
Definitions and results for Cryptosystems

Ivan Damg̊ard

October 12, 2004

1 Introduction

This note contains a definition of cryptosystems that covers both conven-
tional and public-key systems. We also define what security of such systems
mean, and we cite some results on modes of use for conventional cryptosys-
tems, and on existence of public-key systems with various types of security.

2 Cryptosystems

This section assumes you are familiar with the example cryptosystems from
chapter 1 in Stinson. A cryptosystem is a triple (G, E, D):

G, algorithm for generating keys: this algorithm is probabilistic and al-
ways outputs a pair of keys (ke, kd), ke to be used for encryption and kd

to be used for decryption. We can think of the keys simply as strings
of bits.

We then distinguish two types of cryptosystems:

In a conventional or symmetric system, we always have ke = kd. Fur-
thermore, there are two fixed finite sets given: P , the set of plaintexts
and C, the set of ciphertexts. In most conventional systems, there is
also a fixed set of keys K given, and G takes no inputs, but simply
outputs a key chosen uniformly from K. Furthermore, it is often the
case that P = C. For instance in Shift Cipher, or Caesar substitution
on the English alphabet, we always have P = C = Z26. Moreover, a
key is generated by choosing a random element from Z26.

1

In a public-key or asymmetric system, ke is different from kd, in fact
we want that it is a hard computational problem to find kd, even if
ke is known. Furthermore, G takes a security parameter k as input,
and outputs the key pair (ke, kd) as well as the sets of plaintexts and
ciphertexts P , C. The length of the keys produced as well as the sizes
of the sets P , C now depend on k, and we require that the key length be
polynomial in k. The idea is that we can control the security through
the choice of k: the larger we choose k, the harder it will be to break
the encryption.

E, algorithm for encryption: this algorithm takes as input ke and x ∈ P
and produces as output Eke(x) ∈ C. Note that E may be probabilistic,
that is, even though we fix x and ke, many different ciphertexts may
be produced as output from E, as a result of random choices made
during the encryption process. In other words, the ciphertext will have
a probability distribution that is determined from x and ke, typically
uniform in some subset of the ciphertexts. For instance, consider a
cipher, where P is the ordinary alphabet Z26, whereas C is Z100, i.e.,
a much larger set than P . The key then consists of information that
splits C into 26 subsets A0, A2, ..A25, and to encrypt letter number i,
we choose a random element in Ai

1.

D, algorithm for decryption: this algorithm takes as input kd, y ∈ C and
produces as output Dkd

(y) ∈ P. It is allowed to be probabilistic, but
is in most cases deterministic.

For a cryptosystem, we always require that for any pair of keys (ke, kd)
output by G, correct decryption is possible, i.e. it holds that for any x ∈ P ,
x = Dkd

(Eke(x)).
All this of course says nothing about security. According to this definition,

a system that ”encrypts” by sending x to itself is a cryptosystem. Indeed it
is, but of course not a secure one!

1This is called homophonic substitution, and the original idea historically was to choose
larger subsets for encryptions of more common letters, in order to make the frequency
distribution of ciphertext letters more flat

2

3 Attacks on cryptosystems

An attacker against a system in real life may follow a number of different
strategies. The easiest option probably is to eavesdrop encrypted communi-
cation. But more advanced attackers may be able to guess (or get hold of)
part of the plaintext that is being sent and compare this to the ciphertext
that is seen. An even more harmful strategy is if the attacker can fool the
sender into sending a particular message (chosen by the attacker), for which
the attacker can then later see the ciphertext. Conversely, the attacker may
be able to fool the receiver into decrypting a particular ciphertext for him.

To model these forms of attacks in a formal definition, we do the following:
we think of the adversary as a probabilistic algorithm A. As input, A gets
all the data that we know the adversary will always be able to get, such as
perhaps the distribution of plaintexts being sent (say, he knows which natural
language plaintexts are in), or in case of a public-key system, he knows the
public key. Then, to model the data the adversary obtains during the attack,
we give A access to an oracle O. At any time, A may call the oracle, and
obtain an answer. Depending on which type of question we allow the oracle
to answer, we can model the different strategies described before:

Ciphertext Only Attack: Some plaintext distribution D is given as input
to A, and each time A calls the oracle, it will return Eke(x), where x
is chosen according to D, and ke is produced by G (but fixed for the
duration of the attack).

Known Plaintext Attack: Some plaintext distribution D is given as input
to A, and each time A calls the oracle, it will return x, Eke(x), where
x is chosen according to D, and ke is produced by G (but fixed for the
duration of the attack).

Chosen Plaintext Attack: A can call the oracle giving it any x ∈ P as
input. The oracle returns Eke(x), where ke is produced by G (but fixed
for the duration of the attack).

