Lambda-Cáculo (Aula 6)

Ruy de Queiroz & Anjolina de Oliveira

Centro de Informática, UFPE

2007.2

Conteúdo

Representando as funções recursivas

Representando as funções recursivas Funções parciais

Definição (Função parcial)

Uma função ϕ de um subconjunto de \mathbb{N}^k para \mathbb{N} será chamada de propriamente parcial $sse\ \phi(m_1,\ldots,m_k)$ for indefinida para algum m_1,\ldots,m_k , e total caso contrário. Uma função parcial pode ser propriamente parcial ou total. A classe de todas as funções recursivas parciais (funções parciais que são recursivas) serão definidas adiante. Uma função recursiva total será uma função recursiva parcial que é total.

Para quaisquer termos X e Y, usaremos a abreviação

$$X^nY \equiv \underbrace{X(X(\dots(XY)\dots))}_{n \ X'S}$$
 for $n \ge 1$
 $X^0Y \equiv Y$.

Definição (Os numerais de Church (1941))

Para cada número natural n, o numeral de Church representando n é (no λ -cálculo) o termo

$$\overline{n} \equiv \lambda x y. x^n y,$$

e (em LC) o termo

$$\overline{n} \equiv (SB)^n(KI)$$

Às vezes \overline{n} é chamado Z_n . Tanto no λ -cálculo quanto na LC ele tem a propriedade de que para todos os termos F, X

$$(4.3) \overline{n}FX \triangleright_{\beta,w} F^nX.$$

Definindo funções sobre números naturais

Definição

Seja ϕ uma função parcial de números naturais de n-argumentos. Dizemos que um λ -termo X λ -define ϕ , ou um λ -termo X combinatorialmente define ϕ , sse para todo m_1, \ldots, m_n ,

$$X\overline{m_1}\ldots\overline{m_n} =_{\beta,w} \overline{\phi(m_1,\ldots,m_n)}$$

quando $\phi(m_1, \ldots, m_n)$ for definida, e $X\overline{m}_1 \ldots \overline{m}_n$ não tem forma normal caso contrário.

Representando as funções recursivas Definindo funções sobre números naturais

Representando as funções recursivas: Provaremos que toda função recursiva parcial pode ser λ - e combinatorialmente definida.

A recíproca, i.e. $toda função \lambda$ - e $combinatorialmente definida <math>\acute{e}$ uma função recursiva parcial, \acute{e} provada via técnicas padrão de numeração de Gödel.

Representando as funções recursivas Definindo funções sobre números naturais

Lema

Para λ -termos $e =_{\beta}$, ou LC-termos $e =_{w}$: toda função recursiva primitiva ϕ pode ser definida por um combinador $\overline{\phi}$.

Representando as funções recursivas Prova do Lema

Demonstração.

A classe das *funções recursivas primitivas* é definida por indução (Kleene 1952) da seguinte forma:

- (i) (sucessor) A função sucessor σ é recursiva primitiva;
- (ii) (zero) 0 é uma função recursiva primitiva de 0-argumentos;
- (iii) (projeção) para cada $n \ge 1$ e $k \le n$ a função de projeção
- $\phi(m_1, \dots, m_n) = m_k$ (para todo m_1, \dots, m_n) é recursiva primitiva;
- (iv) (composição) se ψ , χ_1, \ldots, χ_p forem recursivas primitivas, $n \ge 0$, e $\phi(m_1, \ldots, m_n) = \psi(\chi_1(m_1, \ldots, m_n), \ldots, \chi_p(m_1, \ldots, m_n))$, então ϕ é recursiva primitiva;
- (v) (definição por recursão sobre $\mathbb N$) se ψ e χ forem recursivas primitivas, n>0, e

$$\begin{cases}
\phi(0, m_1, \ldots, m_n) = \psi(m_1, \ldots, m_n), \\
\phi(k+1, m_1, \ldots, m_n) = \chi(k, \phi(k, m_1, \ldots, m_n), m_1, \ldots, m_n),
\end{cases}$$

então ϕ é recursiva primitiva.

