
Chapter 3

Block Ciphers

Block ciphers are the central tool in the design of protocols for shared-key cryptography (aka. sym-
metric) cryptography. They are the main available “technology” we have at our disposal. This
chapter will take a look at these objects and describe the state of the art in their construction.

It is important to stress that block ciphers are just tools—raw ingredients for cooking up
something more useful. Block ciphers don’t, by themselves, do something that an end-user would
care about. As with any powerful tool, one has to learn to use this one. Even an excellent block
cipher won’t give you security if you use don’t use it right. But used well, these are powerful tools
indeed. Accordingly, an important theme in several upcoming chapters will be on how to use block
ciphers well. We won’t be emphasizing how to design or analyze block ciphers, as this remains very
much an art.

This chapter gets you acquainted with some typical block ciphers, and discusses attacks on
them. In particular we’ll look at two examples, DES and AES. DES is the “old standby.” It is
currently the most widely-used block cipher in existence, and it is of sufficient historical significance
that every trained cryptographer needs to have seen its description. AES is a modern block cipher,
and it is expected to supplant DES in the years to come.

3.1 What is a block cipher?

A block cipher is a function E: {0, 1}k ×{0, 1}n → {0, 1}n. This notation means that E takes two
inputs, one being a k-bit string and the other an n-bit string, and returns an n-bit string. The
first input is the key. The second might be called the plaintext, and the output might be called a
ciphertext. The key-length k and the block-length n are parameters associated to the block cipher.
They vary from block cipher to block cipher, as of course does the design of the algorithm itself.

For each key K ∈ {0, 1}k we let EK : {0, 1}
n → {0, 1}n be the function defined by EK(M) =

E(K, M). For any block cipher, and any keyK, it is required that the function EK be a permutation
on {0, 1}n. This means that it is a bijection (ie., a one-to-one and onto function) of {0, 1}n to {0, 1}n.
(For every C ∈ {0, 1}n there is exactly one M ∈ {0, 1}n such that EK(M) = C.) Accordingly EK

has an inverse, and we denote it E−1
K . This function also maps {0, 1}

n to {0, 1}n, and of course
we have E−1

K (EK(M)) = M and EK(E
−1
K (C)) = C for all M, C ∈ {0, 1}n. We let E−1: {0, 1}k ×

{0, 1}n → {0, 1}n be defined by E−1(K, C) = E−1
K (C). This is the inverse block cipher to E.

1

2 BLOCK CIPHERS

The block cipher E is a public and fully specified algorithm. Both the cipher E and its inverse
E−1 should be easily computable, meaning given K, M we can readily compute E(K, M), and given
K, C we can readily compute E−1(K, C). By “readily compute” we mean that there are public and
relatively efficient programs available for these tasks.

In typical usage, a random keyK is chosen and kept secret between a pair of users. The function
EK is then used by the two parties to process data in some way before they send it to each other.
Typically, we will assume the adversary will be able to obtain some input-output examples for EK ,
meaning pairs of the form (M, C) where C = EK(M). But, ordinarily, the adversary will not be
shown the key K. Security relies on the secrecy of the key. So, as a first cut, you might think of
the adversary’s goal as recovering the key K given some input-output examples of EK . The block
cipher should be designed to make this task computationally difficult. (Later we will refine the view
that the adversary’s goal is key-recovery, seeing that security against key-recovery is a necessary
but not sufficient condition for the security of a block cipher.)

We emphasize that we’ve said absolutely nothing about what properties a block cipher should
have. A function like EK(M) =M is a block cipher (the “identity block cipher”), but we shall not
regard it as a “good” one.

How do real block ciphers work? Lets take a look at some of them to get a sense of this.

3.2 Data Encryption Standard (DES)

The Data Encryption Standard (DES) is the quintessential block cipher. Even though it is now
quite old, and on the way out, no discussion of block ciphers can really omit mention of this
construction. DES is a remarkably well-engineered algorithm which has had a powerful influence
on cryptography. It is in very widespread use, and probably will be for some years to come. Every
time you use an ATM machine, you are using DES.

3.2.1 A brief history

In 1972 the NBS (National Bureau of Standards, now NIST, the National Institute of Standards
and Technology) initiated a program for data protection and wanted as part of it an encryption
algorithm that could be standardized. They put out a request for such an algorithm. In 1974, IBM
responded with a design based on their “Lucifer” algorithm. This design would eventually evolve
into the DES.

DES has a key-length of k = 56 bits and a block-length of n = 64 bits. It consists of 16 rounds
of what is called a “Feistel network.” We will describe more details shortly.

After NBS, several other bodies adopted DES as a standard, including ANSI (the American
National Standards Institute) and the American Bankers Association.

The standard was to be reviewed every five years to see whether or not it should be re-adopted.
Although there were claims that it would not be re-certified, the algorithm was re-certified again
and again. Only recently did the work for finding a replacement begin in earnest, in the form of
the AES (Advanced Encryption Standard) effort.

3.2.2 Construction

The DES algorithm is depicted in Fig. 3.1. It takes input a 56-bit key K and a 64 bit plaintext
M . The key-schedule KeySchedule produces from the 56-bit key K a sequence of 16 subkeys, one

Bellare and Rogaway 3

function DESK(M) // |K| = 56 and |M | = 64

(K1, . . . , K16)← KeySchedule(K) // |Ki| = 48 for 1 ≤ i ≤ 16

M ← IP(M)
Parse M as L0 ‖R0 // |L0| = |R0| = 32

for r = 1 to 16 do
Lr ← Rr−1 ; Rr ← f(Kr, Rr−1) ⊕ Lr−1

C ← IP−1(L16 ‖R16)
return C

Figure 3.1: The DES block cipher. The text and other figures describe the subroutines
KeySchedule, f, IP, IP−1.

IP IP−1

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26

33 1 41 9 49 17 57 25

Figure 3.2: Tables describing the DES initial permutation IP and its inverse IP−1.

for each of the rounds that follows. Each subkey is 48-bits long. We postpone the discussion of the
KeySchedule algorithm.

