A Fast Culling Algorithm for 2D and 2.5D Side-scrolling Games
Frederico Mameri Romulo Nascimento

Federal University of Uberlandia, Dept. of CompuBerence, Brazil

Abstract 1.1 Overview

This paper describes a fast culling technique for 2 Section 2 will present the general algorithm argd it
and 2.5D side-scrolling games, as well as for other data structures. Section 3 will discuss some ofmitst
kinds of games that share the same visual apprémch. important features, as well as problems and their
such a technique, objects can be sorted by their Xpossible solutions. Then Section 4 will show how

coordinates and culled out based on the positicheof ~ Performance can be improved for certain kinds of
camera. games and Section 5 introduces some extensiohe to t

basic algorithm. As a final point, we draw conctuns

This paper presents the algorithms and data@nd present ongoing and further work.

structures needed to implement the method here

described. Some problems that might occur and their2. The algorithm

solutions are also presented. Finally, we will d&s

how the same technique can be used to speed upn every two-dimensional side-scroller there issh of

collision detection. objects in the game (visible or not). These objects
all drawn on the same layer. That way, theSet the

Keywords: 2D games, 2.5D games, viewing frustum objects in the game is an equivalence class oedér Zh

culling, motion parallax coordinates.

Authors’ contact: 2.1 The list of objects in the game
{fred, romul o} @onp. uf u. br
The technique proposed here consists of placing
1. Introduction objects on a list, sorted by the X coordinate dairth
center point (Xene)- This point is defined for an object
In the past decade, 2D side-scrolling games haea be as the arithmetic mean of its,X and Xna, where X,
massively phased out in favor of 3D games. However,and Xq.x are the X coordinates of the most leftward
this situation has started to change with the adeén and the most rightward points of the object,
game industry for handheld systems (such as cellrespectively.
phones and Pocket PC's), the revival of portablaeya
consoles (carried out by the Nintendo DS) and e r Such a list should be doubly linked, and each node
in the interest in the so-called retro games. should contain information such as thg;Xand X
points and additional relevant information, as wasdl
Portable devices, such as cell phones and thepointers to the previous and next nodes.
Nintendo DS, also feature a number of 2D and 2.5D

games in its library. Surprisingly, some of theemat The list with all the objects that can be drawn
3D-optimized powerful consoles.g, Playstation 2, (visible or not) is called the Objects list (heraré
also do. called thew list). Such a data structure also features

two special pointersy andg: the former points to the
Finally, 2D games use much simpler algorithms first object that is actually being shown on theesa
and data structures than 3D games, and are ughally and the latter points to the last object on theseser
starting point for someone who is beginning to hear This is the central idea of this paper and will be
game programming. Teaching (and learning) culling developed during it.
techniques in a 2D world is also much simpler timaa
3D one. 2.2 General workings

For all these reasons, a fast culling technique fo Let Cankmni, and Cankmax be the farthest visible
2D and 2.5D games is necessary, despite the world’scolumn of pixels to the left and to the right ofeth
tendency to overlook these types of games. screen, respectively. Now suppose the camera leas be

offset byAx pixels along the X axis. In that case, both

For additional information on culling techniques Camyin andCamyyax will be increased byx.
applied to games, [Eberly 2000; Schrocker 2001;

Zerbst and Duvel] can be consulted. If the width of the visible part of the object tfaest
to the left of the screen (pointed hy is less than or
equal toAx pixels, than that object will not be drawn

anymore (it is now out of sight). Under that 3.3 Multiplayer split-screen games

circumstance,a must point to another object to

maintain its property. It is not rare to see video games that feature denio

which the screen is divided and each player hadhdris

The algorithm consists of a pair of searches:isne own viewport, yet they all share the same scenario.

stopped when the first object to be drawn is foand Implementing such a feature can be easily achibyed

a is updated, the other stops when the first objetto keeping separaie andg pointers, as well as individual

be drawn is found ang is updated. The algorithm Camy., and Camynax variables for each player and by

determines if the currently visible objects ardl sti running the Cull algorithm for each one of them.

going to be visible in spite of the camera dispfaest.

i))) . 3.4 Make-wide objects
First, it searches for the first object that isngoto

be ViSibIe, and a.SSignS it to Such a search starts in Suppose a very |arge Objd_c(parUa”y on the Screen),

the currently first visible object, checking to se# is a smaller objecS (totally out of the screen), whose

st|I_I going to be visible. This process only works Xmin and Xenerare located between L's,% and Xeenter

strictly positive values ahx. points, and a positive displacement of the camera.
Then, it checks for visible objectse., it stops As looking for the first object not to be drawneth

when it finds the first element not to be drawnthin Cull algorithm will detect thatS is entirely out of

assigns its previous element Appwho now points to screen, and so it will stop, makiggpoint to the object
the last element on the offset screen. immediately before itL will not be drawn at all (even

