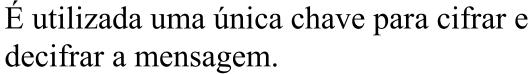
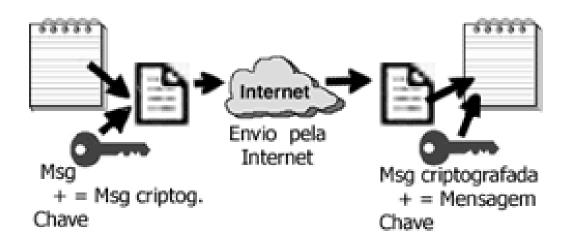


Modelos de Criptografia:

•Chaves Simétricas (Informal):





•Modelos de Chave Simétrica – Subdivisão

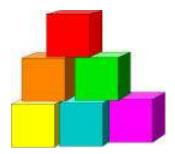
•Cifras de fluxo

As cifras de fluxo encriptam um texto pleno bit a bit.

10100011

·Cifras de bloco

As cifras de bloco usam conjuntos com um número fixo de bits (geralmente 64 bits nas cifras modernas) como unidades de cifragem.



Cifra de Bloco:

Definição: É uma função matemática $E: \{0,1\}^k \times \{0,1\}^l \rightarrow \{0,1\}^l$ que recebe 2 entradas, uma chave **K** de comprimento k, e um texto pleno **M** com comprimento l, e retorna um texto cifrado **C** com comprimento l, i.e. C=E(M,K).

Para cada chave $\mathbf{K} \in \{0,1\}^k$ tem-se $E_K \colon \{0,1\}^l \to \{0,1\}^l$ como sendo a função $E_K(M) = E(K,M)$. Para qualquer cifra de bloco , e qualquer chave \mathbf{K} , a função E_k é uma permutação sobre $\{0,1\}^n$, i.e. há uma bijeção que mapeia $\{0,1\}^l$ to $\{0,1\}^l$. A função E_k possui uma inversa, denotada por E_k^{-l} , esta função inversa também mapeia $\{0,1\}^l$ to $\{0,1\}^l$

Cifra de Bloco(continuação):

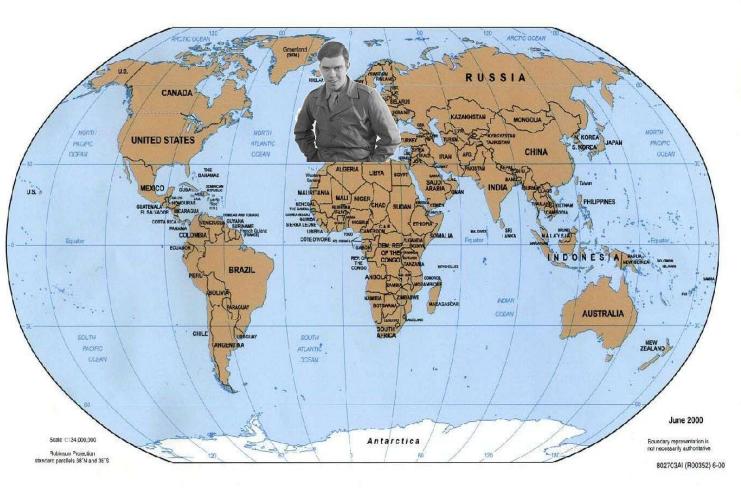
Como era de se esperar, as seguintes condições são satisfeitas:

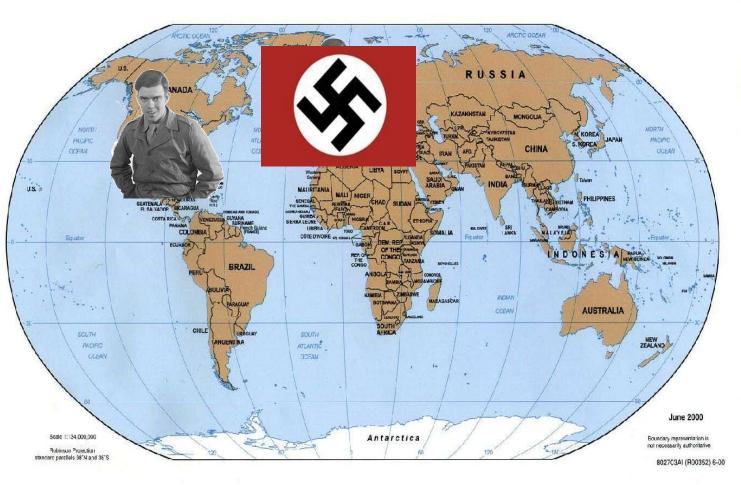
$$E_K^{-1}(E_K(M)) = M$$
 $E_K(E_K^{-1}(C)) = C$