Chosen Ciphertext Attack: A can call the oracle giving it any y ∈ C as
input. The oracle returns Dkd

(y), where kd is produced by G (but fixed
for the duration of the attack).

When A stops, it outputs some result. In the worst case (for us), this
result is the secret decryption key, but we can (and indeed we must) also

3

consider adversaries with much less ambitious goals. More on this in the
following sections. To get an initial understanding of the difference between
types of attacks, consider the Shift Cipher, where the same key is being used
to encrypt large pieces of text. Breaking this cipher under a ciphertext only
attack is not hard, but requires a little work: one has to do a frequency
analysis to determine likely candidates for the encryption of the most com-
mon letter, these candidates each suggest a possibility for the key, and one
can then try to decrypt a bit of text using each candidate to find the right
possibility. The same cipher is even easier to break under a known plaintext
attack: just knowing a single plaintext letter and corresponding ciphertext
letter immediately reveals the key. A chosen plaintext attack is in general
stronger, but in this case it is not more useful to the attacker than a known
plaintext attack. Try looking in the same way at attacks on the general sub-
stitution cipher. Is it also the case here that a chosen plaintext attack is not
worse than a known plaintext attack?

4 Security of Conventional Encryption

This section assumes that you are familiar with either the DES or the AES
cryptosystem.

4.1 Deterministic Systems, or Pseudorandom Func-
tions

For simplicity, we will in this section only look at systems where C=P . As
an example of such a deterministic system, you may think of DES: we have
P = C = {0, 1}64, keys are chosen uniformly in {0, 1}56, and as soon as
we have specified the key and the plaintext, the ciphertext is uniquely de-
termined. Put another way, each key specifies a function from P to C (in
fact a permutation), and hence systems of this kind are also called Function
Families.

Any deterministic system has limits on the kind of security it can provide:
if I send the same message today and tomorrow, and I’m using the same key,
then I will send the same ciphertext twice, and an adversary listening in can
conclude that indeed I sent the same message twice. Even such a limited
piece of information can be useful to an enemy, and ideally we would like
to hide even such relations between messages sent at different times. So

4

deterministic systems/funtion families cannot be the final answer to good
encryption. Nevertheless, it is useful to talk about their quality because they
can be used as building blocks in systems with better security, as we shall
see.

So what characterizes a strong deterministic cryptosystem? One natural
property that comes to mind is that even if the adversary knows the plain-
text for a given ciphertext, the ciphertext appears to be randomly chosen
nonsense, with no obvious relation to the plaintext - as long as the key is un-
known. To be more concrete, think of DES as an example, and let’s assume
we give the adversary a chosen message attack. This means that for some
fixed (but random) key k, the adversary gets to choose x1, x2, .. and gets to
see y1 = DESk(x1), y2 = DESk(x2), ... Now, according to the intuition we
just outlined, we hope that this appears to the adversary as if y1, y2, .. were
completely randomly chosen as the images of x1, x2, ...

Of course, choosing a random DES key, and using it to map x’s to y’s is
not the same as choosing a random function. You can get at most 256 different
mappings this way, whereas the total number of functions from {0, 1}64 to
itself is astronomically larger: 264·264

. But it might still be the case that to an
attacker with limited resources, DES encryption with a random key appears
to behave like a random function, we say that the set of DES encryption
functions is a pseudorandom function family

To define this concept precisely, we consider an adversary A which is
placed in one of the following two scenarios, and is asked to guess which one
he is in (so he outputs his guess as one bit):

World 0 (the ideal world): A gets an oracle which initially chooses a ran-
dom mapping R from P to C (uniformly among all such mappings), and
then on input a plaintext x answers with R(x).

World 1 (the real world): The adversary gets a normal chosen message
attack: an oracle which on input a plaintext x answers with Eke(x),
where ke is produced by G, but fixed in the entire attack.

If we want to formalize the two scenarios completely, we should think of A as
being a probabilistic Turing machine. But this is not necessary to understand
the concepts. It is sufficient to think of A as being a computer running some
program that the adversary has designed. The only two special things about
it is that it can ask questions to the oracle and it can make random choices.

5

Let p(A, i) be the probability that A outputs 1 in world i. These prob-
abilities are taken over A’s random choices, and also over the choices made
by the oracle in the two cases. The advantage of A is defined to be

AdvA = |p(A, 0)− p(A, 1)|

Definition 1 We say that the system (G, E, D) forms a (t, q, ε)-secure pseu-
dorandom function family, if any adversary that runs in time t, and makes
at most q calls to the oracle, has advantage at most ε.

