
An Abstract Theory of Computer Viruses 

Leonard M. Adleman* 

Department of Computer Science 
University of Southern California 

I Introduction 

In recent years the detection of computer viruses has become common place. It 
appears that for the most part these viruses have been 'benign' or only mildly 
destructive. However, whether or not computer viruses have the potential to  
cause major and prolonged disruptions of computing environments is an open 
question. 

Such basic questions as: 

1. How hard is it to detect programs infected by computer viruses? 

2. Can infected programs be 'disinfected'? 

3. What forms of protection exist? 

4. How destructive can computer viruses be? 

have been at most partially addressed [Col][Co2]'. Indeed a generally accepted 
definition of computer virus has yet to emerge. 

For these reasons, a rigorous study of computer viruses seems appropriate. 

*Research supported by N S F  through grant CCR 8519296 
'It appears that F. Cohen is the first researcher in an academic setting to consider the 

practical and theoretical aspects of computer viruses. The formalism presented here differs 
considerably from that explored by Cohen [Col][Co2]. 

S. Goldwasser (Ed.): Advances in Cryptology - CRYPT0 '88, LNCS 403, pp. 354-374, 1990. 
0 Springer-Verlag Berlin Heidelberg 1990 



355 

2 Basic Definitions 

For the purpose of motivating the definitions which follow, consider this (fabri- 
cated) ‘case study’: 

A text editor becomes infected with a computer virus. Each t ime  the text  editor 
i s  used, it performs the  text  editing tasks as it did P T ~ O T  to  infection, but it also 
searches the files f o r  a program and infects it. When Tun, each of these newly 
infected programs performs i t s  ‘intended’ tasks as before, but also searches the 
files f o r  a program and infects it. This  process continues. As  these infected 
programs pass between systems,  as when they are sold, OT given t o  others, new 
opportunities for spreading the virus are created. Finally, after Jan.  1, 1990, 
the infected programs cease acting as before. Now, each t ime  such a program i s  
Tun, it deletes all files. 

Such a computer virus can easily be created using a program scheme (in an  ad 
hoc language) similar to  that  found in [Col]: 

{main:= 
call injure; 

caU submain; 

call infect ; 

... 

... 

{injure:= 
if condition then whatever damage is to be done and halt 

1 
{infect := 

1 
if condition then infect files 

where for the ‘case study virus’: 

(main:= 
call  injure; 
call submain; 
call infect; 



356 

{injure:= 
ifdate 2 Jan. 1, 1990 then 

while files # 0: 
file = get-random-file; 
delete file; 

halt; 

{infect:= 
if true then 
file = get-random-executable-file; 
rename main routine submain; 
prepend self to file; 

1 

By modifying the scheme above, a wide variety of viruses can be created. Even 
‘helpful’ viruses may be created. For example the following minor variant of 
Cohen’s [Col] compression virus which saves storage space: 

{main:= 
call injure; 
decompress compressed part of program; 
call submain; 
call infect; 

I 
{injure:= 

if false then halt 
I 
{infect:= 

if executable-files # 0 then 
file = get-random-executable-file; 
rename main routine submain; 
compress file; 
prepend self to file; 

f 



357 

With the ‘case study virus’ and all of those which could be created by the scheme 
above, it appears that  the following properties are relevant: 

1. For every program, there is an ‘infected’ form of that program. That is, 
it is possible to  think of the virus as a map from programs to (‘infected’) 
programs. 

2. Each infected program on each input (where here by input is meant all 
‘accessible’ information: e.g. the user’s input, the system’s clock, files 
containing data  or programs) makes one of three choices: 

Injure: 
Ignore the ‘intended’ task and compute some other function. Note 
that in the case study, which inputs result in injury (i.e. those where 
the system clock indicates that the date is Jan. 1, 1990 or later), 
and what kind of injury occurs (file deletion) are the same whether 
the infected program is a text editor or a compiler or something else. 
Thus which inputs result in injury and what form the injury takes 
is independent of which infected program is running and is actually 
dependent solely on the virus itself. 