The initial permutation IP simply permutes the bits ofM , as described by the table of Fig. 3.2.
The table says that bit 1 of the output is bit 58 of the input; bit 2 of the output is bit 50 of the
input; . . . ; bit 64 of the output is bit 7 of the input. Note that the key is not involved in this
permutation. The initial permutation does not appear to affect the cryptographic strength of the
algorithm, and its purpose remains a bit of a mystery.

The permuted plaintext is now input to a loop, which operates on it in 16 rounds. Each round
takes a 64-bit input, viewed as consisting of a 32-bit left half and a 32-bit right half, and, under the
influence of the sub-key Kr, produces a 64-bit output. The input to round r is Lr−1 ‖ Rr−1, and
the output of round r is Lr ‖ Rr. Each round is what is called a Feistel round, named after Horst
Feistel, one the IBM designers of a precursor of DES. Fig. 3.1 shows how it works, meaning how
Lr ‖ Rr is computed as a function of Lr−1 ‖ Rr−1, by way of the function f , the latter depending
on the sub-key Kr associated to the r-th round.

One of the reasons to use this round structure is that it is reversible, important to ensure that
DESK is a permutation for each key K, as it should be to qualify as a block cipher. Indeed, given
Lr ‖Rr (and Kr) we can recover Lr−1 ‖Rr−1 via Rr−1 ← Lr and Lr−1 ← f(K − r, Lr) ⊕ Rr.

Following the 16 rounds, the inverse of the permutation IP, also depicted in Fig. 3.2, is applied
to the 64-bit output of the 16-th round, and the result of this is the output ciphertext.

A sequence of Feistel rounds is a common high-level design for a block cipher. For a closer look
we need to see how the function f(·, ·) works. It is shown in Fig. 3.3. It takes a 48-bit subkey J

4 BLOCK CIPHERS

function f(J, R) // |J | = 48 and |R| = 32

R← E(R) ; R← R⊕ J
Parse R as R1 ‖R2 ‖R3 ‖R4 ‖R5 ‖R6 ‖R7 ‖R8 // |Ri| = 6 for 1 ≤ i ≤ 8

for i = 1, . . . , 8 do
Ri ← Si(Ri) // Each S-box returns 4 bits

R← R1 ‖R2 ‖R3 ‖R4 ‖R5 ‖R6 ‖R7 ‖R8 // |R| = 32 bits

R← P(R)
return R

Figure 3.3: The f -function of DES. The text and other figures describe the subroutines used.

E P

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

16 7 20 21

29 12 28 17

1 15 23 26

5 18 31 10

2 8 24 14

32 27 3 9

19 13 30 6

22 11 4 25

Figure 3.4: Tables describing the expansion function E and final permutation P of the DES f -
function.

and a 32-bit input R to return a 32-bit output. The 32-bit R is first expanded into a 48-bit via the
function E described by the table of Fig. 3.4. This says that bit 1 of the output is bit 32 of the
input; bit 2 of the output is bit 1 of the input; . . . ; bit 48 of the output is bit 1 of the input.

Note the E function is quite structured. In fact barring that 1 and 32 have been swapped (see
top left and bottom right) it looks almost sequential. Why did they do this? Who knows. That’s
the answer to most things about DES.

Now the sub-key J is XORed with the output of the E function to yield a 48-bit result that we
continue to denote by R. This is split into 8 blocks, each 6-bits long. To the i-th block we apply
the function Si called the i-th S-box. Each S-box is a function taking 6 bits and returning 4 bits.
The result is that the 48-bit R is compressed to 32 bits. These 32 bits are permuted according to
the P permutation described in the usual way by the table of Fig. 3.4, and the result is the output
of the f function. Let us now discuss the S-boxes.

Each S-box is described by a table as shown in Fig. 3.5. Read these tables as follows. Si takes
a 6-bit input. Write it as b1b2b3b4b5b6. Read b3b4b5b6 as an integer in the range 0, . . . , 15, naming
a column in the table describing Si. Let b1b2 name a row in the table describing Si. Take the row
b1b2, column b3b4b5b6 entry of the table of Si to get an integer in the range 0, . . . , 15. The output
of Si on input b1b2b3b4b5b6 is the 4-bit string corresponding to this table entry.

The S-boxes are the heart of the algorithm, and much effort was put into designing them to
achieve various security goals and resistance to certain attacks.

Finally, we discuss the key schedule. It is shown in Fig. 3.6. Each round sub-key Kr is formed
by taking some 48 bits of K. Specifically, a permutation called PC-1 is first applied to the 56-bit

Bellare and Rogaway 5

S1 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

0 1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

1 0 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

1 1 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

0 1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

1 0 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

1 1 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

0 1 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

1 0 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

1 1 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

0 1 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

1 0 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

1 1 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

0 1 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

1 0 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

1 1 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

0 1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

1 0 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

1 1 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

0 1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

1 0 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

1 1 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8 :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

0 1 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

1 0 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

1 1 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Figure 3.5: The DES S-boxes.

key to yield a permuted version of it. This is then divided into two 28-bit halves and denoted
C0 ‖ D0. The algorithm now goes through 16 rounds. The r-th round takes input Cr−1 ‖ Dr−1,
computes Cr ‖Dr, and applies a function PC-2 that extracts 48 bits from this 56-bit quantity. This
is the sub-key Kr for the r-th round. The computation of Cr ‖Dr is quite simple. The bits of Cr−1

are rotated to the left j positions to get Cr, and Dr is obtained similarly from Dr−1, where j is
either 1 or 2, depending on r.