The running time of A is of course well defined if he is a Turing machine.
Equivalently (up to constant factors) and closer to reality, one may think of
the time as being the number of basic CPU instructions you need in order to
execute the adversary’s program. Intuitively, you can think of the first two
parameters in the definition (t, q) as a measure of how powerful the adversary
is, and ε as a measure of how successful his attack is. So the if a cryptosystem
satisfies the definition, this basically says that as long as the adversary is not
too powerful, there is a limit to how successful he can be.

Taking DES as an example, for which values of t, q and ε could we hope
that DES satisfies this definition? First thing to notice is that DES with a
fixed key is not just a function on P , it is a permutation. So no matter how
many inputs and correpsonding outputs the adversary knows, he will never
see a case where two inputs form a collision, i.e. they are mapped to the same
output. By contrast, a random function will tend to have such collisions,
indeed, if the adversary asks for outputs resulting from about

√
264 = 232

distinct inputs, then there is significant probability that collisions will occur.
This follows by the well-known ”birthday paradox”. So we cannot hope for
security as we defined it unless the adversary asks well under 232 quiries. In
fact, if you ask q quiries, the probability of a collision in the ideal world will
be approximately q2 divided by the number of blocks. So it will certainly not
be more than 2−20 in case of DES and 220 quiries. Moreover, the adversary
can always first ask 1 or 2 quiries and then search through all possible keys
until one is found that matches the data he has. So we also cannot hope
for security if the adversary has time comparable to the number of possible
keys, 256. In fact, if he is able to test x keys, he will find the right one with
probability x/256, so the advantage cannot be larger than that for any attack
that has time enough to test x keys. Even if we are optimistic on behalf of
the adversary, he will certainly need at least one CPU instruction per round
of DES, so in time 240, he can test at most 240/16 = 232 keys.

6

Taking this into account, it seems that (240, 220, 2−20)-security is reason-
able to conjecture. Given the current lack of lower bounds in complexity
theory, this can be nothing but a conjecture. Nevertheless, some assumption
of this type is needed to have security at all. If we had looked instead at
AES, which has block- and keylength 128 bits, then much better parameters
can be expected, say (280, 250, 2−30), by the same arguments as above, and
allowing some security margin for attacks that may do better than simple
search for the key.

The general real/ideal world approach to a definition we have used may
not seem like the most natural one at first sight. Why don’t we just say that
it should be difficult to find the secret key? or that it should be difficult to
find any partial information about the plaintext once it has been encrypted?
Indeed many such sensible definitions could be proposed. In fact the list
of variants is almost infinite. The nice thing about the real-or-ideal-world
definition is that it is strong enough such that if a cryptosystem satisfies it,
then it also automatically satisfies any of the variants we just sketched. The
reason is that the ideal world is constructed such that any type of non-trivial
”break” is clearly impossible. And then if the adversary cannot even tell if
he is attacking the real or the ideal system, he certainly can’t succeed in the
real world either, for any reasonbale definition of what ”succeeding” means.

4.2 Probabilistic Systems

The approach to defining secure symmetric encryption in the probabilistic
case is similar to what we did before: we will compare it to an ”ideal situa-
tion”, where it is obvious that an attacker will get nowhere. If an attacker
A cannot tell whether he is attacking the real system (G, E, D) or the ideal
one, then we say the system is secure against A.

However, a probabilistic cryptosystem can acheive more security than
a deterministic one, in fact, we will require that the adversary cannot tell
the difference between a real encryption of a message x he chooses, and a
completely random ciphertext chosen with no relation to x.

Clearly, in a world where random encryptions are being sent in place of
encryptions of the actual messages, the adversary has no chance of figuring
out any interesting information at all. For instance, he cannot tell if we send
the same message twice. So if he cannot tell the real world from the ideal
one, then we have the best possible security.

To model this, we consider again adversary A which is placed in one of

7

the following two scenarios, and is asked to guess which one he is in (so he
outputs his guess as one bit):

World 0 (the ideal world): A gets an oracle which on input a plaintext
x answers with Eke(r), where r is randomly chosen in P each time the
oracle is called, and ke is produced by G, but fixed in the entire attack.

World 1 (the real world): A gets a normal chosen message attack: an
oracle which on input a plaintext x answers with Eke(x), where ke is
produced by G, but fixed in the entire attack.

As before, we define p(A, i) to be the probability that A outputs 1 in
world i, and the advantage of A to be

AdvA = |p(A, 0)− p(A, 1)|

Definition 2 We say that the system (G, E,D) is (t, q, µ, ε)-secure, if any
adversary that runs in time t, and makes at most q calls to the oracle, with
plaintexts consisting of a total of µ bits, has advantage at most ε.