Perform the ‘intended’ task and if it halts, infect programs. Notice in 
particular that the clock, the user/prograin communications and all 
other ‘accessible’ information other than programs, are handled just 
as they would have been had the uninfected version of the program 
been run. Further, notice that whether the infected program is a text 
editor or a compiler or something else, when it infects a program the 
resulting infected program is the same, Thus the infected form of 
a program is independent of which infected program produces the 
infection. 

Neither injure nor infect. Perform the ‘intended’ task without mod- 
ification. This ma3 be thought of as a special case of ‘Infect’, where 
the number of programs getting infected is zero. (In the case study, 
imitation only occurs when no programs are accessible for infection). 

Infect: 

Imitate: 

A formal definition of computer virus is presented next. 

Notation 1 

I. S denotes t h e  se t  of all f in i te  sequences of natural numbers. 



358 

2. e denotes a computable injective function from S x S onto N with com- 
pvtabZe inverse. 

3. FOT all s, t E S, < s, t > denotes e ( s ,  t ) .  

4. For all partial f : N -, N ,  f o r  all s , t  E S ,  f(s, t)  denotes f(< s , t  >). 

5. e' denotes a computable injective function from N x N onto N with corn- 
putable inverse such that f o r  all i, j € N, e'(i ,  j) 2 i. 

6. For all i , j  E N ,  < i, j > denotes e ' ( i * j ) .  

7. FOT all partial f : N 3 N ,  f o r  all i, j E N ,  f ( i 7  j )  denotes f ( <  i, j >). 

8 .  FOT all partial f : N -, N ,  for all n E N ,  write f (n )  1 i . f f (n )  i s  defined. 

9. For alIpart ial f  : N + N ,  f o r  a l l n  E N ,  write f(n) T i#f(n) is undefined. 

Definition I For all partial f ,  g : N -+ N ,  for all s , t  E S,  f ( s , t )  = g ( s , t )  i ff  
either: 

Definition 2 FOT all z ,  z' E N ,  f o r  d p , p ' ,  q = 41, q 2 ,  ..., qr ,  q' = q{ ,  q;, .-., 6 , t  E 

S ,  for  all partial func t ions  h ; N -+ N ,  < p ,  q >-< p', q' > iff: h 

1. z = z' and 

2. p = p' and 

3. there exists a n  i ,  with 1 5 i 5 z such that q; # qi and 

4. f o r  i = 1,2, ..., z, either 



359 

Definition 5 For all Go’del numberings of the partial recursive functions {&}, 
a total recursive function v is  a virus with respect to (4;) iff f o r  all d , p  E S,  
either: 

Remark 1 The  choice of symbols d , p  above is intended t o  suggest the decom- 
position of all ‘accessible ’ information into ‘data’ (information not susceptible 
to  infection) and ‘programs ’ ( in fomat ion  susceptible to  infection). 

3 Types of Viruses 

In this section the set of viruses is decomposed into the disjoint union of four 
principal types. The  nature of so called ‘Trojan horses’ is considered. 

Definition 6 For all Go’del numberings of the partial recursive functions {&}, 
for all viruses v with respect t o  {4 , } ,  for  all a ,  j E N :  

i is  pathogenic with respect t o  v and j ifl 



360 

i is contagious with  respect t o  v and j i f l  

i i s  benignant with  respect t o  v and j i f l  

i = v ( j )  & 
i is not pathogenic with respect to  j & 
i i s  no t  contagious with respect t o  j 

i is a Trojan horse with respect t o  v and j iff 

i = v ( j )  & 
i is pathogenic with respect to j €2 
i i s  not contagious with respect to  j 

i is a carrier with respect t o  v and j i f  

i = v ( j )  & 
i is not pathogenic with respect t o  j & 
i is contagious with respect t o  j 

i i s  virulent with respect t o  v and j i# 

i = v ( j )  & 
i is pathogenic with respect to  j & 
i i s  contagious with respect to  j 

When there exists a unique j such that i = v ( j )  (e.g. when v is injective) then 
if i is pathogenic (contagious, benignant, a Trojan horse, a carrier, virulent) 
with respect t o  v and j ,  the reference to j will be dropped and i will be said to 
be pathogenic (contagious, benignant, a Trojan horse, a carrier, virulent) with 
respect to  v .  

