in TCP is the Delayed

Ack. Every message received in a TCP communication

is not immediately acknowledged. Instead, TCP

“waits” for the receiver to respond to the sender of the

message. If the receiver responds to the sender, TCP

will piggyback the acknowledgement in the response.

If not, after some milliseconds, TCP sends an Ack to

the sender.

3.2 Decreasing Buffer Copies in WinSock

When an application receives or sends a message, a

buffer copy is performed, transferring data from the

application buffer to the internal socket buffer and vice

versa. WinSock allows the removal of this transfer,

making the communication use only the application

buffer.

 In order to use this capability, WinSock overlapped

I/O operations must be used [Microsoft, 2005]. An

overlapped operation is an operation that is

asynchronous (that is, it returns immediately, but the

result is sent later to the application). After the socket

is created, the following functions can be used:

WSASend, WSASendTo, WSARecv, and WSARecvFrom.

These functions receive a variable WSAOVERLAPPED,

which is a structure that provides a communication

medium between the initiation of an overlapped I/O

operation and its subsequent completion. This variable

should first be set to zero. Below is an example of an

overlapped send operation:

WSAOVERLAPPED snd_op;

ZeroMemory(&snd_op, sizeof(snd_op));

WSASend(socket, buffer, num_of_buff,

bytes_sent, flags, &snd_op, NULL);

A final step is necessary in order to make WinSock

use only the application buffer for the communication.

This is done by setting the socket buffers to zero, as

shown below:

int zero = 0;

setsockopt(socket, SOL_SOCKET, SO_SNDBUF,

(char*)&zero, sizeof(zero));

setsockopt(socket, SOL_SOCKET,

SO_RCVBUF, (char*)&zero, sizeof(zero));

3.3 Using Connected UDP Sockets

When the socket function connect() is called in a

UDP socket, no message is sent. Instead, only the

remote address and port are saved in the socket. With

this information, it is possible to use the function

send() with the socket instead of the function

sendto().

 On some operating systems, calling sendto()

makes the kernel do the following operations: to

connect the socket used, to send the message, and to

disconnect the socket. Connecting and disconnecting

the socket like this can take as much as a third of the

processing time for sending the message [Partridge et

al., 1993].

 Besides the performance improvement, connecting

UDP sockets allows for asynchronous error capturing.

When an UDP message is sent to another peer and no

applications are receiving messages at the destination

port, an ICMP port-unreachable message is returned.

The only way to receive this message is with a

connected UDP socket.

3.4 Sending Data from Multiple Buffers in
Sockets

When a message of dynamic size needs to be

transferred using the common Sockets API send() or

sendto(), it is necessary that the message be

composed in a single buffer in order that the

transference be performed.

 An example of a message of dynamic size is a chat

message that has a static header part and a dynamic

body part.

 WinSock allows the composition of the dynamic

message directly in the internal socket buffer, thus

reducing memory transfers. An example that

demonstrates this functionality is shown below:

Header header;

Fill header parameters

WSABUF msg_buffer[2];

msg_buffer[0].buf = &header;

msg_buffer[0].len = sizeof(header);

msg_buffer[1].buf = chat_msg;

msg_buffer[1].len = chat_msg_size;

WSASend(socket, msg_buffer, 2,

&bytes_sent, flags, NULL, NULL);

The type WSABUF, used for the operation, has the

following format:

typedef struct _WSABUF {

 u_long len;

 char FAR * buf;

} WSABUF, FAR * LPWSABUF;

where len is the buffer length and buf is a pointer to

the buffer.

 The description of WSASend is as follows:

int WSAAPI WSASend(SOCKET s, LPWSABUF

buf, DWORD cnt, LPDWORD sent, DWORD

flags, LPWSAOVERLAPPED ovl,

LPWSAOVERLAPPED_COMPLETION_ROUTINE func)

where s is the socket, buf is a vector of WSABUF, cnt

is the number of buffers in the vector, sent is the

number of bytes sent, flags is similar to the flags

used in the conventional send, ovl and func are used

for overlapped operations.

3.5 Implementing Reliability on UDP

There are many cases were it is useful to have a

reliable UDP protocol implemented. This protocol

makes sure that the messages sent are received at the

destination, but no order is enforced in the arrival of

the messages to the application.

 The usual way to implement reliability for message

communication is using timers and retransmission.

When a message is sent, a timer is started. If a time

limit is reached, the timer will expire and the message

will be retransmitted. When the other peer receives a

message, it replies with an acknowledgment of arrival.