Probabilities and running times can be fully formalized in the same as we
explained in the previous section for pseudorandom functions.

The reason for the parameter µ, which we did not have in the deterministic
case, is that some of the systems we will look at in the following can handle
plaintexts of many different lengths. Thus, if we want to measure how much
information the adversary has obtained from the oracle, it is not enough to
count the number of calls, we must also look at how many bits the adversary
asked to have encrypted.

5 Good Symmetric Encryption from Deter-

ministic Schemes

Several standards give schemes by which systems like DES can be expanded
to systems which can first handle plaintexts of any length, and second can be
probabilistic, with the security advantages this can imply. With the machin-
ery developed above, it is possible to prove that several of these mechanisms
really work.

8

5.1 CBC Encryption

Let a deterministic cryptosystem (G′, E ′, D′) be given, where P , C are fixed,
and P = C = {0, 1}k for some k.

CBC encryption defines a way to make a new cryptosystem (G, E, D),
where first G′ = G. The plaintext set for the new system will be all strings
of length divisible by k. We make this restriction only for simplicity, a small
modification of the construction will allow handling strings of any length. To
do encryption we choose a random k-bit string y0, and we split the input x
into k-bit strings x1, ..., xt. Then we define for i > 0 that yi = Eke(yi−1⊕xi).
The output ciphertext is y0, y1, ..., yt. Decryption is straightforward.

It is now possible to show the following [3]:

Theorem 1 Suppose (G′, E ′, D′) is (t′, q′, ε′)-secure. Then CBC encryption
based on this system is (t, q, µ, ε)-secure for any q, and for

ε = ε′ +
2µ2

2kk2

provided that
t ≤ t′ − cµ, µ ≤ q′k

for some constant c ≥ 0.

Intuitively, what this results says is the following: as long as CBC en-
cryption using (G′, E ′, D′) is attacked by an adversary who is no more pow-
erful than what (G′, E ′, D′) can handle, the success will be no better than

ε = ε′ + 2µ2

2kk2 .
So what the result basically talks about is the difference between ε and

ε′. Let’s call a string of k bits a block. This is the amount of text the original
system can handle in one go. Then we see that the difference between ε and
ε′ is basically the square of the number of blocks we encrypt, divided by 2k.
In other words, if we always CBC encrypt much less than 2k/2 blocks before
we change the key, then the advantage with which CBC mode can be broken
is essentially the same as the advantage with which the original system can
be distinguished from a random function.

Note that although the results says that ε may be greater than ε′, this
does NOT mean that CBC mode is less secure than the block cipher itself.
We have to remember that the two types of security involved are completely
different. What the result really says is that if the original system is secure in

9

a weak (pseudorandom function) sense, then CBC mode based on this system
is secure in a much stronger sense, essentially with the same advantage, as
long as we do not encrypt too much data.

Let us give some intuition as to why this result should be true: Let Game
0 be the ideal world as defined above, and let Game 1 be the real world.
Then we introduce a new Game 0.5, which we think of as being somewhere
“in between” Game 0 and Game 1. In this game, the Oracle chooses a
random function R from k bits to k bits, and on input some message m
from the adversary, the oracle “encrypts” m using CBC mode, but where
the block cipher encryption function is replaced by R. We define p(A, 0.5)
as the probability that A outputs 1 when playing Game 0.5. Now since the
only difference between Games 0.5 and 1 is that R() is replaced by EK(), we
must have that |p(A, 1) − p(A, 0.5)| ≤ ε′. If this was not the case, A could
be used to distinguish between Ek() and a random function with advantage
greater than ε′, contradicting our assumption about the block cipher.

Then observe that Game 0 is completely equivalent to a game where
the Oracle on input an n-block message always returns a randomly chosen
sequence of n + 1 blocks. We can then argue that Game 0.5 with high
probability does exactly this (and so it also hard to tell Games 0.5 and 0
apart). Define the event BAD as follows: BAD occurs, if at any point during
Game 0.5, the function R receives an input that it has received before in this
game. Now, if BAD does not occur, since R is a random function, all outputs
generated by R will be random blocks, chosen independently of anything else
- which means that the output we generate is completely random, exactly
as in Game 0. Hence, A’s only chance of telling Games 0 and 0.5 apart is
if BAD occurs, i.e., p(A, 0) − p(A, 0.5)| ≤ Pr(BAD). This, together with
|p(A, 1)−p(A, 0.5)| ≤ ε′ from above implies p(A, 0)−p(A, 1)| ≤ ε′+Pr(BAD).