Hence, if with respect to  some virus an infected program is benignant, then 
it computes the same function as its uninfected predecessor. If it is a Trojan 
horse then it is incapable of infecting other programs. It can only imitate or 
injure, and under the right conditions it will do the latter. If it is a carrier, it 
is incapable of causing injury but under the right conditions it will infect other 
programs. 



361 

Definition 7 FOT all Glide1 numberings of the partial recursive functions {4;}, 
for  all viruses v wi th  respect t o  {&}: 

v i s  benign iff both: 

( V j  E N ) [ v ( j )  i s  not pathogenic with respect to  v and j] 
( V j  E N)[v(j) is  not contagious with respect to  o and j ]  

v is Epeian iff both: 

(3 j  E N ) [ v ( j )  is  pathogenic with respect to v and j ]  
( V j  E N ) [ v ( j )  is  not contagious with respect to  v and j ]  

v is disseminating i f l  both: 

( V j  E N ) [ v ( j )  is  not pathogenic with respect to  z1 and j ]  
(3 j  E N ) [ v ( j )  is  contagious with respect to v and j ]  

v is  malicious i f l  both: 

(3j E N)[v(j) is pathogenic with respect to v and j ]  
( 3 j  E N)[v(j) is contagious with respect to  v and j ]  

The next theorem records some simple facts about types of viruses. 

Theorem 1 For all Go'del numberings of the partial recursive functions (4;) 
for all viruses v wi th  respect t o  {$;}: 

I. ( 3 j  E N)[v(j) i s  benignant with Tespect to  v and J] 

2. v is  benign iff 

W E N )  
[v( j )  is  benignant with respect to v and j ]  

2 

Now rhift your  theme,  and ring that wooden horse 
Epeior built, inrpired by Athena - 
the ambuscade Odysseus  filled wi th  fighters 
and rent to take  the inner town of troy 

The Odyssey of Homer, 8.492-495. 
translation by Robert Fitzgerald 
Doubleday & Co., NY, 1961 



362 

3. i f  v i s  Epe ian  t h e n  

( V j  E N )  
[[~(j) is benignant with respect to v and j] or 
[v(j) i s  a Trojan horse with respect t o  v and j ] ]  

4.  i f  v i s  disseminat ing t h e n  

(4 E N )  
[ [ ~ ( j )  i s  benignant wi th  respect to  v and j ]  OT 

[v( j )  i s  a carrier with respect t o  II and j ] ]  

Proof 

Part  1 follows immediately from the recursion theorem. 

All other parts follow immediately from the definitions. 

Thus, all programs infected by a benign virus are benignant with respect t o  
their uninfected predecessors. They function just as if they had never been 
infected. Viruses in this class appear to be the least threatening. This class 
includes many ‘degenerate’ viruses such as the identity function and ‘padding’ 
functions. 

Programs infected by a n  Epeian virus can only be benignant or Trojan horses 
with respect t o  their uninfected predecessors. Further the latter option must 
sometimes occur. Epeian viruses will not be able to spread themselves; however, 
an infected program may imitate the ‘intended’ task of its uninfected predecessor 
until some ‘trigger’ causes it to do damage. Among the Epeian viruses are the 
‘degenerate’ class of constant functions, which never imitate-or-infect bu t  only 
injure. 

Programs infected by a disseminating viruses can only be benignant or car- 
riers with respect t o  their uninfected predecessors. Further the latter option 
must sometimes occur. Thus programs infected with such viruses are never 
pathogenic. However, it is worth noting that disseminating viruses may  mod- 
Xy the size of programs or their complexity characteristics, and by this means 
become detectable or cause harm (or benefit as in the case of the compression 
virus). In fact, size and complexity may be important properties when con- 
sidering viruses. An extension of the current theory to account for size and 
complexity seems appropriate (see $further research). 