6 BLOCK CIPHERS

Algorithm KeySchedule(K) // |K| = 56

K ← PC-1(K)
Parse K as C0 ‖D0

for r = 1, . . . , 16 do
if r ∈ {1, 2, 9, 16} then j ← 1 else j ← 2 fi
Cr ← leftshiftj(Cr−1) ; Dr ← leftshiftj(Dr−1)
Kr ← PC-2(Cr ‖Dr)

return(K1, . . . , K16)

Figure 3.6: The key schedule of DES. Here leftshiftj denotes the function that rotates its input to
the left by j positions.

PC-1 PC-2

57 49 41 33 25 17 9

1 58 50 42 34 26 18

10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

7 62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4

14 17 11 24 1 5

3 28 15 6 21 10

23 19 12 4 26 8

16 7 27 20 13 2

41 52 31 37 47 55

30 40 51 45 33 48

44 49 39 56 34 53

46 42 50 36 29 32

Figure 3.7: Tables describing the PC-1 and PC-2 functions used by the DES key schedule of Fig. 3.6.

The functions PC-1 and PC-2 are tabulated in Fig. 3.7. The first table needs to be read in a
strange way. It contains 56 integers, these being all integers in the range 1, . . . , 64 barring multiples
of 8. Given a 56-bit string K = K[1] . . .K[56] as input, the corresponding function returns the
56-bit string L = L[1] . . . L[56] computed as follows. Suppose 1 ≤ i ≤ 56, and let a be the i-th
entry of the table. Write a = 8q+ r where 1 ≤ r ≤ 7. Then let L[i] = K[a− q]. As an example, let
us determine the first bit, L[1], of the output of the function on input K. We look at the first entry
in the table, which is 57. We divide it by 8 to get 57 = 8(7)+ 1. So L[1] equals K[57− 7] = K[50],
meaning the 1st bit of the output is the 50-th bit of the input. On the other hand PC-2 is read in
the usual way as a map taking a 56-bit input to a 48 bit output: bit 1 of the output is bit 14 of
the input; bit 2 of the output is bit 17 of the input; . . . ; bit 56 of the output is bit 32 of the input.

Well now you know how DES works. Of course, the main questions about the design are:
why, why and why? What motivated these design choices? We don’t know too much about this,
although we can guess a little. And one of the designers of DES, Don Coppersmith, has written a
short paper which provides some information.

3.2.3 Speed

One of the design goals of DES was that it would have fast implementations relative to the tech-
nology of its time. How fast can you compute DES? In roughly current technology (well, nothing
is current by the time one writes it down!) one can get well over 1 Gbit/sec on high-end VLSI.
Specifically at least 1.6 Gbits/sec, maybe more. That’s pretty fast. Perhaps a more interesting
figure is that one can implement each DES S-box with at most 50 two-input gates, where the circuit

Bellare and Rogaway 7

has depth of only 3. Thus one can compute DES by a combinatorial circuit of about 8 ·16 ·50 = 640
gates and depth of 3 · 16 = 48 gates.

In software, on a fairly modern processor, DES takes something like 80 cycles per byte. This
is disappointingly slow—not surprisingly, since DES was optimized for hardware and was designed
before the days in which software implementations were considered feasible or desirable.

3.3 Key recovery attacks on block ciphers

Now that we know what a block cipher looks like, let us consider attacking one. This is called
cryptanalysis of the block cipher.

We fix a block cipher E: {0, 1}k × {0, 1}n → {0, 1}n having key-size k and block size n. It is
assumed that the attacker knows the description of E and can compute it. For concreteness, you
can think of E as being DES.

Historically, cryptanalysis of block ciphers has focused on key-recovery. The cryptanalyst may
think of the problem to be solved as something like this. A k-bit key T , called the target key, is
chosen at random. Let q ≥ 0 be some integer parameter.

Given: The adversary has a sequence of q input-output examples of ET , say

(M1, C1), . . . , (Mq, Cq)

where Ci = ET (Mi) for i = 1, . . . , q and M1, . . . , Mq are all distinct n-bit strings.

Find: The adversary wants to find the target key T .

Let us say that a key K is consistent with the input-output examples (M1, C1), . . . , (Mq, Cq) if
EK(Mi) = Ci for all 1 ≤ i ≤ q. We let

ConsE((M1, C1), . . . , (Mq, Cq))

be the set of all keys consistent with the input-output examples (M1, C1), . . . , (Mq, Cq). Of course
the target key T is in this set. But the set might be larger, containing other keys. A key-recovery at-
tack cannot hope to differentiate the target key from other members of the set ConsE((M1, C1), . . . , (Mq, Cq)).
Thus, the goal is sometimes viewed as simply being to find some key in this set, or even the entire
set. For practical block ciphers though, if enough input-output examples are used, the size of this
set is usually one, so that one can indeed find the target key. We will exemplify all this when we
consider specific attacks.

Some typical kinds of “attack” that are considered within this framework:

Known-message attack: M1, . . . , Mq are any distinct points; the adversary has no control over
them, and must work with whatever it gets.

Chosen-message attack: M1, . . . , Mq are chosen by the adversary, perhaps even adaptively.
That is, imagine it has access to an “oracle” for the function EK . It can feed the oracle M1 and
get back C1 = EK(M1). It can then decide on a value M2, feed the oracle this, and get back C2,
and so on.

Clearly a chosen-message attack gives the adversary much more power, but is also less realistic
in practice.

The most obvious attack strategy is exhaustive key search. The adversary goes through all
possible keys K ′ ∈ {0, 1}k until it finds one that explains the input-output pairs. Here is the attack

8 BLOCK CIPHERS

in detail, using q = 1, meaning one input-output example. For i = 1, . . . , 2k let Ti denote the i-th
k-bit string (in lexicographic order).