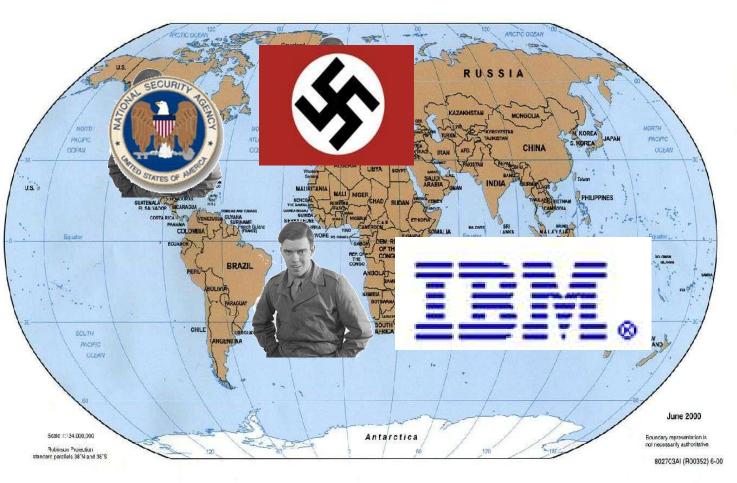
Defini-se E^{-1} : $\{0,1\}^k \times \{0,1\}^l \to \{0,1\}^l$ como sendo $E^{-1}(K,C)=E_K^{-1}(C)$, isto é, o inverso da cifra E.

Cifra de Bloco - Algumas Considerações:

- •Uma cifra de bloco deve ser um algoritmo público e bem especificado;
- •Tanto a cifra **E**, como sua inversa **E**⁻¹ devem ser fáceis de serem computadas, isto é, dados *K*, M, pode-se computar **E** (**K**,**M**), e dados *K*, *C*, pode-se computar **E**⁻¹(**K**,**C**).
- •Na prática uma chave K é escolhida e mantida secreta por um par de usuários. Em seguida a função E_k é utilizada para processar de alguma forma as informações.
- •A segurança se baseia em manter a chave secreta.

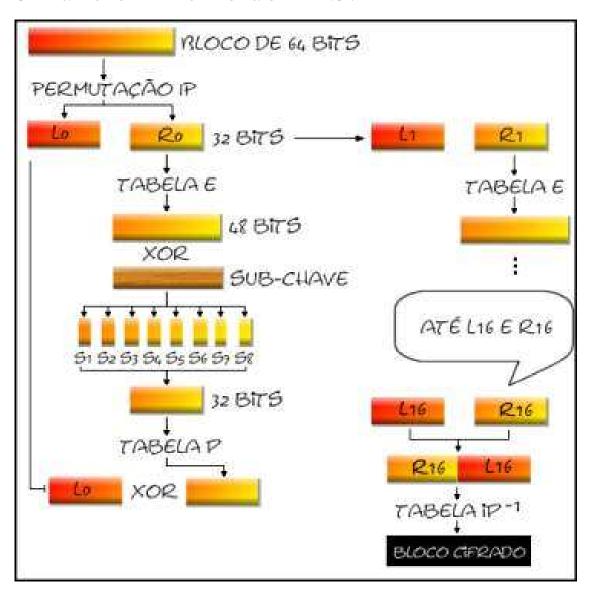








O Funcionamento do DES:



Passo a passo – DES:

Entrada 1: Blocos de Texto pleno em Hexadecimal com 64 bits:

$\mathbf{M} = \mathbf{0123456789ABCDEF}$

 $M = 0000\ 0001\ 0010\ 0011\ 0100\ 0101\ 0110\ 0111\ 1000\ 1001\ 1010\ 1011\ 1100\ 1101\ 1110$

É feita uma permutação inicial IP dos 64 bits de dados da

mensagem M

Tabela IP

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	76	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

Texto Pleno:

 $M = 0000 \ 0001 \ 0010 \ 0011 \ 0100 \ 0101 \ 0110 \ 0111 \ 1000 \ 1001 \ 1010 \ 1011 \ 1100 \ 1101 \ 1110 \ 1111$

Texto Permutado via tabela IP:

 $\mathbf{M}_{ip} = 1100\ 1100\ 0000\ 0000\ 1100\ 1100\ 1111\ 1111\ 1111\ 0000\ 1010\ 1010\ 1111\ 0000\ 1010$

A seguir divide-se o texto Permutado em duas partes:

 $L_0 = 1100 \ 1100 \ 0000 \ 0000 \ 1100 \ 1100 \ 1111 \ 1111$

 $R_o = 1111 \ 0000 \ 1010 \ 1010 \ 1111 \ 0000 \ 1010 \ 1010$

Entrada 2: Chave em Hexadecimal com 64 bits

K = 133457799BBCDFF1

 $K = 00010011\ 00110100\ 01010111\ 01111001\ 10011011\ 10111100$

Na verdade é utilizado uma chave de 56 bits, os 8 bits restantes são apenas bits de paridade(bits 8, 16, 24, 32, 40, 48, 56 e 64):