)) _ ~ though it should partially be). In order to addréss
When it comes to negative displacements, the firstproblem, consider the following definition.

search starts oft and moves backwards. Likewise, the

second search stops when it finds the first objetto Definition 1: An objectw is wide if there is some
be shown, and is set accordingly. This second search gbjectm so that bothXmi, and Xceneer Of M lie between
is, of course, also done backwards. Xininy @Nd Xeenter OF W 0O both Xeenter aNd Xinax Of M lie

)) betweenX cnerandXmax OFf W. In that casem is a_make-
The complete version of the Cull algorithm that wide object.

deals with both positive and negative displacements

can easily be constructed from the previous two Now that the notion of a make-wide object was

algorithms by adding a initial condition that chedk presented, we will introduce four alternatives ¢ive

AX s positive or not. the problem, and discuss the advantages and
disadvantages of each one.

3. Most important features

Multiple layers
Some properties arise from the design of this _) _)
algorithm. These properties will be briefly discedsn ~ Thew list could be split up inta smaller listsy (1 <k

this section. <n), so thats; U , U ...U §,=w and no wide objects

exist within any list. In this case, each I&t would

3.1 lterative culling have its owru andg pointers.

Unlike traditional culling algorithms, that work aa
given scene configuration, the algorithm presehte
works by finding the difference from a previously
culled scene.

An advantage of such a method is that each layer
may individually give its own weight to the camera
displacementife., each layer may multiphAx by a
scale factor). That is exceptionally useful for the
implementation of motion parallaxing, which gives
some layers the appearance of being farther avay th
others (because they move slower) and is useful for
creating an illusion of depth [Hii 1997].

The benefits of this kind of approach are only ifel
the camera displacement was not too large. On atwor
case scenario (one in which the camera was digplace
by a large value), this approach would perform as

badly as any other would. A disadvantage of this method is that the algarith

Cull has to be run for each layer, meaning that the

3.2 Main character overall performance will decrease.

The main character of the game should not be imthe -\ o \vide pit
list, for it is never going to be culled out. Incfain
most games (or game levels), it is the displaceroént
the main character that triggers a displacemerhen
camera.

An alternative to using multiple layers is addiag
flag bit to each node in the list, indicating whether
that object is make-wide or not.

This way, the Cull algorithm can be modified as
follows: if during the search a make-wide object is
found, the search continues even if it should stdmt
way, wide objects that should have been detectéd bu
were not by the original algorithm will now evenilya
be.

The problem with this approach is that objects tha
are not on the screen (make-wide objects) will be
located between the and g pointers,i.e., it will be
considered for being drawn onto the screen.

Mixed approach

The two approaches mentioned above can be
combined, so that neither the number of layerstier
number of make-wide objects is too high (meanirag th
neither the Cull algorithm will have to be run taany
times nor the while loop will run for too long).

Delegate objects

A fast solution to this problem can be achieved by
placing only the wide object in the list, and then
have this object point to all its make-wide objegisat
way, if the algorithm decides that the wide objsdio

be drawn, then all the make-wide objects will diso

In this technique, we called the wide object a gale
object.

4. Performance improvement

In strictly 2D games based on tile sets, it is fadego
further improve the algorithm’s performance by
dealing with indices instead of pointers. This is

possible because many games in this category split

objects up into tiles instead of considering thengle
large objects.

The usage of tiles is memory saving. The same tile
may appear many times to form a single object.
Without using tiles, this information would be sdr
and processed repeated times. Moreover, the s&me ti
may be simply flipped, either horizontally or vedily,
to form objects (this is especially used on edges).

Another advantage of tile-based games is that it i
easy to use a map editor to create levels for them.

This technique is wusually implemented by
considering the game level a matrix of numbers,reshe
each number represents a tile univocally.

In order to use the algorithm, the value<afrymi,
and Cany,.x are converted intax' and g, which
represent the indices of the first and the lastiools to
be drawn on the screen.

Notice that calculating' andf' is much faster than
running the original Cull algorithm. Oneé andg' are
calculated, it is enough to draw every colum@' < c

< B subtracted by, whered is the number of pixels
in the first column that should not be drawn.

Tile-based games can also be used in kinds of
games other than side-scrollers. This techniquewkn
as isometric projection, has been extensively used
simulate 3D games [Van Looy 2003]. That is the case
of many famous commercial turn-based strategy games
and ecosystem simulators.

5. Some extensions to the algorithm

In this section, we are going to discuss how thmaesa
algorithm can be used in different ways, and the
necessary modifications, if needed.

5.1 Support for moving objects

So far the algorithm has only dealt with staticemi§,
such as trees and walls. Nonetheless, computersggame
usually present moving objects, such as platfornts a
enemies that patrol a given area.