363 

Malicious viruses can both spread and produce injuries. They appear to be the 
most threatening kind of virus. The ‘case study virus’ in $basic definitions is 
malicious. 

Remark 2 It m a y  be appropriate t o  view contagiousness as a necessary prop- 
erty of computer viruses. With this  perspective, it would be reasonable to  define 
the set of viruses as the union  of the set of disseminating viruses and the  set 
malicious viruses, and to exclude benign and Epeian viruses altogether. 

4 Detecting The Set Of Viruses 

The question of detecting viruses is addressed in the next theorem: 

Theorem 2 For all Go’del numberings of the partial recursive functions {4 i } :  

V = {il& is  a virus} is I I z  - complete 

P T O O f  

Let T = {ild; is a total}. It is well known ($13 and $14 [Ro]) that T is IIa - 
complete. 

To establish that T 51 V, let j E V (for example let j be an index for the identity 
function) and consider the function g : N 4 N such that for all i, y E N :  

Then g is a partial recursive function. Let k be an index for g,  and let f : N 4 

N ,  be such that: 

where s is as in the s - m - n theorem [Ro]. 

Then f is a total recursive function and: 



364 

Thus T Srn V. It follows, as in $7.2 [Ro], that T 51 V as desired. 

To establish that V E IIa, consider the following formula for V which arises 
directly from the definition of virus: 

Where H is a ‘step counting’ predicate for {q$} such that: 

(Vi ,  jl k) 
ifb,(j)  = k then (3 t ) [R(Z , j , k , i ) ]  
if # i ( j )  # k then ( V t ) [ i R ( i , j , k , t ) ]  

And where L is a predicate for ( 4 , )  such that: 



365 

(Yi, < el  q >, < e', q' >,t)  
if < e, q >$< e', q' > then (3 t ) [L( i ,  < e ,  Q >, < e', Q' >,t)] 
if < e , q  $< d , q '  > then ( V t ) [ 4 ( i l  < e , q  >, < e',q' >,t)] 

Since for all acceptable G6del numberings of the partial recursive functions (4 , )  
it is easily seen tha t  there exist recursive predicates H and L as above, it follows 
that V E II2. 

Thus detecting viruses is quite intractable, and it seems unlikely that protection 
systems predicated on virus detection will be successful. 

5 Isolation As A Protection Strategy 

As noted in [Col] isolating a computing environment from its surroundings is a 
powerful method of protecting it from viruses. For example, if no new programs 
can be introduced, no old programs can be updated, and no communication can 
occur, then it seems viruses are  no threat. 

Unfortunatly, such isolation is unrealistic in many computing environments. 
The next theorems explore the possibility of protecting computing environments 
with less severe forms of isolation. 

Definition 8 For all Go'del numberings of the partial recursive functions {di}, 
for all viruses v with respect to  {&}, let: 

The infected set of v 

I, = {i E NI(3j  E N ) [ i  = v ( j ) l )  

Definition 9 For all Godel numberings of the partial recursive functions {q$}, 
for all viruses v with respect to  {4i}, v is  absolutely isolable if I, is decidable. 

Clearly if a virus is absolutely isolable, then (at least in theory) it can be neu- 
tralized. Whenever a program becomes infected, it is detected and removed. 
The following is a simple fact about absolutely isolable viruses: 



366 

Theorem 3 FOT all Go'del numberings of the partial recursive functions {&}, 
for all viruses v with respect to {&} i f  for  all i E N ,  v( i )  2 i then v is  absolutely 
isolable. 

Proof trivial. 