EKSE(M1, C1)
for i = 1, . . . , 2k do

if E(Ti, M1) = C1 then return Ti fi

This attack always returns a key consistent with the given input-output example (M1, C1). Whether
or not it is the target key depends on the block cipher, and in particular on its key length and
block length, and in some cases the probability of this is too small. The likelihood of the attack
returning the target key can be increased by testing against more input-output examples:

EKSE((M1, C1), . . . , (Mq, Cq))
for i = 1, . . . , 2k do

if E(Ti, M1) = C1 then

if (E(Ti, M2) = C2 AND · · · AND E(Ti, Mq) = Cq) then return Ti fi

A fairly small vaue of q, say somewhat more than k/n, is enough that this attack will usually return
the target key itself. For DES, q = 2 is enough.
Thus, no block cipher is perfectly secure. It is always possible for an attacker to recover the

key. A good block cipher, however, is designed to make this task computationally prohibitive.
How long does exhaustive key-search take? Since q is small we can neglect the difference in

running time between the two versions of the attack above, and focus for simplicity on the first
attack. In the worst case, it uses 2k computations of the block cipher. However it could be less
since one could get lucky. For example if the target key is in the first half of the search space, only
2k−1 computations would be used. So a better measure is how long it takes on the average. This is

2k

∑

i=1

i · Pr[K = Ti] =
2k

∑

i=1

i

2k
=

1

2k
·

2k

∑

i=1

i =
1

2k
·
2k(2k + 1)

2
=
2k + 1

2
≈ 2k−1

computations of the block cipher. This is because the target key is chosen at random, so with
probability 1/2k equals Ti, and in that case the attack uses i E-computations to find it.
Thus to make key-recovery by exhaustive search computationally prohibitive, one must make

the key-length k of the block cipher large enough.
Let’s look at DES. We noted above that there is VLSI chip that can compute it at the rate of

1.6 Gbits/sec. How long would key-recovery via exhaustive search take using this chip? Since a
DES plaintext is 64 bits, the chip enables us to perform (1.6 ·109)/64 = 2.5 ·107 DES computations
per second. To perform 255 computations (here k = 56) we thus need 255/(2.5 · 107) ≈ 1.44 · 109

seconds, which is about 45.7 years. This is clearly prohibitive.
It turns out that that DES has a property called key-complementation that one can exploit to

reduce the size of the search space by one-half, so that the time to find a key by exhaustive search
comes down to 22.8 years. But this is still prohibitive.
Yet, the conclusion that DES is secure against exhaustive key search is actually too hasty. We

will return to this later and see why.
Exhaustive key search is a generic attack in the sense that it works against any block cipher.

It only involves computing the block cipher and makes no attempt to analyze the cipher and find
and exploit weaknesses. Cryptanalysts also need to ask themselves if there is some weakness in the
structure of the block cipher they can exploit to obtain an attack performing better than exhaustive
key search.

Bellare and Rogaway 9

For DES, the discovery of such attacks waited until 1990. Differential cryptanalysis is capable
of finding a DES key using about 247 input-output examples (that is, q = 247) in a chosen-message
attack [1, 2]. Linear cryptanalysis [4] improved differential in two ways. The number of input-
output examples required is reduced to 244, and only a known-message attack is required. (An
alternative version uses 242 chosen plaintexts [6].)

These were major breakthroughs in cryptanalysis that required careful analysis of the DES
construction to find and exploit weaknesses. Yet, the practical impact of these attacks is small.
Why? Ordinarily it would be impossible to obtain 244 input-output examples. Furthermore, the
storage requirement for these examples is prohibitive. A single input-output pair, consisting of a
64-bit plaintext and 64-bit ciphertext, takes 16 bytes of storage. When there are 244 such pairs, we
need 16 · 244 = 2.81 · 1014 bits, or about 281 terabytes of storage, which is enormous.

Linear and differential cryptanalysis were however more devastating when applied to other
ciphers, some of which succumbed completely to the attack.

So what’s the best possible attack against DES? The answer is exhaustive key search. What
we ignored above is that the DES computations in this attack can be performed in parallel. In
1993, Weiner argued that one can design a $1 million machine that does the exhaustive key search
for DES in about 3.5 hours on the average [7]. His machine would have about 57,000 chips, each
performing numerous DES computations. More recently, a DES key search machine was actually
built by the Electronic Frontier Foundation, at a cost of $250,000 [5]. It finds the key in 56 hours,
or about 2.5 days on the average. The builders say it will be cheaper to build more machines now
that this one is built.

Thus DES is feeling its age. Yet, it would be a mistake to take away from this discussion the
impression that DES is a weak algorithm. Rather, what the above says is that it is an impressively
strong algorithm. After all these years, the best practical attack known is still exhaustive key
search. That says a lot for its design and its designers.

Later we will see that we would like security properties from a block cipher that go beyond
resistance to key-recovery attacks. It turns out that from that point of view, a limitation of DES
is its block size. Birthday attacks “break” DES with about q = 232 input output examples. (The
meaning of “break” here is very different from above.) Here 232 is the square root of 264, meaning
to resist these attacks we must have bigger block size. The next generation of ciphers—things like
AES—took this into account.

3.4 Iterated-DES and DESX

The emergence of the above-discussed key-search engines lead to the view that in practice DES
should be considered broken. Its shortcoming was its key-length of 56, not long enough to resist
exhaustive key search.

People looked for cheap ways to strengthen DES, turning it, in some simple way, into a cipher
with a larger key length. One paradigm towards this end is iteration.

3.4.1 Double-DES

Let K1, K2 be 56-bit DES keys and let M be a 64-bit plaintext. Let

2DES(K1 ‖K2, M) = DES(K2,DES(K1, M)) .

10 BLOCK CIPHERS

This defines a block cipher 2DES: {0, 1}112×{0, 1}64 → {0, 1}64 that we call Double-DES. It has a
112-bit key, viewed as consisting of two 56-bit DES keys. Note that it is reversible, as required to
be a block cipher:

2DES
−1(K1 ‖K2, C) = DES−1(K1,DES

−1(K2, C)) .

for any 64-bit C.