 An important decision that must be handled is the

choice of a proper time to wait until retransmission,

called Retransmission Timeout (RTO). If a bad choice

of RTO is made, a waste of time and computational

resources will occur.

 For a good choice of RTO it is important to take

into consideration the estimated time that a message

takes to be transferred from a sender to a destination

and back to the sender. This time is called round trip

time (RTT). Considering that there is an error between

the current RTT and the estimated RTT (SRTT), the

following algorithm (known as the Jacobson/Karels

algorithm) can be applied:

error = RTT – SRTT

SRTT = SRTT + (error / RTTINF)

VARRTT = VARRTT + [(|error| - VARRTT) / VARRTTINF]

RTO = SRTT + (VARRTT * VARINC)

Where:

RTTINF is a value that defines how much of the

difference between the current and estimated round

trip time is transferred to the estimated value;

VARRTT is the deviation (variation) between different

round trip times, that is: an estimative of the

variation of RTT;

VARRTTINF is similar to RTTINF and defines how

much of the difference between VARRTT and

error is transferred to VARRTT;

VARINC is a value that increases the influence of

VARRTT.

Suggested values for RTTINF, VARRTTINF and

VARINC are 8, 4 and 4 respectively.

 Once the RTO limit is exceeded, a suggested action

is to double the RTO:

RTO = RTO * 2

 The message retransmission can be implemented

using a thread that sleeps until the nearest

retransmission time. The pseudo-code for sending

messages is as follows:

SendMessage(Msg)

{

 SendUDPMessage(Msg)

RTO = SRTT + (VARRTT * VARINC))

 Add Msg to retransmission list

Activate retransmission thread event to recalculate the

smallest RTO

}

 The retransmission thread is presented below:

RetransmissionThread()

{

 Infinite Loop

 {

 If retransmission list is empty

 sleep time = infinite

 else

 sleep time = smallest RTO from list

result = WaitEvent(thread activation, sleep time)

if result == time limit expired

{

 SendUDPMessage(Msg)

 RTO = RTO * 2

 Reposition the message in the list

 }

 else

 Deactivate the retransmission thread event

 }

}

WaitEvent is responsible for making the thread sleep

until a thread activation event is flagged or a time limit

is surpassed.

4. Technologies for I/O Processing of
Multiple Sockets in Servers

Massively multiplayer servers need to process I/O for

thousands of players and, in order to be effective, they

need to use the most efficient technologies that are

available.

 The usual methods for processing I/O for multiple

sockets are: (a) the use of blocking sockets with

multiple threads, with a thread for each client; (b) the

use of the blocking function select(). Both methods

have shortcomings and are not designed to handle the

kind of workload that a massively multiplayer server

must handle.

 More efficient methods exist, but they come with

the loss of portability. The most efficient methods are

operating system dependent.

4.1 IO Completion Ports

This method is suggested as the most efficient method

for processing multiple sockets in Windows [Jones et

al., 1999].

 A completion port is a list in which the operating

system adds notifications of finished asynchronous

overlapped operations. An application using

completion ports generally creates a thread to handle

these notifications. For multi-processor architectures,

one thread is usually created for each processor to

reduce context switching.

 To create a completion port the following function

must be used:

HANDLE CreateIoCompletionPort(HANDLE

file_handle,

 HANDLE existing_comp_port,

 DWORD completion_key,

 DWORD num_of_conc_threads);

This function is used for two purposes: to bind a socket

to a completion port, and to create the completion port.

When this function is called to bind a socket to a

completion port, all finished overlapped operations of

the socket are notified in the completion port. When

this function is used with the purpose of creating a

completion port, the following actions should be

considered: the first parameter must be defined as

INVALID_HANDLE_VALUE; existing_comp_port

must be defined as NULL; and completion_key must

be ignored. The last parameter

num_of_conc_threads defines the number of

concurrent threads that can be executed in a

completion port. Setting this parameter to zero will

allow the same number of processors as threads to be

executed in the completion port.

 Below is an example of a completion port creation:

HANDLE comp_port = CreateIoCompletionPort

 (INVALID_HANDLE_VALUE, NULL, 0, 0);

 To bind a socket to the completion port, the socket

handle must be placed as the first parameter. The

second parameter receives the completion port handle.