Thus the case study virus, as implemented using the scheme in $basic defini- 
tions would be absolutely isolable. In fact, what little experience with viruses 
there is to date seems t o  suggest that in practice people who produce viruses 
begin by producing ones with the increasing property necessary for theorem 3 
to apply. Unfortunately, not all viruses have this property. For example, with 
any reasonable compression scheme, the compression virus of $ basic definitions 
would not have this property. Nonetheless, the compression virus is absolutely 
isolable. Given a program with the proper syntax, it is in the infected set if and 
only if decompressing the compressed part results in a legitimate program. 

Is every virus absolutely isolable? 

Regretably, the next theorem shows that the answer is no. 

Theorem 4 For all Go'del nurnberings of the partial recursive functions {g;}, 
there exists a total recursive function v such that: 

1. v is a malicious virus with respect t o  (4;) 

2. I,, is  &-complete. 

PTOOf 

Let f be a total recursive function such that: 

Let ji : N -, N be  a 1 - 1 total recursive function such that for all i ,  z E N :  



367 

Such a function, known as a padding function, exists by Proposition 3.4.5 [MY]. 

Let j ,  : N -+ N be such that: 

where y is the least natural  number such that,  for all i', z' E N with < i', X' ><< 
i, z > l  j 2 ( i f ,  3') < j l ( i ,  3). 

Then j 2  is a monotonically increasing total recursive function and by (l), it 
follows that: 

Let j' : N -+ N be  such tha t  for all i E N :  

j'(i) = { ; + I  i f i = j 2 ( 1 , y )  
otherwise 

Then since j ,  is monotonically increasing, it follows that j' is a total recursive 
function. 

Consider the function bl : N ---f N such that for all d , p  E S and i, k E N :  

if d is even 
if d is odd & +;(d ip )  =< e, [q] > and &(Q) 1 
if d is odd & $ i ( d , p )  =< e l  [q] > and 4 k ( q )  T 

< el  [4k:(q)] > 

di (di P) otherwise 
d b l ( i , k ) ( d i p )  = 

where for all q E N ,  [q]  denotes the one element sequence in S consisting only 
of q. 

Then by standard arguments, b1 is a total recursive function and: 

Let bz : N + N be  such tha t  for all i, k E N: 

Then ba is a total  recursive function and it follows from (2) and (3) that:  



368 

Applying the s-m-n theorem there exists a total recursive function g such that  
for all i, k E N :  

By the recursion theorem, there exists an h E N such that for all i E N :  

Let v = 4 h .  Then v is a total recursive function since bz is. 

Let d , p  E S, then using tha t  fact that  v = $h is a total recursive function and 
applying (4) gives: 

1 of the theorem now follows directly from the definition of malicious virus. 

Since, for all total recursive functions m, Rg(m) is recursively enumerable, i t  
follows that I,, = R g ( v )  E El. 

Let c : N -+ N be such that  for all z E N ,  C(Z) = j2(bl( l ,h) ,z) .  Since j 2  is 
1 - 1 so is c. Then z E K implies the existence of a y E N such that f (y)  = z. 
Let i = j2 ( l ly ) ,  then: 

On the other hand, assume x 
such that: 

K and c ( x )  E I v .  Then there exists a n  2 E N 



369 

Since j 2  is 1 - 1, it follows that  z = f (y)  E K .  je, Hence, K 
the theorem holds. 

I, and 2 of 

Thus, for the viruses described in the previous theorem, protection cannot be 
based upon deciding whether a particular program is infected or not. Paradox- 
ically, despite this, it is often possible to defend against such viruses. How such 
a defense could be mounted will be described below; however, a few definitions 
are in order first. 

Definition 10 FOT all Go’del numberings of the partial recursive functions {&), 
for  all viruses v with respect t o  {q$}, let: 

The germ set of v 

Thus the germs of a virus are functionally the same as infected programs, but 
are syntactically different. They can infect programs, but cannot result from 
infection. They may start  ‘epidemics’, but are never propagated with them. 

Definition 11 FOT all Go’del numberings of the partial recursive functions {4 i } ,  

for  all virzlses v with respect t o  {4,} ,  v is isolable within its germ set ifl there 
exists an  S C N such that: 

2. S is  decidable. 

Notice that if a virus is isolable within its germ set by a decidable set S, then not 
allowing programs in the set S to be written to storage or to be communicated 
will stop the virus from infecting. Further, the isolation of some uninfected 
germs by this process appears to be an added benefit. 