The key length of 112 is large enough that there seems little danger of 2DES succumbing
to an exhaustive key search attack, even while exploiting the potential for parallelism and special-
purpose hardware. On the other hand, 2DES also seems secure against the best known cryptanalytic
techniques, namely differential and linear cryptanalysis, since the iteration effectively increases the
number of Feistel rounds. This would indicate that 2DES is a good way to obtain a DES-based
cipher more secure than DES itself.

However, although 2DES has a key-length of 112, it turns out that it can be broken using
about 257 DES and DES−1 computations by what is called a meet-in-the-middle attack, as we now
illustrate. Let K1 ‖K2 denote the target key and let C1 = 2DES(K1 ‖K2, M1). The attacker, given
M1, C1, is attempting to find K1 ‖K2. We observe that

C1 = DES(K2,DES(K1, M1)) ⇒ DES−1(K2, C1) = DES(K1, M1) .

This leads to the following attack. Below, for i = 1, . . . , 256 we let Ti denote the i-th 56-bit string
(in lexicographic order):

MinM2DES(M1, C1)
for i = 1, . . . , 256 do L[i]← DES(Ti, M1)
for j = 1, . . . , 256 do R[j]← DES−1(Tj , C1)
S ← { (i, j) : L[i] = R[j] }
Pick some (l, r) ∈ S and return Tl ‖ Tr

For any (i, j) ∈ S we have

DES(Ti, M1) = L[i] = R[j] = DES−1(Tj , C1)

and as a consequence DES(Tj ,DES(Ti, M1)) = C1. So the key Ti ‖ Tj is consistent with the input-
output example (M1, C1). Thus,

{ Tl ‖ Tr : (l, r) ∈ S } = ConsE((M1, C1)) .

The attack picks some pair (l, r) from S and outputs Tl ‖ Tr, thus returning a key consistent with
the input-output example (M1, C1).

The set S above is likely to be quite large, of size about 256+56/264 = 248, meaning the attack
as written is not likely to return the target key itself. However, by using a few more input-output
examples, it is easy to whittle down the choices in the set S until it is likely that only the target
key remains.

The attack makes 256 + 256 = 257 DES or DES−1 computations. The step of forming the set S
can be implemented in linear time in the size of the arrays involved, say using hashing. (A naive
strategy takes time quadratic in the size of the arrays.) Thus the running time is dominated by
the DES,DES−1 computations.

The meet-in-the-middle attack shows that 2DES is quite far from the ideal of a cipher where
the best attack is exhaustive key search. However, this attack is not particularly practical, even if
special purpose machines are designed to implement it. The machines could do the DES,DES−1

computations quickly in parallel, but to form the set S the attack needs to store the arrays L, R,

Bellare and Rogaway 11

each of which has 256 entries, each entry being 64 bits. The amount of storage required is 8 · 257 ≈
1.15 · 1018 bytes, or about 1.15 · 106 terabytes, which is so large that implementing the attack is
impractical.
There are some strategies that modify the attack to reduce the storage overhead at the cost of

some added time, but still the attack does not appear to be practical.
Since a 112-bit 2DES key can be found using 257 DES or DES−1 computations, we sometimes

say that 2DES has an effective key length of 57.

3.4.2 Triple-DES

The triple-DES ciphers use three iterations of DES or DES−1. The three-key variant is defined by

3DES3(K1 ‖K2 ‖K3, M) = DES(K3,DES
−1(K2,DES(K1, M)) ,

so that 3DES3: {0, 1}168 × {0, 1}64 → {0, 1}64. The two-key variant is defined by

3DES2(K1 ‖K2, M) = DES(K2,DES
−1(K1,DES(K2, M)) ,

so that 3DES2: {0, 1}112×{0, 1}64 → {0, 1}64. You should check that these functions are reversible
so that they do qualify as block ciphers. The term “triple” refers to there being three applications
of DES or DES−1. The rationale for the middle application being DES−1 rather than DES is that
DES is easily recovered via

DES(K, M) = 3DES3(K ‖K ‖K, M) (3.1)

DES(K, M) = 3DES2(K ‖K, M) . (3.2)

As with 2DES, the key length of these ciphers appears long enough to make exhaustive key
search prohibitive, even with the best possible engines, and, additionally, differential and linear
cryptanalysis are not particularly effective because iteration effectively increases the number of
Feistel rounds.

3DES3 is subject to a meet-in-the-middle attack that finds the 168-bit key using about 2112

computations of DES or DES−1, so that it has an effective key length of 112. There does not
appear to be a meet-in-the-middle attack on 3DES2 however, so that its key length of 112 is also
its effective key length.
The 3DES2 cipher is popular in practice and functions as a canonical and standard replacement

for DES. 2DES, although having the same effective key length as 3DES2 and offering what appears
to be the same or at least adequate security, is not popular in practice. It is not entirely apparent
why 3DES2 is preferred over 2DES, but the reason might be Equation (3.2).

3.4.3 DESX

Although 2DES, 3DES3 and 3DES2 appear to provide adequate security, they are slow. The first
is twice as slow as DES and the other two are three times as slow. It would be nice to have a
DES based block cipher that had a longer key than DES but was not significantly more costly.
Interestingly, there is a simple design that does just this. Let K be a 56-bit DES key, let K1, K2

be 64-bit strings, and let M be a 64-bit plaintext. Let

DESX(K ‖K1 ‖K2, M) = K2 ⊕DES(K, K1 ⊕M) .

This defines a block cipher DESX: {0, 1}184 × {0, 1}64 → {0, 1}64. It has a 184-bit key, viewed as
consisting of a 56-bit DES key plus two auxiliary keys, each 64 bits long. Note that it is reversible,

12 BLOCK CIPHERS

as required to be a block cipher:

DESX
−1(K ‖K1 ‖K2, C) = K1 ⊕DES

−1(K, K2 ⊕ C) .

The key length of 184 is certainly enough to preclude exhaustive key search attacks. DESX is no
more secure than DES against linear of differential cryptanalysis, but we already saw that these
are not really practical attacks.