These objects are constantly moving, and so are
their Xiin, Xcenter@NdXmax points. If the moving objects
were simply to be placed in the list, then it would
have to be constantly re-sorted and the Cull algr;
run each time that happened. Clearly, this solutson
not desirable.

We propose two solutions for this problem,
presented next.

Roomy objects

If the object moves in a predictable, fixed way
(such as platforms, or enemies that patrol a garen),
that object could be considered a roomy object.

Roomy objects have theiX,, set as the X
coordinate of the most leftward point they can ever
have during their path. Likewise, theéf,. is the X
coordinate of the most rightward point they canreve
have during their path. The algorithm Cull is not
modified.

By making an object a roomy one, it is easy to end
up with a wide object. If that is the case, it mbst
treated as so (the techniques discussed earligr)app

Special objects

If the moving object does so in an unpredictable
way, or if its path is so big that making it a ropm
object would wreck havoc the algorithm, then the
object should be treated as a special object, whieh
always consideredfor drawing, regardless of their
position along the X axis.

The disadvantage of this method is that if theee a
too many of these special objects, the result coeld 6. Conclusion
that the algorithm would be rendered useless.

_ _ We have presented a fast culling technique for ad a
5.2 Support for collidable objects 2D-like 3D games that also speeds up collision
detection. Algorithms and data structures have been

As the player's character will always be entirely 0 presented and problems and solutions have been
screen, it can only collide against objects located giscussed.

between thea and g pointers. That way, collision

detection can be done quite fast: to check forisioh A disadvantage of this method is that it is used
detection, it is enough to ch_eck thellidable objects primarily by side-scrolling games (although somieeot
located between theandp pointers. kinds of games may find use in it, such as RPG's or

) o) ecosystems simulators). Other kinds of games with a
Furthermore, has the list been divided into |a,yerS different visual approach may find little or no use

the search for collision is restricted to some tayeg, the technique here proposed.

the background layers will never collide against th

main character. Ongoing and further work

5.3 Support for invisible objects This is not a finished work. We are currently

researching the optimal parameters for each of the

Invisible objects are often used in order to trigge tradeoffs presented along this paper.
events in the game. This will happen whenever the

main character will collide against the invisibleject. Next, we plan on working on a modified version of
The Cull algorithm is capable of handling these the cCull algorithm that takes into account
invisible ObjeCtS without further modifications. multidimensional disp|acement$_e(_' Changes |r]Ay

and Az are also taken into account by the algorithm),

The Same. ClaS-S of inViSibIe. ObjeCtS that can leel us a”owing a greater range of game types to benefinf
to trigger actions in the game itself can also seduto it.

spark actions in the game engine.
. N _ _ Acknowledgements
We are going to use invisible objects to improve
the performance of the algorithm, by culling obgefctr

Professor Sandra de Amo for reviewing this paper.
a range greater th&@amymax — Cammin. 9 bap

Anonymous reviewers for their invaluable comments.

That way, the Cull algorithm will need not be run
every time there is a displacement in the cameut, b
rather, only when the main character will collide
against these invisible objects.

References

EBERLY, D.H., 2000.3D Game Engine Design : A Practical
Approach to Real-Time Computer Graphidglorgan

. . . Kaufmann.
The greater the size of the culling region, thesle

the Cull algorithm will be run and the more the tén Hy, D., 1997. zLayer: simulating depth with extended

of objects that will be considered for drawing. parallax scrolling. In: Proceedings of the ACM
Therefore, should this approach be used, one should symposium on Virtual reality software and technology
bear in mind this tradeoff. 15-17 September 1997 Lausanne, SwitzerlaNgw

York: ACM Press, 65-69.
5.4 Adapting the algorithm for 2.5D Games SCHROCKER G., 2001. Visibility Culling for Game

. . . . Applications [online] Graz University of Technolagy
A 2.5D side-scrolling game (or 2.5D side-scrollisra Available from: www.schroecker.info/download/pvd.pd
game that uses 3D polygonal meshes to render the [acessed August 18 2006].

scene, including characters, but the gameplaykes li

that of strictly 2D games. VAN Loov, J., 2003. Interactivity and signification in Head
Over Heels [online] The International Journal of
3D objects will have theX,,, andX. fields set as Computer Game Research, December 200&ilable
the X coordinates of the projection on the screlane from http://gamestudies.org/0302/vanlooy/ [Accessed

of their points most to the left and most to thghti August 24 2006].

Likewise, Camyy,» and Canmym,ay refer to values on the
screen plane. We called this processrmalizing
objects to 2D.

ZERBST, S. AND DuveL, O., 2004. 3D Game Engine
Programming Course Technology PTR, 1st edition.

Once all the objects are normalized, all the
techniques previously mentioned apply, except her t
tiles matrix.