Prova do Lema (cont.)

Demonstração.

- (Cont.) O termo $\overline{\phi}$ é definido da seguinte maneira:
- (i) (sucessor) $\overline{\sigma} \equiv \lambda uxy.x(uxy)$, que em LC é SB;
- (ii) (zero) $\overline{0} \equiv \lambda xy.y$, que em LC é KI;
- (iii) (projeção) $\overline{\phi} \equiv \lambda x_1 \dots x_n x_k$;
- (iv) (composição) dados $\overline{\psi}$, $\overline{\chi}_1,\ldots,\overline{\chi}_p$, definir $\psi,\chi_1,\ldots,\chi_p$ respectivamente, faça

$$\overline{\phi} \equiv \lambda x_1 \dots x_n \cdot (\overline{\psi}(\overline{\chi}_1 x_1 \dots x_n) \dots (\overline{\chi}_p x_1 \dots x_n))$$

- (v) (definição por recursão sobre $\mathbb N$) dados $\overline{\psi}$ e $\overline{\chi}$ definir ψ e χ respectivamente, faça
- $\overline{\phi} \equiv \lambda u x_1 \dots x_n. R(\overline{\psi} x_1 \dots x_n)(\lambda u v. \overline{\chi} u v x_1 \dots x_n)u,$ onde R é um combinador chamado de *combinador de recursão primitiva* a ser construído mais adiante, tendo a propriedade de que

para todo X, Y, k

(4.6)
$$\begin{cases} RXY\overline{0} =_{\beta,w} X, \\ RXY\overline{k+1} =_{\beta,w} Y\overline{k}(RXY\overline{k}). \end{cases}$$

Representando as funções recursivas Prova do Lema (cont.)

Demonstração.

Tendo tal combinador R, podemos definir a função ϕ por meio do termo $\overline{\phi}$, pois

$$\begin{cases} \overline{\phi0}x_1 \dots x_n &=_{\beta,w} & \overline{R}(\overline{\psi}x_1 \dots x_n)(\lambda uv.\overline{\chi}uvx_1 \dots x_n)\overline{0} \\ &=_{\beta,w} & \overline{\psi}x_1 \dots x_n \\ & (\text{por } (4.6)); \end{cases}$$

$$\overline{\phi}(\overline{k+1})x_1 \dots x_n &=_{\beta,w} & \overline{R}(\overline{\psi}x_1 \dots x_n)(\lambda uv.\overline{\chi}uvx_1 \dots x_n)(\overline{k+1}) \\ &=_{\beta,w} & (\lambda uv.\overline{\chi}uvx_1 \dots x_n)\overline{k}(\overline{R}(\overline{\psi}x_1 \dots x_n)(\lambda uv.\overline{\chi}uvx_1 \dots x_n)\overline{k})$$

$$por (4.6) \\ =_{\beta,w} & (\lambda uv.\overline{\chi}uvx_1 \dots x_n)\overline{k}(\overline{\phi}\overline{k}x_1 \dots x_n)$$

$$pela def. de \overline{\phi} \\ =_{\beta,w} & \overline{\chi}\overline{k}(\overline{\phi}\overline{k}x_1 \dots x_n)x_1 \dots x_n. \end{cases}$$

Prova do Lema (cont.)

Demonstração.

Construindo o combinador R. Vamos considerar uma função ϕ definida por recursão primitiva:

$$\phi(0) = m,
\phi(k+1) = \chi(k,\phi(k)).$$

Para calcular $\phi(k)$ podemos começar do par ordenado $\langle 0, m \rangle$ e aí iterar k vezes a operação f t.q.

$$f(\langle n, x \rangle) = \langle n+1, \chi(n, x) \rangle,$$

e finalmente tomar o segundo componente do último par produzido por esse processo.

Lidando com a noção de par ordenado

Demonstração.