 $K = 00010011 \ 00110100 \ 01010111 \ 01111001 \ 10011011 \ 10111100 \ 11011111 \ 11110001$

A seguir é feita uma permutação, utilizando-se da tabela PC-1

Tabela PC-1

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

Da chave original de 64 bits

 $\mathbf{K} = 00010011 \ 00110100 \ 01010111 \ 01111001 \ 10011011 \ 10111100 \ 11011111 \ 11110001$

Obtém-se a permutação PC-1 de 56 bits

 \mathbf{K} + = 1111000 0110011 0010101 0101111 0101010 1011001 1001111 0001111

A seguir, divide-se esta chave em duas metades, esquerda C_0 e direita D_0 , cada metade com 28 bits.

 $C_0 = 1111000 \ 0110011 \ 0010101 \ 0101111$

 $\mathbf{D}_{\mathbf{0}} = 0101010 \ 10111001 \ 10011111 \ 00011111$

Com C_0 e D_0 definidas, cria-se dezesseis blocos C_n e D_n , para $1 \le n \le 16$.

Cada par de blocos C_n e D_n é formado pelo par anterior C_{n-1} e D_{n-1} , deslocado de um bit para a esquerda.

 $\mathbf{C}_{1} = 1110000110011001010101011111$

 $\mathbf{D}_{1} = 10101010110011001111000111110$

 $C_2 = 11000011001100101010101111111$

 $\mathbf{D}_2 = 01010101100110011110001111101$

...

 $C_{15} = 1111110000110011001010101111$

 $\mathbf{D_{15}} = 101010101011001100111110001111$

 $C_{16} = 111100001100110010101011111$

 $\mathbf{D}_{16} = 010101010110011001111100011111$

Agora monta-se as chaves \mathbf{K}_n , para 1<= \mathbf{n} <=16, aplicando-se a tabela de permutação abaixo em cada um dos pares concatenados $\mathbf{C}_n\mathbf{D}_n$. Cada par possui 56 bits, porém **PC-2** usa apenas 48 bits.

Tabela PC-2

14	17	11	21	1	5
3	28	15	6	21	10
23	19	12	4	26	8
16	7	27	20	13	2
41	52	31	37	47	55
30	40	51	45	33	48
44	49	39	56	34	53
46	42	50	36	29	32

Para a primeira chave tem-se:

 $\mathbf{C_1}\mathbf{D_1} = 1110000 \ 1100110 \ 0101010 \ 10111111 \ 1010101 \ 0110011 \ 00111110 \ 0011110$

a qual, após aplicarmos a permutação PC-2 transforma-se em

 $\mathbf{K_1} = 000110 \ 110000 \ 001011 \ 101111 \ 111111 \ 000111 \ 000001 \ 110010$

Para as outras chaves:

 $\mathbf{K}_2 = 011110 \ 011010 \ 111011 \ 011001 \ 110110 \ 111100 \ 100111 \ 100101 \ \mathbf{K}_3 = 010101 \ 011111 \ 110010 \ 001010 \ 010000 \ 101100 \ 111110 \ 011001 \ \mathbf{K}_4 = 011100 \ 101010 \ 110111 \ 010110 \ 110010 \ 110110 \ 110101 \ \mathbf{K}_5 = 011111 \ 001110 \ 110000 \ 000111 \ 111010 \ 110101 \ 001110 \ 101000$

• • •

 \mathbf{K}_{16} = 110010 110011 110110 001011 000011 100001 011111 110101

Lembrando-se que do texto pleno permutado tem-se:

 $L_0 = 1100 \ 1100 \ 0000 \ 0000 \ 1100 \ 1100 \ 1111 \ 1111$

 $R_0 = 1111 \ 0000 \ 1010 \ 1010 \ 1111 \ 0000 \ 1010 \ 1010$

Então utilizamos as **Transformadas de Feistel:**

$$L_n = R_{n-1}$$
 $R_n = L_{n-1} + f(R_{n-1}, K_n)$

Isso é feito para n variando de 1 até 16.

Para $\mathbf{n} = 1$ temos

 $\mathbf{K_1} = 000110\ 110000\ 001011\ 101111\ 1111111\ 000111\ 000001\ 110010$

$$L_1 = R_0 = 1111 \ 0000 \ 1010 \ 1010 \ 1111 \ 0000 \ 1010 \ 1010$$

$$\mathbf{R_1} = \mathbf{L_0} + \mathbf{f}(\mathbf{R_0}, \mathbf{K_1}) = 1100\ 1100\ 0000\ 0000\ 1100\ 1100\ 1111\ 1111\ +\mathbf{f}$$
(1111\ 0000\ 1010\ 1010\ 1111\ 0000\ 1010\ 1010\ 1010\ K_1)

A função f transforma o R_{n-1} que tem 32 bits em 48 bits e em seguida faz um Xor com K_n . A transformação se dá com o uso da tabela E de

seleção de bits.