The third parameter is a key that is sent to a thread that

captures a notification for this socket. This parameter

can be used to send a pointer related to the client data

of the socket, for example:

CreateIoCompletionPort((HANDLE) socket,

 comp_port,

 (DWORD) client_data_pointer,

 0);

 In order to catch the notifications placed in the

completion port the following function call must be

used:

BOOL GetQueuedCompletionStatus

 (HANDLE comp_port,

 LPDWORD num_of_bytes_trans,

 LPDWORD completion_key,

 LPOVERLAPPED * overlapped,

 DWORD milliseconds);

The first parameter is the completion port that will

supply the thread with notifications.

num_of_bytes_trans returns with the number of

bytes transferred in the I/O operation. The
completion_key parameter is the same as

the one in CreateIoCompletionPort. The

overlapped parameter receives a pointer to an

OVERLAPPED structure. This parameter is passed to the

completion port when an overlapped operation is

performed. The milliseconds parameter defines the

time in milliseconds the function must block. Setting

this parameter to INFINITE makes the function block

eternally until an event happens. If the function returns

a value that is different from zero, the operation will be

considered successful.

 The following pseudo-code shows how to make use

of the API:

Function()

{

 Create the completion port

 Get the number of processors

 For each processor

 Create a notification handler thread

Create an overlapped socket (this can be done using the

common socket() function)

Bind the socket to the completion port

Make an overlapped operation with the socket

}

NotificationHandlerThread()

{

 Infinite Loop

 {

 Catch a notification from the completion port

 If the operation was successful

 Process the operation

 }

}

 Sometimes it is useful to receive extra information

about a finished operation. For example, it could be

helpful to know if the operation was either sending or

receiving bytes. It is possible to do that by working

with the pointer to the OVERLAPPED type sent to

every overlapped operation. Below is an example:

struct Operation

{

 OVERLAPPED ov;

int type;

};

Operation op;

op.type = SEND_OPERATION;

ZeroMemory(&op.ov, sizeof(OVERLAPPED));

WSASend(socket, buffer, 1, &bytes_sent,

 flags, &op, NULL);

 When the send operation above finishes and

GetQueuedCompletionStatus returns, it will be

possible to verify the type of operation with the

overlapped pointer as shown next:

NotificationHandlerThread()

{

 …

 Operation * op;

GetQueuedCompletionStatus(comp_port,

 &bytes_trans,&key,

 (OVERLAPPED**)&op,

 INFINITE);

 If (op->type == SEND_OPERATION)

 Handle the send operation
}

5. Techniques for Distributed Virtual
Environments

There are several techniques that can be applied to

optimize the server processing. These techniques can

greatly increase the number of players that can be

connected simultaneously to a distributed virtual

environment.

5.1 Goal Based Dead Reckoning

Dead Reckoning is a technique were the current

position of an object is estimated based on previous

information about that object [Singhal et al., 1999]

[Singhal and Cheriton, 1994]. For example: based on

the last position and direction of a ship, her current

position is estimated using the formula below:

current ship position = last ship position + last ship

direction * time passed since last information

 An improvement to Dead Reckoning is the Goal-

oriented Dead Reckoning proposed by Szwarcman et

al. [2001]. In this type of Dead Reckoning, the clones

in each client are autonomous objects that are free to

act based on their goals. Messages are sent only when

goals are deviating beyond certain limits. The goals

can be anything: moving to a position, attacking an

enemy, etc. Only the goals are transmitted through the

network and this can result in a good reduction of

traffic. Goal-oriented Dead Reckoning is not adequate

for all types of games. In action games, for example,

where the movement is generally controlled

completely by the player, this type of Dead Reckoning

is difficult to apply. Goal-oriented Dead Reckoning is

good for massively multiplayer games that use a

movement similar to Real Time Strategy Games,

where the player only select the location he/she wants

to be and then the selected unit moves by itself to the

specified location.

5.2 Command Time Synchronization

Command Time Synchronization is a “movement

prediction technique” that synchronizes objects of a

distributed environment to be in the right place at the

right time, even with the presence of latency

[Alexander 2003].

 Suppose a player wants to move to a certain

location in the world. The player client sends a

message to the server telling about the movement and

then the server sends a message to all other clients

about the player movement. There is some time

elapsed from the moment the client sends the message

to the moment the server receives the message. There

is even more time elapsed in the moment the other

clients receive the player movement. So, if the player

starts moving right away after sending the movement

message, he/she will arrive at the destination before the

server and possibly much before the other clients. This

leads to a great divergence in local game states

between the peers of a distributed environment.

 Command Time Synchronization is a “movement

prediction technique” that synchronizes the players by

using a shared global time and by modifying the player

speeds based on the estimated moment of the arrival of

the player in a particular destination. Below is an

example:

 In Figure 1, Client 1 requests to move a tank to the

position 30. The tank is currently at the position 0 and

it starts moving at speed 10. A message is sent to the

server and it arrives at time 1 second. The server starts

moving the tank to the position and it sends a message

to all players (including Client 1) that the tank should

arrive at position 30 at second 4, since the tank speed is

10 and it takes 3 seconds to arrive at the destination

(Figure 2).