So how large is Pr(BAD)? This event occurs only if any of the random
blocks we feed into R happen to be the same. The well-known argument
for the birthday paradox says that the probability of this happening grows,
roughly speaking, as the square of the number of blocks we have, divided
by the total number of blocks, in other words, Pr(BAD) is some constant
times (µ

k
)2 1

2k . A more careful analysis leads to exactly the bound stated in
the theorem.

What happens if we do encrypt 2k/2 blocks? The result above does not
say that anything really bad happens: the bound on ε becomes useless, but
this does not mean that any attack exists. However, it turns out that CBC
encryption does leak information in this case. The reason is the following:

10

because we have a total of 2k possible blocks, in a set of 2k/2 random blocks
there will be two that are equal with significant probability. So it happens
with quite large probability that two ciphertext blocks yi, yj, where i, j > 0
are equal (they need not come from the same plaintext). Let xi, xj be the
corresponding plaintext blocks. Then it follows that

Eke(yi−1 ⊕ xi) = yi = yj = Eke(yj−1 ⊕ xj)

and consequently that yi−1 ⊕ yj−1 = xi ⊕ xj. So from the ciphertext we
can compute at least some non-trivial information about the plaintext. In a
sense, the above theorem says that if we assume the underlying block cipher
is secure, then the attack we just outlined is the best possible against CBC
encryption.

For DES, this means that one should not encrypt more than 232 blocks
of data under CBC with the same key. This is not too bad a restriction:
it corresponds to about 1000 Gbyte (!). Nevertheless, it is an important
observation that the blocksize of a cryptosystem influences the security of
the CBC construction in this way.

Let us look at a numeric example. Suppose we are willing to believe
that DES is a (240, 220, 2−20)-secure system. Then the parameters for DES
based CBC will be 240 − c226, µ = 226, ε = 2−20 + 2−24. Of course we do not
know how to rigorously prove that DES has the parameters we assumed -
but they are not unreasonable, given the known attacks on DES. If we were
to use two-key triple DES or AES instead as the basic system, much better
parameter values could be reasonably assumed, i.e. larger t, µ and smaller ε.

5.2 XOR Mode

This is a construction of the same form as CBC encryption, so we use the
same notation as before. The only difference is that the encryption function
is defined as follows:

We choose a random k-bit string y0, and we split the input x into k-bit
strings x1, ..., xt (we assume for simplicity that the length of x is always a
multiple of k). Then we define for i > 0 that yi = Eke(y0 + i) ⊕ xi. The
output ciphertext is y0, y1, ..., yt. Here y0 + i means that you write i in binary
and do the addition modulo 2k. Decryption should be straightforward and
is left to the reader.

Just as before there is a result linking the security of XOR encryption to
that of the original scheme [3]:

11

Theorem 2 Suppose (G′, E ′, D′) is (t′, q′, ε′)-secure. Then XOR encryption
based on this system is (t, q, µ, ε)-secure for any q, and where for some con-
stant c ≥ 0:

t ≤ t′ − 2cµ µ ≤ q′k ε = 2ε′ +
qµ

2kk

6 Security of Public Key Encryption

6.1 Deterministic Systems

Let us take the basic RSA system as an example, and check that it matches
the general definition of cryptosystems from the first section: the algorithm
G for generating keys is simply whatever algorithm we have for selecting a
modulus n, and public and private exponents e, d. In this case the algorithm
does take a so called security parameter k as input, which is used to determine
the bit length of the modulus produced.

The public encryption key is ke = (n, e), while the secret decryption key
is kd = (n, d) The set of plaintexts and the set of ciphertexts are the equal,
namely P = C = Zn. And finally, the encryption operation is Eke(x) =
xe mod n, while Dkd

(y) = yd mod n.
As we see, this system does deterministic encryption, whenever we fix ke

and x, the ciphertext y is uniquely determined. What we actually have here
is an infinite family of functions, namely the family consisting of all RSA
encryption functions, one for each possible public RSA key. The family is
infinite because there is - in principle - no limit on the size of public key we
can choose. In, fact any deterministic public-key system defines a family of
functions in this way.

What properties can we hope to get from such a family of encryption
functions? Well, at least the encryption mappings should be efficiently com-
putable, given the public key, whereas the decryption functions should be
hard to compute if you know only the public key, but easy if you know the
secret trapdoor: the decryption key. Such a family is also called a family of
trapdoor one-way functions, a concept first proposed by Diffie and Hellman
in their famous ”New directions in Cryptography” paper. Of course, since
we have an infinite family of functions, we should be careful about what we
mean by “easy” and “hard” in this context. Roughly speaking, we want that
if we choose long enough keys, then it is still reasonably efficient to compute
the encryption function, but it becomes infeasible to compute the decryption

12

function knowing only the public key.
Here is the standard complexity theory inspired way to formalize these

requirements.