Tabela E

3	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

Exemplo de uma transformação:

 $\mathbf{R}_{\mathbf{n}} = 1111\ 0000\ 1010\ 1010\ 1111\ 0000\ 1010\ 1010$

 $E(\mathbf{R}_0) = \mathbf{0}111110 \ \mathbf{1}000001 \ \mathbf{0}10101 \ \mathbf{0}10101 \ \mathbf{0}111110 \ \mathbf{1}000001 \ \mathbf{0}10101 \ \mathbf{0}10101$

Xor

 $\mathbf{K}_{1} = 000110\ 110000\ 001011\ 101111\ 1111111\ 000111\ 000001\ 110010$

=

 $\mathbf{f}(\mathbf{R}_0, \mathbf{K}_1) = 011000\ 010001\ 011110\ 111010\ 100001\ 100110\ 010100$

Logo $\mathbf{f}(\mathbf{R}_0, \mathbf{K}_1)$ tem 48 bits, porém teremos que fazer a soma bit a bit com \mathbf{R}_0 , que possui apenas 32 bits.

A solução é usar tabelas denominadas de S-Boxes.

S-Boxes

				0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		0	0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
\mathbf{S}_1	:	0	1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8 0
		1	0	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	O
		1	1	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
			i		1	0	9	1	-	c	7	0	0	10	1.1	10	1.9	1.4	15
		- 0		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
~		0	0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
\mathbf{S}_2	:	0	1	3	13	$\frac{4}{2}$	7	15	2	8	14	12	0	1	10	6	9	11	5
		$\frac{1}{1}$	0	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
		1	1	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
					62	12477	12500	17202	77282	1933	10000	P032	0	0.0623	2500	020123	120/1200	98 31	32.20
			-	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		0	0	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
\mathbf{S}_3	:	0	1	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
		1	0	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
		1	1	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12
				50 n. 2000															
				0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		0	0	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
\mathbf{S}_4	:	O	1	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
		1	0	10	6	9	O	12	11	7	13	15	1	3	14	5	2	8	4
		1	1	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

S-Boxes

				0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		0	0	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
S_5	:	0	1	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
		1	0	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
		1	1	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3
				W.															
		1		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		0	O	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
\mathbf{S}_6	:	0	1	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
		1	0	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
		1	1	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13
				¥5															
				0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		0	O	4	11	2	14	15	O	8	13	3	12	9	7	5	10	6	1
S_7		0	1	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	$\frac{6}{2}$
		1	O	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
		1	1	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12
				Lo		0.	0.1	· At	_					10	2904	1.0	1.0	1.4	
			-	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0.044.0		0	0	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
\mathbf{S}_8	•	O	1	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2 8
		1	0	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	
		1	1	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

Funcionamento das X-Boxes:

 $\mathbf{F'}(\mathbf{R_0}, \mathbf{K_1}) = 011000\ 010001\ 011110\ 111010\ 100001\ 100110\ 010100$

 $F'(R_0,K_1) = S1(B1) S2 (B1) S3 (B1) S4 (B1) S5 (B1) S6 (B1) S7 (B1) S8 (B1)$

 $\mathbf{F'}(\mathbf{R}_0, \mathbf{K}_1) = 0101 \ 1100 \ 1000 \ 0010 \ 1011 \ 0101 \ 1001 \ 0111$

Por último é necessário fazer uma permutação com a tabela P:

 $\mathbf{F}(\mathbf{R}_{0}, \mathbf{K}_{1}) = 0010\ 0011\ 0100\ 1010\ 1010\ 1001\ 1011\ 1011$

Tabela P

16	7	20	21
29	12	28	17
1	15	23	26
5	18	31	10
2	8	24	14
32	27	3	9
19	13	3	9
22	11	4	25

Agora possuimos todos os elementos necessários para calcular R_1 , ou seja, $R_1 = L_0 + f(R_0, K_1)$

$$L_0 = 1100 \ 1100 \ 0000 \ 0000 \ 1100 \ 1100 \ 1111 \ 1111$$

$$f(R_0, K_1) = 0010 \ 0011 \ 0100 \ 1010 \ 1010 \ 1001 \ 1011 \ 1011$$

$$R_1 = L_0 + f(R_0, K_1) = 1110 \ 1111 \ 0100 \ 1010 \ 0110 \ 0101 \ 0100$$

Todos os passos acima são repetidos até a 16^a rodada. Quando estivermos em posse de L_{16} e R_{16} , concatenamos as duas entradas de forma invertida R_{16} L_{16} . E em seguida permutamos utilizando-se da tabela

IP-1.