Vamos então definir um combinador para lidar com a noção de par ordenado. Uma possível solução é

$$\mathsf{D} \equiv \lambda x y z. z(\mathsf{K} y) x.$$

que tem a seguinte propriedade:

(4.8)
$$\begin{cases} DXY0 =_{\beta,w} X, \\ DXYk+1 =_{\beta,w} Y. \end{cases}$$

ou a propriedade de um operador 'condicional':

$$(4.9) (Se Z = 0 então X senão Y) \equiv DXYZ.$$

Ruy de Queiroz & Anjolina de Oliveira

Lidando com a noção de par ordenado

Demonstração.

Agora, usando tal combinador D, vamos definir:

$$Q \equiv \lambda y v. D(\overline{\sigma}(v\overline{0}))(y(v\overline{0})(v\overline{1})),$$

onde $\overline{\sigma}$ é o combinador 'sucessor' definido em (i) acima. Então, para quaisquer X, Y, n,

$$\begin{array}{ll} QY(\mathsf{D}\overline{n}X) &=_{\beta,w} & \mathsf{D}(\overline{\sigma}(\mathsf{D}\overline{n}X\overline{0}))(Y(\mathsf{D}\overline{n}X\overline{0})(\mathsf{D}\overline{n}X\overline{1})) \\ &=_{\beta,w} & \mathsf{D}(\overline{\sigma}\overline{n})(Y\overline{n}X) & \mathsf{por} \ (4.8) \\ &=_{\beta,w} & \mathsf{D}(\overline{n}+1)(Y\overline{n}X). \end{array}$$

Portanto, Q está fazendo o que desejávamos que f fizesse, i.e.

$$\begin{cases} QY(\mathsf{D}\overline{n}X) &=_{\beta,w} \mathsf{D}(\overline{n+1})(Y\overline{n}X) & \text{(i)} \\ (QY)^k(\mathsf{D}\overline{0}X) &=_{\beta,w} \mathsf{D}\overline{k}X_k & \text{(ii)} \end{cases}$$

para algum termo X_k .

Se Y definisse χ e $X \equiv \overline{m}$, então X_k corresponderia ao valor de $\phi(k)$ acima.

Lidando com a noção de par ordenado

Demonstração. Agora, defina $\text{(4.10)} \qquad \qquad \mathsf{R}_{\mathsf{Bernays}} \equiv \lambda x y u. u(Qy) (\mathsf{D} \overline{\mathsf{O}} x) \overline{\mathsf{1}}.$ Então $\mathsf{R}_{\mathsf{Bernays}} X Y \overline{k} \qquad =_{\beta, w} \overline{k} (QY) (\mathsf{D} \overline{\mathsf{O}} X) \overline{\mathsf{1}}$ $=_{\beta, w} (QY)^k (\mathsf{D} \overline{\mathsf{O}} X) \overline{\mathsf{1}} \quad \mathsf{por} \, \overline{\mathsf{n}} F X \, \rhd_{\beta, w} \, F^{\mathsf{n}} X \, \mathsf{(4.3)}$ $=_{\beta, w} \, \overline{\mathsf{D}} \overline{k} X_k \overline{\mathsf{1}} \qquad \mathsf{por} \, \mathsf{(ii)} \, \mathsf{acima}$ $=_{\beta, w} \, X_k \qquad \mathsf{por} \, \mathsf{(4.8)} \qquad \mathsf{(iii)}$

Lidando com a noção de par ordenado

Demonstração.