Definition 3 We will say that the system (G, E, D) forms a family of trap-
door one-way functions if the following is satisfied:

• The algorithms (G, E, D) defining the system all run in time polynomial
in the security parameter k.

• Let any probabilistic polynomial time algorithm A be given. Consider
the following experiment: we run G on input k, let (ke, kd,P , C) be the
output. Then we select x at random in the set of plaintexts P and
finally we run A on input ke, Eke(x), i.e. we give A the public key and
the encryption of a random plaintext. Let p(A, k) be the probability that
A outputs x. Then we require that for any A, p(A, k) is negligible in
k.

A probability ε(k) that depends on k is negligible if it holds that for any
polynomial f , we have ε(k) ≤ 1/f(k) for all large enough k. In other
words, asymptotically in k, it vanishes to zero very quickly. This is a
complexity theoretic way to say that “for all practical purposes”, the
probability might as well have been zero.

For the case of RSA, in order to build any security on this system, we
have to at least assume that it satisfies the above definition. This is the
standard
RSA assumption: the basic RSA algorithm (including the standard method
for generating keys) defines a family of trapdoor one-way permutations.

Applying a one-way trapdoor function directly to encrypt a messages
gives only very limited security, and is not something one would really use
for encryption. One problem is the following: suppose our worst enemy
knows that tomorrow we will send one of two messages x0, x1. Then he can
just use the public key and apply the encryption function to both messages
and store the two ciphertexts he obtains. Now he just waits and watches
which of the two show up on the communication line tomorrow. Then he
knows what we sent.

Furthermore, even if it is hard to compute x from Eke(x), this does not
guarantee that an adversary cannot compute part of x. Even if, say, half the

13

bits of xare easy to compute from Eke(x), the system might still satisfy the
definition above. Of course this is not a satisfactory security guatantee.

The solution to all this turns out to be probabilistic encryption.

6.2 Security of Probabilistic Systems: Semantic Secu-
rity

We will first look at security against a passive attack, i.e. one where the ad-
versary just observes ciphertext, and then tries to get information on some
of the hidden plaintext. The following definition is known as semantic secu-
rity, it has become standard in the area, and turns out to imply any other
reasonable definition.

The idea is as follows: I give you the public key, you choose any message
you want, and I give you an encryption of either your message, or a complete
random message. If you cannot efficiently guess which kind of ciphertext I
gave you, we say the system is secure. So this definition is designed to capture
the idea that an encryption should tell you nothing at all about the message:
for all you care, encryptions might contain only random garbage. This is
basically the same idea as in the corresponding definition for conventional
(symmetric) encryption.

A bit more formally, Let (G, E, D) be the system in question. Then we
consider the following games that the adversary plays with an oracle. They
are very similar to the corresponding ones we considered for conventional
encryption. The only real difference is that since this is public-key crypto,
the adversary should know the public key like anyone else, this also means
he can by himself make as many encryptions as he likes.

World 0 (the ideal world): Input to both adversary A and oracle O is
the security parameter k. The oracle runs G(k) to get ke, kd,P , C and
gives ke,P , C to A. A computes a plaintext x ∈ P and gives it to O.
The oracle responds with Eke(r), where r is randomly chosen in P of
the same length as x. Finally A outputs a bit b.

World 1 (the real world): Input to both adversary A and oracle O is the
security parameter k. The oracle runs G(k) to get ke, kd,P , C and gives
ke,P , C to A. A computes a plaintext x ∈ P and gives it to O. The
oracle responds with Eke(x). Finally A outputs a bit b.

14

We define pA,i(k) to be the probability that A outputs 1 in world i on
input k. and the advantage of A to be

AdvA(k) = |pA,0(k)− pA,1(k)|

Definition 4 We say that (G, E,D) is semantically secure, if for all prob-
abilistic polynomial time adversaries A, it holds that AdvA(k) is negligible in
k.

In more human language: the adversary may be able to see from a ci-
phertext how long the plaintext is, but other than that, no efficient adversary
can tell meaningful encryptions from random encryptions. So intuitively, this
means that ciphertexts reveal nothing useful information to the adversary.

Clearly, no deterministic system can be semantically secure: as we saw in
the previous section, if the system is deterministic, then the adversary can
just encrypt his message by himself and compare the results to what he gets
from the oracle.

However, it is possible to use deterministic systems to build new ones
that do have this type of security. Let us take RSA as an example. Let
(G, D, E) be the following public-key system: G simply generates a pair of
RSA keys (n, e), (n, d) in the usual way. However, the set of messages is just
{0, 1} whereas the set of ciphertexts is Z∗

n. The encryption algorithm E will
encrypt a bit b by choosing a random number xb ∈ Z∗

n such that the least
significant bit of xb is b. The ciphertext is now c = xe

b mod n. Decryption
is straightforward: reconstruct xb using the secret RSA key and extract the
least significant bit.