There is a meet-in-the-middle attack on DESX. It finds a 184-bit DESX key using 2120 DES and
DES−1 computations. So the effective key length of DESX seems to be 120, which is large enough
for security.

DESX is less secure than Double or Triple DES because the latter are more more resistant than
DES to linear and differential cryptanalysis while DESX is only as good as DES itself in this regard.
However, this is good enough; we saw that in practice the weakness of DES was not these attacks
but rather the short key length leading to successful exhaustive search attacks. DESX fixes this,
and very cheaply. In summary, DESX is popular because it is much cheaper than Double of Triple
DES while providing adequate security.

3.4.4 Why a new cipher?

DESX is arguably a fine cipher. Nonetheless, there were important reasons to find and standardize
a new cipher.

We will see later that the security provided by a block cipher depends not only on its key length
and resistance to key-search attacks but on its block length. A block cipher with block length n
can be “broken” in time around 2n/2. When n = 64, this is 232, which is quite small. Although
2DES, 3DES3, 3DES2, DESX have a higher (effective) key length than DES, they preserve its block
size and thus are no more secure than DES from this point of view. It was seen as important to
have a block cipher with a block length n large enough that a 2n/2 time attack was not practical.
This was one motivation for a new cipher.

Perhaps the larger motivation was speed. Desired was a block cipher that ran faster than DES
in software.

3.5 Advanced Encryption Standard (AES)

In 1998 the National Institute of Standards and Technology (NIST/USA) announced a “competi-
tion” for a new block cipher. The new block cipher would, in time, replace DES. The relatively
short key length of DES was the main problem that motivated the effort: with the advances in
computing power, a key space of 256 keys was just too small. With the development of a new algo-
rithm one could also take the opportunity to address the modest software speed of DES, making
something substantially faster, and to increase the block size from 64 to 128 bits (the choice of 64
bits for the block size can lead to security difficulties, as we shall later see. Unlike the design of
DES, the new algorithm would be designed in the open and by the public.

Fifteen algorithms were submitted to NIST. They came from around the world. A second
round narrowed the choice to five of these algorithms. In the summer of 2001 NIST announced
their choice: an algorithm called Rijndael. The algorithm should be embodied in a NIST FIPS
(Federal Information Processing Standard) any day now; right now, there is a draft FIPS. Rijndael
was designed by Joan Daemen and Vincent Rijmen (from which the algorithm gets its name), both
from Belgium. It is descendent of an algorithm called Square.

Bellare and Rogaway 13

function AESK(M)
(K0, . . . , K10)← expand(K)
s←M ⊕ K0

for r = 1 to 10 do
s← S(s)
s← shift-rows(s)
if r ≤ 9 then s← mix-cols(s) fi
s← s ⊕ Kr

endfor

return s

Figure 3.8: The function AES128. See the accompanying text and figures for definitions of the
maps expand, S, shift-rows, mix-cols.

In this section we shall describe AES.
A word about notation. Purists would prefer to reserve the term “AES” to refer to the standard,

using the word “Rijndael” or the phrase “the AES algorithm” to refer to the algorithm itself. (The
same naming pundits would have us use the acronym DEA, Data Encryption Algorithm, to refer to
the algorithm of the DES, the Data Encryption Standard.) We choose to follow common convention
and refer to both the standard and the algorithm as AES. Such an abuse of terminology never seems
to lead to any misunderstandings. (Strictly speaking, AES is a special case of Rijndael. The latter
includes more options for block lengths than AES does.)
The AES has a block length of n = 128 bits, and a key length k that is variable: it may be 128,

192 or 256 bits. So the standard actually specifies three different block ciphers: AES128, AES192,
AES256. These three block ciphers are all very similar, so we will stick to describing just one of
them, AES128. For simplicity, in the remainder of this section, AES means the algorithm AES128.
We’ll write C = AESK(M) where |K| = 128 and |M | = |C| = 128.
We’re going to describe AES in terms of four additional mappings: expand, S, shift-rows,

and mix-cols. The function expand takes a 128-bit string and produces a vector of eleven keys,
(K0, . . . , K10). The remaining three functions bijectively map 128-bits to 128-bits. Actually, we’ll
be more general for S, letting git be a map on (({0, 1})8)+. Let’s postpone describing all of these
maps and start off with the high-level structure of AES, which is given in Fig. 3.8.
Refer to Fig. 3.8. The value s is called the state. One initizlizes the state to M and the final

state is the ciphertext C one gets by enciphering M . What happens in each iteration of the for
loop is called a round. So AES consists of ten rounds. The rounds are identical except that each
uses a different subkey Ki and, also, round 10 omits the call to mix-cols.
To understand what goes on in S and mix-cols we will need to review a bit of algebra. Let

us make a pause to do that. We describe a way to do arithmetic on bytes. Identify each byte
a = a7a6a5a4a3a2a1a0 with the formal polynomial a7x

7+a6x
6+a+5x5+a4x

4+a3x
3+a2x

2+a1x+a0.
We can add two bytes by taking their bitwise xor (which is the same as the mod-2 sum the
corresponding polynomials). We can multiply two bytes to get a degree 14 (or less) polynomial,
and then take the remainder of this polynomial by the fixed irreducible polynomial

m(x) = x8 + x4 + x3 + x+ 1 .

14 BLOCK CIPHERS

This remainder polynomial is a polynomial of degree at most seven which, as before, can be regarded
as a byte. In this way, we can add and multiply any two bytes. The resulting algebraic structure
has all the properties necessary to be called a finite field. In particular, this is one representation
of the finite field known as GF(28)—the Galois field on 28 = 256 points. As a finite field, you can
find the inverse of any nonzero field point (the zero-element is the zero byte) and you can distribute
addition over multiplication, for example.