Tabela IP-1

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

 $\mathbf{R}_{16}\mathbf{L}_{16} = 00001010 \ 01001100 \ 11011001 \ 10010101 \ 01000011 \ 01000010 \ 00110010 \ 00110100$

 $\mathbf{IP^{-1}} = 10000101 \ 11101000 \ 00010011 \ 01010100 \ 00001111 \ 00001010 \ 10110100 \ 00000101$

o que, em formato hexadecimal, é 85E813540F0AB405.

Portanto, a forma cifrada de M = 0123456789ABCDEF é

C = 85E813540F0AB405.

Decifrar é simplesmente o inverso de cifrar, seguindo os mesmos passos acima descritos porém invertendo a ordem das sub-chaves aplicadas.

Crescimento do Tempo para Quebra de Chaves Simétricas*

Bits	1% do espaço de chave	50% do espaço de chave
56	1 segundo	1 minuto
57	2 segundos	2 minutos
58	4 segundos	4 minutos
64	4,2 minutos	4,2 horas
72	17,9 horas	44,8 dias
80	190,0 dias	31,4 anos
90	535 anos	321 séculos
108	140.000 milênios	8 milhões de milênios
128	147 bilhões de milênios	8 trilhões de milênios

*Fonte: Criptografia e Segurança – Guia Oficial RSA

Em 1998 sob a direção de John Gilmore do EFF, uma equipe gastou US\$ 200.000 e construiu uma máquina que pode analisar todo o espaço de chaves de 56 bits do DES precisando em média 4.5 dias para completar a tarefa. Em 17 de Julho de 1998 eles anunciaram que haviam quebrado uma chave de 56 bits em 46 horas. O computador, chamado de Deep Crack, usa 27 placas, cada uma com 64 chips, e é capaz de testar 90 bilhões de chaves por segundo.

Com o processamento atual, o custo é orçado segundo a tabela abaixo:

Key Search Machine Cost	Expected Search Time
\$10,000	2.5 days
\$100,000	6 hours
\$1,000,000	35 minutes
\$10,000,000	3.5 minutes

Advanced Encryption Standard (AES)

• Em fevereiro de 2001 um novo padrão foi escolhido para substituir o DES, ele é baseado numa cifra de bloco com tamanho de 128 e chaves de tamanhos variáveis de 128, 192 ou 256 bits.

Triple DES

- •Triple-DES 1 é apenas o DES efetuado três vezes com duas chaves usadas numa determinada ordem.
- •Dada uma mensagem em texto claro, a primeira chave é usada para cifrar a mensagem em DES. A segunda chave é usada para decifrar o DES da mensagem cifrada. Como a segunda chave não é a correta para decifrar, esta decifragem apenas embaralha ainda mais os dados. A mensagem duplamente embaralhada é, então, cifrada novamente com a primeira chave para se obter o criptograma final. Este procedimento em três etapas é chamado de triple-DES 2.

•Electronic Code Book:

Seja $E: \{0,1\}^k \times \{0,1\}^l \to \{0,1\}^l$ uma cifra de bloco. (Cada bloco é cifrado/decifrado individualmente).

```
Algorithm \mathcal{E}_K(M)
                                              Algorithm \mathcal{D}_K(C)
   If |M| < l then return \perp
                                                  If |C| < l then return \perp
   If |M| \mod l \neq 0 then return \perp
                                                  If |C| \mod l \neq 0 then return \perp
   Parse M as M[1] \dots M[n]
                                                  Parse C as C = C[1] \dots C[n]
   For i = 1, \ldots, n do
                                                  For i = 1, \ldots, n do
                                                      M[i] \leftarrow E_K^{-1}(M[i])
        C[i] \leftarrow E_K(M[i])
   EndFor
                                                  EndFor
   C \leftarrow C[1] \dots C[n]
                                                  M \leftarrow M[1] \dots M[n]
    Return C
                                                  Return M
```


Cipher-block chaining mode(CBC)

Cada bloco cifrado depende de todos os outros blocos de mensagem anteriores através de uma operação inicial de XOR com um vetor previamente escolhido.

```
Algorithm \mathcal{E}_K(M)
                                                 Algorithm \mathcal{D}_K(C)
   If |M| < l then return \perp
                                                     If |C| < 2l then return \perp
                                                     If |C| \mod l \neq 0 then return \perp
   If |M| \mod l \neq 0 then return \perp
    Parse M as M[1] \dots M[n]
                                                     Parse C as C[0]C[1]...C[n]
    C[0] \stackrel{R}{\leftarrow} \{0,1\}^{l}
                                                     For i = 1, \ldots, n do
                                                         M[i] \leftarrow E_K^{-1}(C[i]) \oplus C[i-1]
   For i = 1, \ldots, n do
        C[i] \leftarrow F_K(C[i-1] \oplus M[i])
                                                     EndFor
                                                     M \leftarrow M[1] \dots M[n]
    EndFor
                                                     Return M
    C \leftarrow C[0]C[1] \dots C[n]
    Return C
```