It is not too hard to see that if one can always compute the least sig-
nificant bit of x from xe mod n, then one can invert the RSA encryption
function. However, something much stronger can also be shown: if there is a
polynomial time algorithm that guesses the least significant bit of x (based
on xe mod n) with just a slight (non-negligible) advantage over a 50% chance,
then RSA encryption can be inverted in polynomial time. From this follows
immediately [1]:

Theorem 3 Under the RSA assumption, (G, E, D) as above is a secure
probabilistic cryptosystem.

This system is of course not very efficient: a one bit message is expanded
to an encryption that takes up an entire number mod n. However, there are
ways to make this be much more efficient.

15

In practice, the most common use of RSA is to encrypt keys for conven-
tional encryption. Such keys are usually much shorter than an RSA modulus,
so what one does is often to place the key in the least significant end of an
RSA block and pad with random bits to the right length. This is exactly
what we did above, with the only exception that now we put more than 1
bit into a block. But in fact the Theorem above can be extended to show
that it is secure to put O(log k) bits in a block, so this idea does have some
theoretical justification.

It turns out that RSA is not special w.r.t. the possibilities of building
really secure systems. In general it can be shown that:

Theorem 4 If a family of one-way trapdoor permutations exist, then there
exists a semantically secure probabilistic public-key system.

While the proof of this is technical, the construction itself is quite simple:
let f be the given one-way trapdoor function, for simplicity assume it maps
k-bit strings to k-bit strings. Then to encrypt a bit b, we choose two k-bit
strings x, r at random and send

f(x), r, (r · x)⊕ b,

where r · x means the inner product of r = r1, ..., rk and x = x1, ..., xk, i.e.,
r · x = ⊕k

i=1ri ∧ xi.

6.2.1 Chosen Ciphertext Security

Everything we said so far has been about security w.r.t. a passive adversary,
i.e., and adversary that simply looks at the public key and some ciphertext
and does his best to figure out what the plaintext was. What happens if
we give the adversary a stronger attack? as mentioned, a chosen plaintext
attack of course does not add to his power: he has the public key and can
encrypt as much as he likes. But a chosen ciphertext attack might certainly
help him.

To define chosen ciphertext security, we reuse the same idea as before, but
in addition, the oracle will now kindly decrypt ciphertext for the adversary:

World 0 (the ideal world): Input to both adversary A and oracle O is
the security parameter k. The oracle runs G(k) to get ke, kd,P , C and
gives ke,P , C to A. A may now submit an input string y to O, and O

16

will return Dkd
(y) to A. This is repeated as many time as A wants.

Then A computes a plaintext x ∈ P and gives it to O. The oracle
responds with y0 = Eke(r), where r is randomly chosen in P of the
same length as x. A may now again submit an input string y to O,
the only restriction is that y must be different from y0. O will return
Dkd

(y) to A. This is repeated as many time as A wants.

Finally A outputs a bit b.

World 1 (the real world): Input to both adversary A and oracle O is the
security parameter k. The oracle runs G(k) to get ke, kd,P , C and gives
ke,P , C to A. A may now submit an input string y to O, and O will
return Dkd

(y) to A. This is repeated as many time as A wants. Then
A computes a plaintext x ∈ P and gives it to O. The oracle responds
with y0 = Eke(x). A may now again submit an input string y to O,
the only restriction is that y must be different from y0. O will return
Dkd

(y) to A. This is repeated as many time as A wants.

Finally A outputs a bit b.

As before, we define pA,i(k) to be the probability that A outputs 1 in
world i on input k. and the advantage of A to be

AdvA(k) = |pA,0(k)− pA,1(k)|

Definition 5 We say that (G, E, D) is chosen ciphertext (CCA)-secure, if
for all probabilistic polynomial time adversaries A, it holds that AdvA(k) is
negligible in k.

The general theorem from before can be expanded to this case as well:

Theorem 5 If there exists a family of trapdoor one-way permutations, then
there exists a chosen ciphertext secure probabilistic public-key system.

The construction behind this result leads to very inefficient systems. We
would like to have more practical constructions, because chosen ciphertext
security is not just a theoretical notion, but something we need to have in
practice. Granted, it may seem that the attack we give the adversary in the
CCA definition is very strong. One could ask whether this is too pessimistic -
perhaps in real life, the adversary would not be in such a favorable situation?