Daí podemos verificar que R_{Bernavs} de fato tem a propriedade que desejávamos (vamos abreviar R_{Bernavs} por simplesmente R):

$$\begin{array}{cccc} \mathsf{R}XY\overline{\mathsf{0}} &=_{\beta,w} & (QY)^0(\mathsf{D}\overline{\mathsf{0}}X)\overline{\mathsf{1}} & & \mathsf{por}\ (4.10),\ (4.3) \\ &\equiv & \mathsf{D}\overline{\mathsf{0}}X\overline{\mathsf{1}} & & \mathsf{pela}\ \mathsf{def}\ \mathsf{de}\ (QY)^0\ (4.1) \\ &=_{\beta,w} & X & & \mathsf{por}\ (4.8) \end{array}$$

$$\begin{array}{lll} \mathsf{R}XY(\overline{k+1}) &=_{\beta,w} & (QY)^{k+1}(\mathsf{D}\overline{\mathsf{D}}X)\overline{\mathsf{1}} & \mathsf{por}\ (4.10),\ (4.3) \\ &=_{\beta,w} & (QY)((QY)^k(\mathsf{D}\overline{\mathsf{D}}X))\overline{\mathsf{1}} & \mathsf{pela}\ \mathsf{def.}\ \mathsf{de}\ (QY)^{k+1}\ \mathsf{cf.}\ (4.1) \\ &=_{\beta,w} & QY(\mathsf{D}\overline{k}X_k)\overline{\mathsf{1}} & \mathsf{por}\ (\mathsf{ii})\ \mathsf{acima} \\ &=_{\beta,w} & \mathsf{D}(\overline{k+1})(Y\overline{k}X_k)\overline{\mathsf{1}} & \mathsf{por}\ (\mathsf{i})\ \mathsf{acima} \\ &=_{\beta,w} & Y\overline{k}X_k & \mathsf{por}\ (4.8) \\ &=_{\beta,w} & Y\overline{k}(\mathsf{R}XY\overline{k}) & \mathsf{por}\ (\mathsf{iii})\ \mathsf{acima}. \end{array}$$

por (iii) acima.

Lidando com a noção de par ordenado

Observação

Para verificar que todas as conversões na prova do Lema 4.5 se verificam para a igualdade fraca $=_w$ assim como para $a=_\beta$ é simples rotina. Mais adiante (Cap. 6) vai ficar mais claro que basta verificar o seguinte: nunca uma ocorrência de redex é contraída quando ela está no escopo de um λ . Na verdade, com uma exceção, todas as contrações na prova do Lema têm a forma

 $P_1 \dots P_r((\lambda x.M)NQ_1 \dots Q_s) \triangleright P_1 \dots P_r(([N/x]M)Q_1 \dots Q_s)$ $(r,s \ge 0)$, e essas traduzem para LC como reduções fracas legítimas. O mesmo vai acontecer nas outras provas combinadas para $=_w e =_\beta$ mais adiante.

A única exceção é a β -redução $\overline{\sigma}$ $\overline{n} \triangleright \overline{n+1}$; mas não precisamos traduzir essa para a LC porque nesse sistema $\overline{\sigma}$ $\overline{n} = \overline{n+1}$ devido à definição de \overline{n} .

Funções recursivas gerais totais

Teorema (Kleene)

Para λ -termos e $=_{\beta}$, ou LC-termos e $=_{w}$: toda função recursiva total ϕ pode ser definida por um combinador $\overline{\phi}$ com uma forma normal.

Demonstração.

Pelo Teorema da Forma Normal de Kleene para funções recursivas parciais (1952), para toda função recursiva parcial ϕ existem funções recursivas primitivas ψ e χ tais que $\phi(m_1,\ldots,m_n)=\psi(\mu k[\chi(m_1,\ldots,m_n,k)=0]),$ onde $\mu k[\chi(m_1,\ldots,m_n,k)=0]$ é o menor k, se é que existe algum, para o qual $\chi(m_1,\ldots,m_n,k)=0$. Se k não existir para alguma n-upla m_1,\ldots,m_n , então $\phi(m_1,\ldots,m_n)$ é indefinida para aqueles m_1,\ldots,m_n . Mas como a hipótese diz que ϕ é total, podemos assumir que k sempre existe.

Representando as funções recursivas Prova do teorema (cont.)

Continuação.