There are some useful tricks when you want to multiply two bytes. Since m(x) is another name
for zero, x8 = x4 + x3 + x + 1 = {1b}. (Here the curly brackets simply indicate a hexadecimal
number.) So it is easy to multiply a byte a by the byte x = {02}: namely, shift the 8-bit byte a
one position to the left, letting the first bit “fall off” (but remember it!) and shifting a zero into
the last bit position. We write this operation a 〈〈〈 1. If that first bit of a was a 0, we are done.
If the first bit was a 1, we need to add in (that is, xor in) x8 = {1b}. In summary, for a a byte,
a · x = a · {02} is a 〈〈〈 1 if the first bit of a is 0, and it is (a 〈〈〈 1) ⊕ {1b} if the first bit of a is 1.

Knowing how to multiply by x = {02} let’s you conveniently multiply by other quantities. For
example, to compute {a1} · {03} compute {a1} · ({02} ⊕ {01}) = {a1} · {02} ⊕ {a1} · {01} =
{42} ⊕ {1b} ⊕ a1 = {f8}. Try some more examples on your own.

As we said, each nonzero byte a has a multiplicative inverse, inv(a) = a−1, The mapping we will
denote S : {0, 1}8 → {0, 1}8 is obtained from the map inv : a 7→ a−1. First, patch this map to make
it total on {0, 1}8 by setting inv({00}) = {00}. Then, to compute S(a), first replace a by inv(a),
number the bits of a by a = a7a6a5a4a3a2a1a0, and return the value a′, where a′ = a′7a

′
6a
′
5a
′
4a
′
3a
′
2a
′
1a
′
0

where

a′7
a′6
a′5
a′4
a′3
a′2
a′1
a′0

=

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

·

a7

a6

a5

a4

a3

a2

a1

a0

+

1

1

0

0

0

1

1

0

All arithmetic is in GF(2), meaning that addition of bits is their xor and multiplication of bits is
the conjunction (and).

All together, the map S is give by Fig. 3.9, which lists the values of

S(0), S(1), . . . , S(255) .

In fact, one could forget how this table is produced, and just take it for granted. But the fact is
that it is made in the simple way we have said.

Now that we have the function S, let us extend it (without bothering to change the name) to
a function with domain {{0, 1}8}+. Namely, given an m-byte string A = A[1] . . . A[m], set S(A) to
be S(A[1]) . . . S(A[m]). In other words, just apply S bytewise.

Now we’re ready to understand the first map, S(s). One takes the 16-byte state s and applies
the 8-bit lookup table to each of its bytes to get the modified state s.

Moving on, the shift-rows operation works like this. Imagine plastering the 16 bytes of s =

Bellare and Rogaway 15

63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Figure 3.9: The AES S-box, which is a function S : {0, 1}8 → {0, 1}8 specified by the following list.
All values in hexadecimal. The meaning is: S(00) = 63, S(01) = 7c, . . ., S(ff) = 16.

s0s1 . . . s15 going top-to-bottom, then left-to-right, to make a 4× 4 table:

s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

For the shift-rows step, left circularly shift the second row by one position; the third row by two
positions; and the the fourth row by three positions. The first row is not shifted at all. Somewhat
less colorfully, the mapping is simply

shift-rows(s0s1s2 · · · s15) = s0s5s10s15s4s9s14s3s8s13s2s7s12s1s6s11

Using the same convention as before, the mix-cols step takes each of the four columns in the
4×4 table and applies the (same) transformation to it. Thus we define mix-cols(s) on 4-byte words,
and then extend this to a 16-byte quantity wordwise. The value of mix-cols(a0a1a2a3) = a′0a

′
1a
′
2a
′
3

is defined by:

a′0
a′1
a′2
a′3

=

02 03 01 01

01 02 03 01

01 02 02 03

03 01 01 02

·

a0

a1

a2

a3

An equivalent way to explain this step is to say that we are multiplying a(x) = a3x
3+a2x

2+a1x
1+a0

by the fixed polynomial c(x) = {03}x3+{01}x2+{01}x+{02} and taking the result modulo x4+1.

16 BLOCK CIPHERS

function expand(K)
K0 ← K
for i← 1 to 10 do

Ki[0]← Ki−1[0] ⊕ S(Ki−1[3] 〈〈〈 8) ⊕ Ci

Ki[1]← Ki−1[1] ⊕ Ki[0]
Ki[2]← Ki−1[2] ⊕ Ki[1]
Ki[3]← Ki−1[3] ⊕ Ki[2]

od

return (K0, . . . , K10)

Figure 3.10: The AES128 key-expansion algorithm maps a 128-bit key K into eleven 128-bit sub-
keys, K0, . . . , K10. Constants (C1, . . . ,C10) are ({02000000}, {04000000}, {08000000}, {10000000},
{20000000}, {40000000}, {80000000}, {1B000000}, {36000000}, {6C000000}). All other notation
is described in the accompanying text.

At this point we have described everything but the key-expansion map, expand. That map is
given in Fig. 3.10.

We have now completed the definition of AES. One key property is that AES is a block cipher:
the map is invertible. This follows because every round is invertible. That a round is invertible
follows from each of its steps being invertible, which is a consequence of S being a permutation and
the matrix used in mix-cols having an inverse .

In the case of DES, the rationale for the design were not made public. Some explanation for
different aspects of the design have become more apparent over time as we have watched the effects
on DES of new attack strategies, but fundamentally, the question of why the design is as it is has
not received a satisfying cipher. In the case of AES there was significantly more documentation of
the rationale for design choices. (See the book The design of Rijndael by the designers [3]).

Nonetheless, the security of block ciphers, including DES and AES, eventually comes down
to the statement that “we have been unable to find effective attacks, and we have tried attacks
along the following lines” If people with enough smarts and experience utter this statement,
then it suggests that the block cipher is good. Beyond this, it’s hard to say much. Yet, by now,
our community has become reasonably experienced designing these things. It wouldn’t even be
that hard a game were it not for the fact we tend to be agressive in optimizing the block-cipher’s
speed. (Some may come to the opposite opinion, that it’s a very hard game, seeing just how many
reasonable-looking block ciphers have been broken.) Later we give some vague sense of the sort of
cleverness that people muster against block ciphers.