370 

Returning now to the viruses described in the previous theorem: assume that 
the function bl above had the property that for all i , k ,  b l ( i , k )  >< i , k  >. 
The proof of the previous theorem could easily have been modified to assure 
this. Further, in Godel numberings derived in the usually fashion from natural 
programming languages, a bl constructed in a straightforward manner would 
have this property. Consider the set 

By the monotonically increasing property of j z  and the property of bl which is 
being assumed, S is decidable. On the other hand i f a  E I, then there exists i 
such that 

And it follows that  a E S. On the other hand if a E S then there exist a n  y,z 
such that 

By (2) and (4): 

And hence a E G, as desired. 

Thus viruses like the ones in theorem 4 demonstrate that decidability of I, is 
sufficient but not necessary for neutralization. Apparently, more work needs 
to be done before a clear idea of the value of isolation will emerge. Are all 
viruses isolable within their germ set? The answer is no (proof omitted). Are 
all disseminating viruses isolable within their germ set? The answer is not 
known. Are there notions of isolation which provide significant protection at  a 
reasonable cost? 

6 Further Research 

The study of computer viruses is embryonic. Since so little is known, virtually 
any idea seems worth exploring. 

Listed below are a few avenues for further investigation. 



371 

1. Complexity theoretic and program size theoretic aspects of computer viruses. 

Introduce complexity theory and program size theory into the study of 
computer viruses. As noted earlier, even disseminating viruses may affect 
the complexity characteristics and size of infected programs and as a result 
become detectable or harmful. 

Complexity theory and program size considerations can be introduced at 
a abstract level (see for example [MY]) or a concrete level. 

For example, viruses in the ‘real world’ would probably have the property 
that the running time of an  infected program, at least while imitating or 
infecting, would be at most polynomial (linear) in the running time of its 
uninfected precursor. Does this class of ‘polynomid (linear) viruses’ pose a 
less serious threat? Do NP-completeness considerations, or cryptographic 
considerations come into play? 

2. Protection Mechanisms 

In this paper one form of protection mechanism, isolation, was briefly 
considered. In  addition t o  considering isoIation in greater depth, numerous 
other possibilities exist. For example: 

Quarinteening 
Is there value in taking a new program and running it in a safe envi- 
ronment for a while before introducing it into an environment were 
it could spread or do harm? For example, putting the new program 
on an  isolated machine with dummy infectable programs and with a 
variety of settings of the system clock might evoke behavior indica- 
tive of infection. In particular would this be helpful with the class of 
polynomial viruses or linear viruses? 

Under what circumstances can an infected program be disinfected? 
Certainly when a virus is absolutely isolable there exists a procedure 
which when given an  infected program will return a program which 
‘infects to’ the original one. How general is this phenomena? 

Can some programs be given a ‘clean bill of health’? For example, 
if it is know that a certain virus is about, would it be possible for L 

vendor to ‘prove’ that his program was not in the germ set? Would 
it be possible t o  prove that the software was not in the germ set of a 
large class of viruses? 

Disinfecting 

Certificates 



372 

Operating Sys t em Modification 
Could modifications to the operating system provide some protection. 
For example, assume that the (secure) operating system required that 
the user ‘initiate’ a3l new programs by designating the files which the 
program is given the privilege to read and write. Then, for example, 
a simple program (e.g. a game) could be given only the privilege to 
read and write files it creates. If the program was uninfected it might 
perform satisfactorily under this constraint, If however the program 
was infected, this constraint might severely limit the damage due to 
the virus. (This example arose during joint work with K. Kompella). 

3. Other Models Of Computer Viruses. 

The notion of computer viruses presented here is not the only one possi- 
ble. It was selected because it seemed to be art adequate place to  begin 
an investigation. More general, and more restrictive notions are possi- 
ble. Indeed it seems possible that no definition will conform to everyone’s 
intuitions about ‘computer viruses’, 

More ‘machine dependent’ approaches could be considered. Approaches 
which take into account the communications channels over which viruses 
pass seem particularly important. 