Uma maneira de computar μk é definir um programa $\theta(k)$ que dá como saída k se $\chi(m_1,\ldots,m_n,k)=0$, e segue com $\theta(k+1)$ caso contrário; quando esse programa é inicializado com k=0, produzirá como saída o primeiro k para o qual $\chi(m_1,\ldots,m_n,k)=0$. Vamos definir um análogo formal, que chamamos H, de um programa tal como esse. Será a solução da equação recursiva

 $Hx_1 \dots x_n y = \text{se } \overline{\chi} x_1 \dots x_n y = 0$ então y senão $Hx_1 \dots x_n (\overline{\sigma} y)$. Uma solução pode ser dada usando-se o combinador Y, mas aí ele não vai ter uma forma normal. Aqui vai uma outra solução que tem uma forma normal.

Representando as funções recursivas Prova do teorema (cont.)

Continuação.

Vamos primeiro definir:

$$\begin{cases}
T \equiv \lambda x.D\overline{0}(\lambda uv.u(x(\overline{\sigma}v))u(\overline{\sigma}v)), \\
P \equiv \lambda xy.Tx(xy)(Tx)y.
\end{cases}$$

Então P tem a seguinte propriedade

$$\left\{ \begin{array}{ll} PXY & =_{\beta,w} & Y & \text{se } XY =_{\beta,w} \overline{0}, \\ PXY & =_{\beta,w} & PX(\overline{\sigma}Y) & \text{se } XY =_{\beta,w} \overline{m+1} \text{ para algum } m. \end{array} \right.$$

Prova da propriedade (4.17)

Demonstração.

Sejam X, Y termos quaisquer e suponha que $u, v \notin FV(XY)$. Então

$$\begin{array}{ll} PXY & =_{\beta,w} & TX(XY)(TX)Y \\ & =_{\beta,w} & D\overline{0}(\lambda uv.u(X(\overline{\sigma}v))u(\overline{\sigma}v))(XY)(TX)Y. \end{array}$$

Se
$$XY =_{\beta,w} \overline{0}$$
, então por (4.8) (def. de D),
 $PXY =_{\beta,w} \overline{0}(TX)Y$
 $=_{\beta,w} Y$ pois $\overline{0} \equiv \lambda xy.y$.

Se
$$XY =_{\beta,w} \overline{m+1}$$
, então por (4.8),
 $PXY =_{\beta,w} (\lambda uv.u(X(\overline{\sigma}v))u(\overline{\sigma}v))(TX)Y$
 $=_{\beta,w} TX(X(\overline{\sigma}Y))(TX)(\overline{\sigma}Y)$
 $=_{\beta,w} PX(\overline{\sigma}Y)$, pela def. de P onde $\overline{\sigma}Y$ substitui Y

Prova do teorema (cont.)

Demonstração.

Agora defina

$$H \equiv \lambda x_1 \dots x_n y . P(\overline{\chi} x_1 \dots x_n) y.$$

Então, para qualquer X_1, \dots, X_n, Y , de (4.17) podemos concluir que

$$HX_1 \dots X_n Y =_{\beta, w} P(\overline{\chi} X_1 \dots X_n) Y$$

$$=_{\beta, w} \begin{cases} Y & \text{se } \overline{\chi} X_1 \dots X_n Y =_{\beta, w} \overline{0} \\ HX_1 \dots X_n (\overline{\sigma} Y) & \text{se } \overline{\chi} X_1 \dots X_n Y =_{\beta, w} \overline{m+1} \end{cases}$$

Finalmente, defina

$$\overline{\phi} \equiv \lambda x_1 \dots x_n \overline{\psi} (Hx_1 \dots x_n \overline{0}).$$

 $\overline{\phi}$ define ϕ , e tem uma forma normal.

Representando as funções recursivas Funções recursivas parciais

Teorema

Para λ -termos and $=_{\beta}$, ou LC-termos $\mathbf{e} =_{\mathbf{w}}$, toda função recursiva parcial ϕ pode ser definida por um combinador $\overline{\phi}$ com uma forma normal.