17

However, there are in fact cases where the adversary has something that is
close to a full CCA attack. For instance, many Internet servers can set up
secure connections using the so called SSL protocol. Part of this is to decrypt
a ciphertext received from a client. Until some years ago the system used
was an RSA variant described in a (now outdated) version of the PKCS
#1 standard. In this system, the decryption process could lead to different
types of errors, if the input was not a legal ciphertext. If this occurred,
servers would typically send an error message back to the client, specifying
the type of error. But this means that an outsider now has access to (part
of) the result of applying the decryption algorithm to an input he chooses.
This is a a chosen ciphertext attack! Indeed, Bleichenbacher has shown that
this can be used in practice to break the old version of PKCS #1.

Fortunately, we have today various heuristic methods one can use to get
chosen ciphertext security efficiently. For example, in [2] the so called OAEP-
system is proposed (Optimal Asymmetric Encryption Padding). OAEP is
basically a general method for turning a public-key system with only deter-
ministic security into a chosen ciphertext secure scheme. The basic idea is to
encode a message m to be sent in special way before it is sent into the encryp-
tion algorithm. This means that only strings with a very special structure
are ever encrypted. Put another way, if the original encryption algorithm
can handle messages in some set P , we will only use messages in some subset
P ′. The decryption algorithm is defined such if after decryption, it finds that
the result is not in P ′, it will simply output an error message. Ciphertexts
that lead to plaintexts in P ′ are called legal.

Why would this help against a chosen ciphertext attack? well, if P ′ is
very small compared to P , then it may be a reasonable assumption that the
only way in which the adversary could produce efficiently a legal ciphertext,
is by choosing some plaintext m and encrypt it in the normal way. But if he
submits this to the decryption oracle, he already knows the answer will be
m. If he produces a ciphertext in any other way, by assumption it will be
illegal with overwhelming probability. So again the adversary already knows
what the oracle will say. Of course an oracle is not of any use if you can
always predict in advance what it will answer! it might as well not be there
and so we are back with the ciphertext only attack.

Concretely, OAEP works as follows: suppose the original encryption
Epk(·) works on k-bit strings. Then we choose two parameters k0, k1 such
that k0 + k1 < k. The scheme can encrypt messages with n bits, where
n = k−k0−k1. We need two functions G, H, where G : {0, 1}k0 → {0, 1}n+k1

18

and H : {0, 1}n+k1 → {0, 1}k0 . Usually, as G, H we use so called crypto-
graphic hash functions, i.e., one-way functions that produce random looking
output - they can be built, for instance, from symmetric encryption schemes
and can therefore be very efficiently computable. We encrypt a message m
as follows:

1. Choose r ∈ {0, 1}k0 at random.

2. Compute s = G(r)⊕ (m||0k1), t = H(s)⊕ r, w = s||t, where || means
concatenation of strings.

3. Let the ciphertext be Epk(w).

For decryption, one use the secret key to reconstruct w and hence what
should be s, t if the ciphertext was legal. Then we can find r = t⊕H(s), and
finally s ⊕ G(r) should be some n-bit string m followed by k1 0’s. If this is
not the case, the ciphertext was illegal, otherwise we output m.

No method of the OAEP type have been proved secure in the sense that
their security follows only only from the RSA assumption, for instance. The
problem is that it seems very difficult to design the encoding method such
that one can prove that it is hard to generate legal ciphertexts wihtout know-
ing the plaintext. But they can nevertheless be quite adequate in practice,
and OAEP is a part of many international standards for encryption, partic-
ularly in connection with RSA.

For systems based on discrete logarithms, state of the art is quite dif-
ferent. Cramer and Shoup [4] have built a quite practical system based on
discrete logarithms which they can prove is chosen ciphertext secure under
a reasonable assumption, the so called Decisional Diffie-Hellman asumption.
This is the first practical system with such provable security. It is an open
question if practical systems based on the RSA assumption with the same
type of provable security exist.

References

[1] W.Alexi, B.Chor, O.Goldreich and C.P.Schnorr: RSA and Rabin Func-
tions: Certain parts are as hard as the Whole, SIAM J.Computing,
17(1988), 194-209.

[2] Bellare and Rogaway: Optimal Asymmetric Encryption, Proc. of Euro-
Crypt 94, Springer Verlag LNCS series, 950.

19

[3] Bellare, Desai, Jokipii and Rogaway: A concrete security treatment of
symmetric encryption, FOCS 97, full paper available from http://www-
cse.ucsd.edu/users/mihir.

[4] Cramer and Shoup: A Prcatical Public Key Cryptosystem Secure Against
Adaptive Chosen Ciphertext AttacksProceedings of Crypto 98, Springer
Verlag LNCS series 1462.

20