Fi

gure 1: Second zero, tank at position 0.

Figure 2: Second One, message arrives at server.

 In the above example, the message takes one

second to arrive at each client. All clients receive the

message “tank from client 1 arrives at position 30 at

second 4” and adjust the tank speed to meet the time

scheduled. In Client 1, the tank is already at position

20 since 2 seconds have passed. Then, the Client 1

changes the speed to 5 allowing the tank to reach

position 30 at second 4. On the other clients, the tank

speed is set at 15 allowing the tank to reach position 30

in two seconds (Figure 3).

Figure 3: Second Two, message arrives at clients.

5.3 Communication Culling

Usually it is not necessary to send information to a

client about another player that cannot be easily

perceived, e.g.: a player in another corner of the virtual

world. The client probably will not be able to see the

other player, so there is no need to send information

about its movement.

 Computer graphics has often to handle a similar

problem. It is generally very expensive to send all the

data of a scene to the GPU for rendering; so,

techniques for only sending what the camera can see

were developed. A lot of hierarchical data structures

from Computer Graphics can also be used for

communication culling; a lot of them can be found in

[Möller et al. 1999].

 A simple data structure that allows fast detection of

objects near a player is the grid. A grid divides the

world in several rectangles of equal size. Each

rectangle stores information about the objects that are

occupying its space. The rectangle where an object is

located can easily be calculated by the following

expressions:

rectangle x = object pos x / rectangle width

rectangle y = object pos y / rectangle height

 In order to obtain the objects near a player, it is a

simple case of getting the objects in the rectangle

occupied by the player and possibly the objects in the

rectangles considered close. This region where the

objects are considered close and possibly perceptible

by the player is called “area of interest”. Figure 4

shows the grid culling technique (the black objects are

being sent to the player, while the white objects are

not).

Figure 4: Grid Culling

5.4 Load Balancing

To process a massively multiplayer world is not a task

for a slow server. In order to handle this kind of

workload it is useful to break the world processing

between multiple servers, allowing the use of single

CPU computers in the processing.

 When using multiple servers to handle the

processing it is important to distribute intelligently the

workload between the processors, otherwise a single

processor can become overloaded and degradation of

the player experience starts taking place.

 One way to balance the workload is to break the

world in rectangles leaving each server responsible for

processing everything that happens inside a specific

rectangle. While a player is inside a rectangle, he/she

will only communicate with the server in charge. The

moment the player passes to another rectangle, another

server takes charge and the player starts

communicating only with this new server.

 It takes some time to connect to the new server, so

it is useful to extend the rectangles frontier so that the

client enters the new server rectangle already

connected and receiving information about objects in

the new area. To make this work properly, during

frontier travel the client will be connected to the two

servers of the frontier. This technique is shown in

figure 5.

Figure 5: A client traveling through a frontier.

 The problem with using rectangles is that in the

corners the client will be connected with up to four

servers, as shown in Figure 6.

Figure 6: Client connecting to four servers in a rectangle

divided world.

 One alternative to the use of rectangles is using

hexagons. When the world is divided in hexagons, the

clients are never connected to more than three servers

(Figure 7).

Figure 7: Client connecting to three servers in a hexagon

divided world.

 An improvement in the load balancing is to

consider dynamic areas of influence, in order to avoid

an excess of players in a single region. These areas can

be implemented by moving frontiers.

 Other ideas for load balancing can be found in

[Kozovits, 2004].

5.5 Level of Detail

Level of Detail is another technique that is also used in

Computer Graphics [Singhal et al. 1999]. The idea is

that there is no need to send a lot of information to the

player about objects that hardly affect the player’s

experience.

 Usually the objects that have greater effect on the

player’s experience are the objects that are near

him/her. So the update rate of those objects should be

higher than the update rate of objects that are far away.

 Structures like the grid used for communication

culling explained in the session 5.3 can help in the

choice of what objects should receive greater update

rates. For example: objects inside the player rectangle

receive greater update rate then the objects in the

neighbor rectangles.

5.6 Message Aggregation

Another technique that allows the reduction of bytes

transferred is message aggregation [Singhal et al.

1999]. If there is a group of messages that need to be

sent to a client, it is better to join them and send a

single message than to send a large number of small

messages.