Demonstração.

Como na prova do Teorema 4.15, ϕ pode ser expressa como $\phi(m_1,\ldots,m_n)=\psi(\mu k[\chi(m_1,\ldots,m_n,k)=0]),$ mas agora μk não está necessariamente definida para toda n-upla $m_1,\ldots m_n$. Temos que construir um termo $\overline{\phi}$ de modo que $\overline{\phi}\overline{m_1}\ldots\overline{m_n}$ não tenha forma normal quando não existir k tal que $\chi(m_1,\ldots,m_n,k)=0$. (A técnica descrita aqui é atribuída a B. Lercher.)

Vamos primeiro tomar $\overline{\phi}$ de 4.15, e chamá-lo 'F':

$$F \equiv \lambda x_1 \dots x_n \overline{\psi}(Hx_1 \dots x_n \overline{0}).$$

Quando $\phi(m_1, ..., m_n)$ estiver definida temos $F\overline{m_1}...\overline{m_n} =_{\beta,w} \overline{\phi(m_1, ..., m_n)}$.

Mas ainda precisamos garantir que $F\overline{m_1} \dots \overline{m_n}$ não tenha forma normal quando $\phi(m_1, \dots, m_n)$ não estiver definida.

Prova do teorema (continuação)

continuação.

$$\phi \equiv \lambda x_1 \dots x_n P(\overline{\chi} x_1 \dots x_n) \overline{0} I(F x_1 \dots x_n),$$

onde P é definido em

$$\begin{cases}
T \equiv \lambda x.D\overline{0}(\lambda uv.u(x(\overline{\sigma}v))u(\overline{\sigma}v)), \\
P \equiv \lambda xy.Tx(xy)(Tx)y.
\end{cases}$$

Suponha que m_1, \ldots, m_n sejam tais que existe um k tal que

$$\chi(m_1,\ldots,m_n,k)=0,$$

e assuma que j seja o menor desses k's. Então

$$\overline{\phi}\overline{m_1}...\overline{m_n} =_{\beta,w} \overline{Jl}(F\overline{m_1}...\overline{m_n})$$
 pela prova de 4.15
 $=_{\beta,w} l'(F\overline{m_1}...\overline{m_n})$ por (4.3)
 $=_{\beta,w} F\overline{m_1}...\overline{m_n}$ pela def. de l
 $=_{\beta,w} \overline{\phi}(m_1,...,m_n)$ pela def. de F.

Prova do teorema (continuação)

continuação.

Suponha agora que m_1, \ldots, m_n sejam tais que não exista k tal que

$$\chi(m_1,\ldots,m_n,k)=0;$$

então para cada k existe um p_k tal que

$$\chi(m_1,\ldots,m_n,k)=p_k+1.$$

(Obs.: χ é total pois é recursiva primitiva.) Seja

$$X \equiv \overline{\chi} \, \overline{m_1} \dots \overline{m_n}, \qquad G \equiv F \overline{m_1} \dots \overline{m_n}.$$

Então, para cada k, $X\overline{k} =_{\beta,w} \overline{p_k + 1}$. Além do mais, pelo teorema de Church–Rosser temos

$$X\overline{k} \triangleright_{\beta,w} \overline{p_k+1}$$

porque os numerais de Church estão em forma normal tanto no λ quanto na LC.

Prova do teorema (continuação)

continuação.

Agora temos que mostrar que $\overline{\phi}\overline{m_1}\dots\overline{m_n}$ não tem forma normal. Pelo Corolário 3.19.2, é suficiente dar uma redução infinita quasi-mais-à-esquerda desse termo. Considere a seguinte redução:

Essa redução é infinita, e cada parte

$$TX(X\overline{i})(TX)\overline{i}|G \triangleright_{\beta,w} TX(X(\overline{i+1}))(TX)(\overline{i+1})|G$$

contém pelo menos uma contração maximal mais-à-esquerda.