Counter Mode (R-CTR)

Um valor inicial para o contador é escolhido aleatoriamente a cada mensagem.

```
Algorithm \mathcal{E}_K(M)
                                                     Algorithm \mathcal{D}_K(C)
   If |M| < L then return \perp
                                                          If |C| < l + L then return \perp
   If |M| \mod L \neq 0 then return \perp
                                                          If (|C|-l) \mod L \neq 0 then return \perp
   Parse M as M[1] \dots M[n]
                                                          Let C[0] be the first l bits of C
   R \stackrel{R}{\leftarrow} \{0, 1, \dots, 2^l - 1\}
                                                          Parse the rest of C as C[1] \dots C[n]
                                                          R \leftarrow \mathsf{StN}(C[0])
   For i = 1, \ldots, n do
        C[i] \leftarrow F_K(\mathsf{NtS}_l(R+i)) \oplus M[i]
                                                          For i = 1, \ldots, n do
                                                              M[i] \leftarrow F_K(\mathsf{NtS}_l(R+i)) \oplus C[i]
    EndFor
                                                          EndFor
   C[0] \leftarrow \mathsf{NtS}_l(R)
                                                          M \leftarrow M[1] \dots M[n]
    C \leftarrow C[0]C[1] \dots C[n]
                                                          Return M
    Return C
```


Counter Mode (C-CTR)

Uma variável global (contador) é mantido entre as duas partes, cada vez que o protocolo executa o contador é atualizado.

```
Algorithm \mathcal{E}_K(M)
                                                     Algorithm \mathcal{D}_K(C)
   If |M| < L then return \perp
                                                          If |C| < l + L then return \perp
   If |M| \mod L \neq 0 then return \perp
                                                          If (|C|-l) \mod L \neq 0 then return \perp
   Parse M as M[1] \dots M[n]
                                                          Let C[0] be the first l bits of C
   R \stackrel{R}{\leftarrow} \{0, 1, \dots, 2^l - 1\}
                                                          Parse the rest of C as C[1] \dots C[n]
                                                          R \leftarrow \mathsf{StN}(C[0])
   For i = 1, \ldots, n do
        C[i] \leftarrow F_K(\mathsf{NtS}_l(R+i)) \oplus M[i]
                                                          For i = 1, \ldots, n do
                                                              M[i] \leftarrow F_K(\mathsf{NtS}_l(R+i)) \oplus C[i]
    EndFor
   C[0] \leftarrow \mathsf{NtS}_l(R)
                                                          EndFor
                                                          M \leftarrow M[1] \dots M[n]
   C \leftarrow C[0]C[1]\dots C[n]
                                                          Return M
    Return C
```


•Questões sobre Segurança

- •Duas partes compartilham uma chave *K* gerada aleatoriamente;
- •O adversário inicialmente não conhece *K*;
- •Geralmente se assume que o adversário pode capturar qualquer texto cifrado que segue pelo canal entre as duas partes;
- •Queremos explorar as questões sobre qual segurança (privacidade) o esquema pode oferecer.
- •A pergunta principal é: "Que tarefas, realizadas pelo adversário, acarretaria num esquema inseguro?"
- •É muito mais fácil pensar em insegurança do que em segurança.
- •Ex: Se o adversário puder a partir de poucos textos cifrados, derivar a chave K, então o esquema pode ser declarado inseguro.
- •A recíproca não é verdadeira !!!

•Questões sobre Segurança

- •Possíveis tentativa de descrever um esquema seguro:
 - •"Dado C, o adversário não tem idéia do que seja M".
 - •"Dado C, o adversário não pode recuperar facilmente o texto pleno M"
- •Não podemos fazer suposições sobre o formato dos dados (mensagens) no desenvolvimento de protocolos seguros.
- •O esquema "ideal" pode ser visto como
 - •"Um anjo recebeu a mensagem M e entregou ao receptor de uma forma mágica."
- •A meta é ter um esquema que tenha propriedades próximas do modelo ideal, ou seja, nenhuma informação parcial pode ser descoberta.

•Questões sobre Segurança

- •Exemplo: Considere o esquema ECB.
 - •Dado o texto cifrado, o adversário pode descobrir a mensagem?
 - •Considere o caso de uma mensagem de único bloco. Suponhna que existam apenas duas mensagens, 0l para "comprar" e 11 para "vender". Uma parte fica enviando dados, mas sempre algum desses dois. O que acontece?
- •Em um esquema de encriptação seguro não deve ser possível co-relacionar textos cifrados de diferentes mensagens.
- •Esta afirmação tem uma implicação forte. "A encriptação deve ser probabilística ou dependente de uma informação de estado".
- •A noção histórica de encriptação era pensado como um código ou um mapeamento fixo de texto pleno para texto cifrado.
- •Um único texto pleno terá muitos possíveis textos cifrados, dependendo das escolhas aleatórias ou do estado do algoritmo. Mas ainda assim, deve ser possível a sua decriptação.