 This is because messages sent using UDP have a

header part of 28 bytes and messages sent using TCP

have a header part of 40 bytes. So, the lesser the

number of messages sent to a client, the smaller is the

number of bytes wasted on header parts.

6. Conclusion

This work tries to group the most important techniques

that massively multiplayer games must make use in

order to use computer resources efficiently.

 The literature on this subject is still scarce and

more interdisciplinary research is required, especially

in the area that overlaps distributed programming and

computer network with computational geometry and

computer graphics.

 An important topic missed in this paper is

multicasting. The use of multicasting would allow a

great reduction in the number of messages. Information

on this topic can be found in [Day, 2004] [Lukianov,

2001].

 Techniques on security and cheating are not

considered in this paper, because the focus here is on

communication. Also, no comments are made on

simplified techniques that although less robust can lead

to good results in a short development time. In this

particular the work by Feijo and Binder [2004] is

recommended.

Acknowledgements

The authors would like to thank all the colleagues at

VLab/IGames for their help and dedication in making a

great work and research on games. Also the authors

would like to thank Richard Garriot (a.k.a. “Lord

British”) for his inventions that started the massively

multiplayer frenzy.

References

ALEXANDER, T., 2003. Massively Multiplayer Game

Development. Massachusetts: Charles River Media.

DAY, J., 2004. Introduction to Multicasting. Freshmeat

Tutorials. Available from:

http://freshmeat.net/articles/view/1185 [Accessed 30 Aug

2006].

FEIJO, B., BINDER, F.V., 2004. Conceituando e resolvendo

pragmaticamente os problemas mais críticos de um

MMORPG. Scientia, 15 (2), 158-165.

GDC, 2006. Engineering Issues in Multiplayer Game

Development. Game Developers Conference. Cited in:

www.gdconf.com [tutorial not published] [Accessed 30

August 2007].

IEEE, 1993. Protocols for distributed simulation applications:

entity information and interaction. IEEE Standard 1278.

JONES, A. OHLUND, J., 1999. Network Programming for

Windows. Washington: Microsoft Press.

LUKIANOV, D., 2001. Advanced WinSock Multiplayer Game

Programming: Multicasting. GameDev.net. Available

from:

http://www.gamedev.net/reference/articles/article1587.as

p [Accessed 30 Aug 2006].

MACHADO, L., 2005. Técnicas de Ambientes Virtuais

Distribuídos para Jogadores em Massa. MSc Dissertation,

Dept. of Informatics, PUC-Rio, Rio de Janeiro, Brazil. [in

Portuguese].

MICROSOFT, 2005. Socket overlapped I/O versus

blocking/nonblocking mode [online] Microsoft Help and

Support, Article ID 181611, Rev. 3.1. Available from:

http://support.microsoft.com/default.aspx?scid=kb;EN-

US;q181611 [Accessed 30 Aug 2006].

MOLLER. T., HAINES, E., 1999. Real Time Rendering.

Massachusetts: A K Peters.

ORAM, A., 2001. Peer-to-Peer: Harnessing the Power of

Disruptive Technologies. O’Reilly Media.

PARTRIDGE, C., PINK, S., 1993. A faster UDP. IEEE/ACM

Transactions on Networking, 1(4): 429-440, 1993.

PENTON, R., 2003. MUD Game Programming. Game

Development Series (Ed. André LaMothe), The Premier

Press.

SINGHAL, K.S., CHERITON, D., 1994. Using a position history-

based protocol for distributed object visualization.

Technical Report, Dept. of Computer Science, Stanford

University.

SINGHAL, S., ZYDA, M., 1999. Networked Virtual

Environments: Design and Implementation. Boston:

Addison Wesley.

SNADER, J. C., 2000. Effective TCP/IP Programming: 44 Tips

to Improve your Network Programs. Boston: Addison

Wesley.

STEVENS, W. R., 1999. TCP/IP Illustrated Volume 1 : The

Protocols. Boston: Addison Wesley.

SZWARCMAN, D., FEIJO, B., COSTA, M., 2001. Goal-oriented

dead reckoning for autonomous characters. Computers &

Graphics, 5 (6), 999-1011.

KOZOVITS, E.L., 2004. Otimização de mensagens e

balanceamento de jogos multi-jogador. PhD Thesis,

Dept. of Informatics, PUC-Rio, Rio de Janeiro, Brazil.

[in Portuguese].

KUHL, F., WEATHERLY, R., DAHMANN, J., 1999. Creating

Computer Simulation Systems: an Introduction to the

High Level Architecture. Prentice Hall, New Jersey.

