
Data Security:

The art of providing secure communication over insecure
channels.

Not a problem that suddenly arose when computers were
invented - it’s as old as mankind.

Data Security falls naturally into two cathegories:

* Confidentiality

* Authenticity

CONFIDENTIALITY
A sends a message M to B.

No third party should be able to compute M,
ideally not even any partial information on M.

Applications

Databases
Industrial confidential information
Email

Confidentiality is the classical military concern in
data security. Almost the only concern up until
the 1970-ties.

INTEGRITY

A sends a message M to B.

No third party can change M without this being noticed by B.

- but note that nothing prevents an adversary from just
copying a message and repeat it again later. Thus in most
cases we want more:

(STRONG) AUTHENTICITY
A sends a message M to B

B gets, in addition to M, also some information PROVING
that A sent exactly the message that was received.

If this proof can be tested, not only by B, but by anyone else,
we speak of strong authenticity or non-repudiation or digital
Signatures.

Applications:

Electronic Payments
Contracts
Authenticity of info on the net.

How to Implement all this?

We want real solutions, providing
Confidentiality and Authenticity.

We start from

Primitives

based these, we build

Crypto Systems and
Authentication systems

based on which we build

Protocols for secure communication

Primitives

-basic objects that can be used to build
more complex systems.

Ex: One-way functions:

f: A B

is a one-way function if

from x, f(x) is easy to compute, but

given any y in the image of f, it is hard to
come up with any x, such that y = f(x).

A real definition requires that we define
what “easy” and “hard” should mean.

CRYPTOSYSTEM

E

D

M CKeyspace

m
E (m) = cKe

cD (c) = mKd

Ke

Kd

The system is given by the algorithms E and D for en- and
decryption, and the algorithm G for generating keys taken
from the keyspace

Gievn a key, E and D induce a mapping from M to C, resp.
from C to M.
For any pair (Ke,Kd) output by G, it must hold that
m = D(Kd, E(Ke,m))

Conventionelt (Classical System): Ke = Kd.

Public Key System: infeasible to compute Kd from Ke.
==> Ke can be public simultaneously with Kd being kept
secret. Hence the name.

G

Messages Ciphertexts

Eks. 1: Cæsar substitution

Key Space: 0,1,2,4...,26
Let us put Ke=Kd=4.

A B C D E F ...

E F G H I J ...
E4

D4

Eks. 2 One Time Pad

Messages and keys are bit strings. The key is chosen at random.

M
K

C= MOK
K

M= COK

+

+

0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 ...

0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 ...

1 0 1 1 0 1 0 0 0 1 0 1 1 0 1 ...

1 0 1 1 0 1 0 0 0 1 0 1 1 0 1 ...
1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 ...

Kerkhoff's Principle:
The algorithms G, E and D should be assumed to be known by
the adversary. So security should be based solely on the fact that
one of more keys are unknown to the attacker.

Model for Communikation (in case
of Confidentiality)

Sender Encryption

Receiver Decryption

Com
m

unication channel

Possibilities for
eavesdropping or
tampering

What do we mean by Security of a system?

Classification of Security

Security

Unconditional Security

Break possible
in principle

Conditional
Security

Insecure
systems

Unconditional Security:
System is secure, even if adversary has unbounded computing
power.
Security measured via Information Theory.

Conditional Security:
System can be broken in principle, but this requires more
computing power than a realistic adversary would have.
Security measured via Complexity Theory.

MODEL OF ATTACKS
- for conditional security

Adversary Alg. Oracle

Input Data

Output

Input Data:
- whatever the adversary necessarily knows from the
beginning, for instance the public key in case of a public
key system, the distribution of plaintexts, etc.

Oracle
- models the information the adversary can obtain during an
attack. Depending on the type of information the oracle
provides, we get different types of attacks.

Output
- is whatever the adversary is trying to compute, he wins the
game if he succeeds. The output could be the secret key, but
could be something much less ambitous, say just partial
information on some plaintext.

We think of the adversary as playing a game:

Types of Attacks (for Crypto Systems)

Ciphertext Only
Some distribution of plaintexts is given. The oracle provides
encryptions of plaintexts under a fixed key.

Known Plaintext
Some distribution of plaintexts is given. The oracle provides on
request a plaintext and its encryption under a fixed key.