One interesting generalization of the current notion is inspired by [Col], 
where viruses are assumed to be capable of evolving. The ‘Mutating 
Viruses’ (p-viruses) partially defined next are an attempt to capture this 
property. 

I ’  I Definition 12 For a l l z ,  z’ E N ,  for  aI lp ,p’ ,  q = q1,q2, ..., qz, q’ = q1, q 2 ,  .-., 
S ,  for all sets H of partial functions from N to N ,  < p ,  q >-< p’, q’ > iff: 

’ 

H 

(a)  t = z’ and 

(b )  p = p’ and 
(c) there ezists a n  i, with 1 5 i 5 z such that q; # qi and 

( d )  for i = 1, 2,  ..., z ,  either 

2. Qi = q: O r  

ii. there ezists an  h E H such that h(qi) 1 and h(q;) = q;. 



373 

Definition 14 For all sets of partial functions H f rom N t o  N ,  f o r  all 

partial f , g  : N -+ N ,  for  all s , t  E S ,  f ( s , t )  2 g( s , t )  i f  f(slt) = g ( s , t )  
H 

07 f ( s A  d S l  t).  

Definition 15  FOT all GGdel numberings of the partial recursive functions 
{4;}, a set M of total recursive functions is a mutating virus, p-virus, with 
respect t o  {&} 28 both: 

(a)  for  all m E M ,  for  all d , p  E S either: 

i. Injure: 
(V i i  j E N)[#m(i)(dip) = $ m ( j ) ( d i ~ ) l  

ii. Infect or Imitate: 

M 
(YJ’ E N ) [ $ j ( d i ~ )  2 $m(j)(dip)l 

Some computer viruses which have recently caused problems (e.g. the 
so called ‘Scores virus’ [Up] which attacked Macintosh computers) are p- 
viruses and not just  viruses. Hence this generalization of the notion of 
virus may be of more than theoretical interest. 

This is only a partial definition because some notion of ‘connectivity’ is 
needed. That is, the union of two p-viruses, neither of which ‘evolves’ 
into the other should not be a p-virus. Many definitions of ‘connectivity’ 
can be defined, but further study will be required to choose those which 
are most appropriate. Once an appropriate choice is made, an important 
question will be whether the set of infected indices of a p-virus can be 
harder t o  detect than those of a virus. 

4. Computer Organisms. 

This issue has evolved during joint work with K. Kompells. 



374 

There appear t o  be programs which can reproduce or reproduce and injure 
but which are not viruses (e.g. programs which just make copies of them- 
selves but never ‘infect’). These ‘computer organisms’ may be a serious 
security problem. 

It may be appropriate to  study ‘computer organisms’ and treat ‘computer 
viruses’ as special case. 

7 Acknowledgments 

I would like to  thank Dean Jacobs, and Gary Miller for contributing their ideas 
to this paper. 

I would also like t o  thank two of my students: Fred Cohen and Kireeti Kompella. 
Cohen brought the threat of computer viruses to my (and everyone’s) attention. 
Kompella has spent many hours reviewing this work and has made numerous 
suggestions which have improved it. 

References 

[Col] Cohen F. Computer Viruses. Ph.D. dissertation, University of Southern 
California, Jan. 1986. 

Cohen F. Computer Viruses - Theory and Experiments. Computers and 
Security 6 (1987) 22-35. North-Holland. 

Machtey M, Young P. An introduction to the general theory of algo- 
rithms. North-Holland, NY 1978. 

Rogers, H Jr.  Theory of Recursive Functions and Effective Computabil- 
ity. McGraw-Hill Book Co., NY 1967. 

Upchurch, H. The  Scores Virus, unpublished manuscript , 1988. 

[ C O ~ ]  

[MY] 

[Ro] 

[Up] 