3.6 Limitations of key-recovery based security

As discussed above, classically, the security of block ciphers has been looked at with regard to key
recovery. That is, analysis of a block cipher E has focused primarily on the following question: given
some number q of input-output examples (M1, C1), . . . , (Mq, Cq), where T is a random, unknown
key and Ci = ET (Mi), how hard is it for an attacker to find T? A block cipher is viewed as
“secure” if the best key-recovery attack is computationally infeasible, meaning requires a value of
q or a running time t that is too large to make the attack practical. In the sequel, we refer to this

Bellare and Rogaway 17

as security against key-recovery.
However, as a notion of security, security against key-recovery is quite limited. A good notion

should be sufficiently strong to be useful. This means that if a block cipher is secure, then it should
be possible to use the block cipher to make worthwhile constructions and be able to have some
guarantee of the security of these constructions. But even a cursory glance at common block cipher
usages shows that good security in the sense of key recovery is not sufficient for security of the
usages of block ciphers.
As an example, consider that we typically want to think of C = EK(M) as an “encryption”

of plaintext M under key K. An adversary in possession of C but not knowing K should find it
computationally infeasible to recover M , or even some part of M such as its first half. Security
against key-recovery is certainly necessary for this, because if the adversary could find K it could
certainly compute M , via M = E−1

K (M). But security against key-recovery is not sufficient to
ensure that M cannot be recovered given K alone. As an example, consider the block cipher
E: {0, 1}128 × {0, 1}256 → {0, 1}256 defined by EK(M) = AESK(M [1]) ‖M [2] where M [1] is the
first 128 bits of M and M [2] is the last 128 bits of M . Key recovery is as hard as for AES, but a
ciphertext reveals the second half of the plaintext.
This might seem like an artificial example. Many people, on seeing this, respond by saying:

“But, clearly, DES and AES are not designed like this.” True. But that is missing the point. The
point is that security against key-recovery alone does not make a “good” block cipher.
But then what does make a good block cipher? This questions turns out to not be so easy

to answer. Certainly one can list various desirable properties. For example, the ciphertext should
not reveal half the bits of the plaintext. But that is not enough either. As we see more usages
of ciphers, we build up a longer and longer list of security properties SP1, SP2, SP3, . . . that are
necessary for the security of some block cipher based application.
Such a long list of necessary but not sufficient properties is no way to treat security. What we

need is one single “MASTER” property of a block cipher which, if met, guarantees security of lots
of natural usages of the cipher.
Such a property is that the block cipher be a pseudorandom permutation (PRF), a notion

explored in another chapter.

3.7 Problems

Problem 3.1 Show that for all K ∈ {0, 1}56 and all x ∈ {0, 1}64

DESK(x) = DESK(x) .

This is called the key-complementation property of DES.

Problem 3.2 Explain how to use the key-complementation property of DES to speed up exhaus-
tive key search by about a factor of two. Explain any assumptions that you make.

Problem 3.3 Find a key K such that DESK(·) = DES
−1
K (·). Such a key is sometimes called a

“weak” key.

Problem 3.4 As with AES, suppose we are working in the finite field with 28 elements, represent-
ing field points using the irreducible polynomial m(x) = x8 + x4 + x3 + x + 1. Compute the byte
that is the result of multiplying bytes:

{e1} · {05}

18 BLOCK CIPHERS

Problem 3.5 For AES, we have given two different descriptions of mix-cols: one using matric
multiplication (in GF(28)) and one based on multiplying by a fixed polynomial c(x) modulo a
second fixed polynomial, d(x) = x4 + 1. Show that these two methods are equivalent.

Problem 3.6 Verify that the matrix used for mix-cols has as its inverse the matrix

0e 0b 0d 09

09 0e 0b 0d

0d 09 0e 0b

0b 0d 09 0e

Explain why all entries in this matrix begin with a zero-byte.

Problem 3.7 How many different permutations are there from 128 bits to 128 bits? How man
different functions are then from 128 bits to 128 bits?

Problem 3.8 Upper and lower bound, as best you can, the probability that a random function
from 128 bits to 128 bits is actually a permutation.

Problem 3.9 Without consulting any of the numerous public-domain implementations available,
implement AES, on your own, from the spec or from the description provided by this chapter. Then
test your implementation according to the test vectors provided in the AES documentation.

Problem 3.10 Justify and then refute (both) the following proposition: enciphering under AES
can be implemented faster than deciphering.

Bibliography

[1] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems. J. of Cryp-

tology, Vol. 4, No. 1, pp. 3–72, 1991.

[2] E. Biham and A. Shamir. Differential cryptanalysis of the Full 16-round DES. Advances

in Cryptology – CRYPTO ’92, Lecture Notes in Computer Science Vol. 740, E. Brickell ed.,
Springer-Verlag, 1992.

[3] J. Daemen and V. Rijmen. The Design of Rijndael. Springer, 2001.

[4] M. Matsui. Linear cryptanalysis method for DES cipher. Advances in Cryptology – EURO-

CRYPT ’93, Lecture Notes in Computer Science Vol. 765, T. Helleseth ed., Springer-Verlag,
1993.

[5] EFF DES Cracker Project. http://www.eff.org/Privacy/Crypto/Crypto_misc/

DESCracker/.

[6] L. Knudsen and J. E. Mathiassen. A Chosen-Plaintext Linear Attack on DES. Fast Soft-

ware Encryption ’00, Lecture Notes in Computer Science Vol. 1978, B. Schneier ed., Springer-
Verlag, 2000.

[7] M. Wiener. Efficient DES Key Search. In Practical Cryptography for Data Internetworks, W.
Stallings editor, IEEE Computer Society Press, 1996, pp. 31–79. http://www3.sympatico.
ca/wienerfamily/Michael/MichaelPapers/dessearch.pdf.

19