•Segurança na teoria da informação:

- •O adversário inicialmente não conhece K.
- •Assume-se que o adversário tem a capacidade de capturar qualquer mensagem de texto cifrado que segue pelo canal entre as duas partes.
- •Gostaríamos de dizer que de posse de C o adversário não tem nenhuma idéia do que trata M.
- •Entretanto o adversário pode "advinhar" a mensagem ou parte dela.
- •Segurança perfeita existe se "a melhor advinhação da mensagem pelo adversário depois de ter visto o texto cifrado é a mesma que ele faria antes de ver o texto cifrado".
- •Em outras palavras, o texto cifrado não ajuda na descoberta de novas informações sobre a mensagem.

- •Segurança contra o Ataque de Texto Pleno Escolhido
- •Segurança perfeita só pode ser conseguida em esquemas onde o tamanho da chave seja tão grande quanto o tamanho do texto pleno.
- •Queremos achar uma noção de segurança que mesmo não sendo "perfeita", seja boa na prática.
- •Intuitivamente, a diferença principal é levar em conta que o adversário tem o poder computacional limitado.
- •Pode existir informação no texto cifrado, mas se você não pode computá-las, o texto cifrado na realidade não acrescenta informação.

- •Segurança contra o Ataque de Texto Pleno Escolhido
- •O adversário pode escolher duas mensagens do mesmo tamanho. Em seguida, uma é encriptada e dada ao adversário. O esquema é seguro se o adversário precisar de muito tempo para dizer qual mensagem foi encriptada.
- •Por fim, consideremos uma sequência de mensagens. Teremos uma sequência de pares de mensagens do mesmo tamanho $(M_{1,0}, M_{1,1}), \ldots, (M_{q,0}, M_{q,1})$
- •Em seguida, um bit "de desafio" b é escolhido aleatoriamente e a sequência C_1, \ldots, C_q é produzida, onde $C_i \leftarrow \mathcal{E}_K(M_{i,b})$.
- •O adversário recebe a sequência de textos cifrados e deve advinhar b para vencer. Em outras palavras, o adversário está tentando descobrir se o emissor enviou $M_{1,0}, \ldots, M_{q,0}$ or $M_{1,1}, \ldots, M_{q,1}$.

- •Segurança contra o Ataque de Texto Pleno Escolhido
- •Formalizando:
- •Considere o adversário como um programa A, com acesso a um oráculo para o qual ele fornece um par de entradas (M_0, M_1) .
- •O oráculo pode computar o texto encriptado de duas maneiras diferentes, correspondentes aos dois "mundos" onde o adversário "vive".
- •Definimos o Oráculo de encriptação direita ou esquerda como segue:

```
Oracle \mathcal{E}_K(LR(M_0, M_1, b))  // b \in \{0, 1\} and M_0, M_1 \in \{0, 1\}^* C \leftarrow \mathcal{E}_K(M_b) Return C
```


•Segurança contra o Ataque de Texto Pleno Escolhido

Mundo 0

O Oráculo fornecido ao adversário é:

$$\mathcal{E}_K(\mathrm{LR}(\cdot,\cdot,0))$$

Sempre que o adversário fizer uma consulta (M0, M1), receberá:

$$C \stackrel{\scriptscriptstyle R}{\leftarrow} \mathcal{E}_K(M_0)$$

Mundo 1

O Oráculo fornecido ao adversário é:

$$\mathcal{E}_K(\mathrm{LR}(\cdot,\cdot,1))$$

Sempre que o adversário fizer uma consulta (M0, M1), receberá:

$$C \stackrel{R}{\leftarrow} \mathcal{E}_K(M_1)$$

- •Segurança contra o Ataque de Texto Pleno Escolhido
- •A tarefa do adversário é dizer em que "mundo" ele "vive", após um certo tempo "conversando" com o oráculo.
- •Observação: A escolha do "mundo" é feita uma vez, antes do início da execução do adversário.
- •Considera-se um esquema seguro contra o ataque de texto pleno escolhido se um adversário "razoável" não puder obter vantagem significativa em distinguir os casos em que b = 0 e b = 1.
- •Esta noção é chamada de indisguibilidade sobre o ataque de texto pleno escolhido IND-CPA.