Chosen Plaintext
The adversary can choose a plaintext, give it to the orcale, and the
oracle will return its encryption under a fixed key.

Chosen Ciphertext
The adversary can choose a ciphertext, give it to the oracle, and the
oracle will return the corresponding plaintext under a fixed key.

How to Build a Definition of Security

- specify an oracle (a type of attack)
- define what the adversary needs to do to win the
game - a condition on his output.
- the system is secure under the definition, if any
efficient adversary wins the game with only
negligible probability.

A Standard Definition (for conventional
encryption).

- no input data for adversary
- chosen plaintext attack, in the following sense:
 In case 0, when asked for encryption of message m, the oracle
 returns encryption of m under a fixed key
 that is randomly chosen initially; or
 in case 1, the oracle returns an encryption of a randomly chosen
 message, that is totally independent of m
- to win the game, the adversary must guess, whether he is in
 case 1 or case 0, so his output is just 1 bit.

The idea behind this:
In case 1, the adversary gets completely useless data from the
oracle. If he cannot even tell this apart from correct encryptions,
he can do no damage in the real world (case 0) either.

P0 = probability that adversary A guesses “0” in case 0
P1 = probability that adversary A guesses “0” in case 1

Advantage of A is Adv(A) = |P0 - P1|

The cryptosystem is (t,q,m,e)-secure if any adversary A that runs
in time t, makes <q quiries totalling <m bits, has an advantage
Adv(A) < e.

The system is given by a description of the algorithms A and C
for generation and verification of check values, and the
algorithm G for generating keys.

For any given key, A induces a mapping from M to C, and V a
mapping from C,M to {accept, reject }.
For any (Ka, Kv) output by G, it must be the case that
Kv(m, Ka(m)) = accept

Conventionel (Classical System): Ka = Kv.
Here, Ka(m) is called a Message Authentication Code (MAC).

Public Key System: infeasible to compute Ka from Kv.
==> Kv can be public, simultaneously with Ka being secret.
Here, Ka(m) is called a digital signature.

Authentication System

A

V

M CKeyspace

m
 A (m) = cKa

c

V (m,c) = accept el. rejectKv

Ka

Kvm
Meddelelser Checkværdier

G

Conventional Authentication Systems

- can only be used for weak authenticity: the same key is used
by sender and receiver. So the receiver cannot convince
anyone that he did not himself generate a pair of matching
message and checkvalue.

Public Key Systems

- can be used for digital signatures (strong authenticity): only
the sender knows Ka, so only the sender can generate a valid
signature, which however anyone can check.

Types of Attacks on Authentication Systems
Known message attack:
- some distribution of messages is given. On request, the oracle
outputs a pair (m,c) where m is a message and c is a check calue
for m generated from some fixed key.

Chosen message attack:
The adversary can choose a message m any way he likes, give it
to the oracle which will return a checkvalue c for m generated
from some fixed key.

Goals for Attacks

Total Break
- Find the secret key Ka

Existential Forgery
- Find any message m for which you have not seen a checkvalue
before, and compute a valid checkvalue c for m.

Standard definition of Secure Signature
Schemes

For any adversary running in time polynomial in the length of the
keys, the probability that he succeds in an existential forgery
under a chosen message attack is negligible.

- the strongest possible definition.

How to get Authenticity from Integrity

Let us assume we have a secure authentication system

Problem:
The adversary can copy a correct pair (m,c) and send it again later
(the replay problem).

Solution 1:
Message is expanded with a time stamp t, and check values are
computed over both m og t, so ((m,t),c) is sent.
The receiver must verify c, and that t is not too far from his own
system time.
Demands a certain synchronization between sender and receiver.

Solution 2:
Message is expanded with a sequence number n, and check values
are computed over both m and n. So ((m,n),c) is sent.
The receiver must verify c, and that n equals his previous value of
the counter +1 (and must then update the counter).

Demands storing a counter at sender and receiver and coordination
of values if messages get lost..

Solution 3:
The receiver chooses a random number r, which is sent to the
sender. Message is expanded with r, and check values are
computed over both m and r. So ((m,r),c) is sent.
The receiver must verify c and compare r to the value he chose
originally.

Demands an extra round of communication.