- •Segurança contra o Ataque de Texto Pleno Escolhido
- •Considere o experimento:

Experiment
$$\mathbf{Exp}^{\mathrm{ind-cpa}-b}_{\mathcal{SE},A}$$

$$K \overset{R}{\leftarrow} \mathcal{K}$$

$$d \leftarrow A^{\mathcal{E}_K(\mathrm{LR}(\cdot,\cdot,b))}$$
Return d

•A *ind-cpa-advantage* de *A* é definida como:

$$\mathbf{Adv}^{\mathrm{ind\text{-}cpa}}_{\mathcal{SE},A} \quad = \quad \mathbf{P}\left[\mathbf{Exp}^{\mathrm{ind\text{-}cpa\text{-}1}}_{\mathcal{SE},A} = 1\right] - \mathbf{P}\left[\mathbf{Exp}^{\mathrm{ind\text{-}cpa\text{-}0}}_{\mathcal{SE},A} = 1\right]$$

$$\mathbf{Adv}^{\mathrm{ind\text{-}cpa}}_{\mathcal{SE}}(t,q,\mu) = \max_{A} \left\{ \mathbf{Adv}^{\mathrm{ind\text{-}cpa}}_{\mathcal{SE},A} \right\}$$

•Onde o máximo é sobre todos A tendo complexidade de tempo t, fazendo no máximo q consultas ao oráculo, de soma no máximo μ bits.

- •Definições de Segurança
- •Segurança contra o Ataque de Texto Pleno Escolhido
- Ataque contra o modo ECB

Adversary
$$A^{\mathcal{E}_K(LR(\cdot,\cdot,b))}$$

 $M_1 \leftarrow 0^{2l} \; ; \; M_0 \leftarrow 0^l || 1^l$
 $C[1]C[2] \leftarrow \mathcal{E}_K(LR(M_0, M_1, b))$
If $C[1] = C[2]$ then return 1 else return 0

Daí, temos:

$$\mathbf{P}\left[\mathbf{E}\mathbf{x}\mathbf{p}_{\mathcal{S}\mathcal{E},A}^{\mathrm{ind-cpa-1}} = 1\right] = 1$$

$$\mathbf{P}\left[\mathbf{E}\mathbf{x}\mathbf{p}_{\mathcal{S}\mathcal{E},A}^{\mathrm{ind-cpa-0}} = 1\right] = 0.$$

Logo, com apenas 1 consulta: $\mathbf{Adv}^{\text{ind-cpa}}_{\mathcal{SE},A} = 1 - 0 = 1.$

Conclusão: ECB é inseguro mesmo utilizando uma cifra de bloco *E* segura.

Pode-se provar de forma semelhante que qualquer esquema determinístico e sem estado é inseguro.

- •Segurança contra o Ataque de Recuperação de Texto Pleno
- •A tarefa que o adversário terá que encarar é decriptar um texto cifrado que foi formado encriptando uma mensagem aleatória ("desafio") para algum tamanho m.
- •Neste processo, daremos ao adversário a capacidade de ver pares de texto cifrado, encriptado através de um oráculo.
- •O oráculo simplesmente recebe uma entrada M e retorna $C \stackrel{R}{\leftarrow} \mathcal{E}_K(M)$
- •A probabilidade de um adversário recuperar um texto pleno a partir de uma mensagem desafio não pode ser maior que o *ind-cpa-advantage*. Em outras palavras, segurança no sentido IND-CPA implica em segurança contra PR.

- •Segurança contra o Ataque de Recuperação de Texto Pleno
- •O resultado a seguir é o que se deseja chegar com esta abordagem: "Provar a segurança de uma construção criptográfica de alto nível baseado em suposições de alguma primitiva".
- •Segurança do Modo CTR contra o Ataque de Texto Pleno Escolhido

$$\mathbf{Adv}_{\mathcal{SE}}^{\text{ind-cpa}}(t,q,\mu) \leq 2 \cdot \mathbf{Adv}_F^{\text{prf}}(t,q',lq'),$$

- •Segurança contra o Ataque de Texto Cifrado Escolhido
- •É um tipo de ataque mais forte que o CPA.
- •Neste tipo de ataque o adversário tem acesso a um oráculo de decriptação. Ele pode fornecer um texto cifrado ao oráculo e recuperar o texto pleno.
- •Não é permitido consultar C ao oráculo de decriptação, tendo C sido retornada pelo oráculo LR.
- •Esta restrição ainda deixa o adversário com muito poder. Tipicamente, um ataque CCA de sucesso ocorre da seguinte forma:

"O adversário pega o texto cifrado C retornado pelo oráculo LR, modifica para C', e chama o oráculo de decriptação com C'."

•Ataques de CCA são poderosos suficiente para quebrar todos os modos de operação padrões.

Referências:

- Criptografia e Segurança Guia Oficial
 RSA Burnett, Paine
- •Lecture Notes on Cryptography Godwasser, Bellare
- Site http://www.numaboa.com.br

"Quousque tandem abutere, Naor, patientia nostra? quam diu etiam furor iste tuus nos eludet? quem ad finem sese effrenata iactabit audacia?"

Cícero

"Até quando, ó Naor, abusarás de nossa paciência? Por quanto tempo ainda há-de zombar de nós essa tua loucura? A que extremos se há-de precipitar a tua audácia sem freio?"

